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Abstract: Background: Familial hypercholesterolemia (FH) has been associated with early coronary
artery disease (CAD) and increased risk of atherosclerotic cardiovascular disease. However, the
prevalence of FH and its long-term outcomes in a CAD-high-risk cohort, defined as patients with
hypercholesteremia who underwent coronary angiography, remains unknown. Besides, studies
regarding the impact of genetic variations in FH on long-term cardiovascular (CV) outcomes are
scarce. Methods and Results: In total, 285 patients hospitalized for coronary angiography with
blood low-density lipoprotein cholesterol (LDL-C) levels ≥ 160 mg/dL were sequenced to detect
FH genetic variations in LDL receptors apolipoprotein B and proprotein convertase subtilisin/kexin
type 9. Risk factors associated with long-term CV outcomes were evaluated. The prevalence of
FH was high (14.4%). CAD and early CAD were significantly more prevalent among FH variation
carriers than non-carriers, despite comparable blood LDL-C levels. Moreover, the FH variation
carriers also underwent more revascularization after a mean follow-up of 6.1 years. Multivariate
logistic regression demonstrated that FH genetic variation was associated with increased incidence of
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cardiovascular disease and mortality (odds ratio = 3.17, p = 0.047). Two common FH variants, LDLR
c.986G>A and LDLR c.268G>A, showed the most significant impacts on high blood LDL-C levels and
early-onset CAD. Conclusions: Our results indicate that FH genetic variants may exhibit differential
effects on early-onset CAD and revascularization risks in patients undergoing coronary angiography.
FH genetic information might help identify high-risk patients with typical CAD symptoms for
appropriate intervention.

Keywords: coronary artery disease; mortality; familial hypercholesterolemia; gene

1. Introduction

Familial hypercholesterolemia (FH) is an autosomal dominant disease mainly caused
by pathogenic variants of the genes involved in cholesterol metabolism, resulting in im-
paired clearance of circulating low-density lipoprotein cholesterol (LDL-C). The prevalence
of heterozygous FH in the general Caucasian population has been reported to be approx-
imately 1 in 200–500 persons [1,2] and approximately 1 in 500 persons in Han Chinese,
including Taiwanese [1,3]. Owing to the cumulative lifelong exposure to high blood LDL-C
levels, individuals with FH have been clinically associated with a high risk of early-onset
atherosclerotic cardiovascular disease (ASCVD) [4,5] and ischemic stroke [6,7].

Accumulating genetic data have shown that most FH cases result from a heterozy-
gous pathogenic variant in three different genes which encode key proteins involved in
the LDL receptor endocytic and recycling pathways, including the LDL receptor (LDLR),
apolipoprotein B (APOB), and proprotein convertase subtilisin kexin 9 (PCSK9) [1,8]. More-
over, substantial studies have examined the high prevalence of FH in patients with coronary
artery disease (CAD; 9.7–9.4%) compared with the general population [9,10], based on the
clinical criteria. In young myocardial infarction (MI) cases, the prevalence of genetically
confirmed FH was 1.3%, which increased sixfold as compared with that in the general
population of the United Kingdom [11]. FH prevalence also increased fivefold in the
CAD population in Japan [12]. In early-onset CAD, the FH prevalence further increased
15-fold [13].

Hypercholesterolemia is a major risk factor for CAD. The meta-analysis of statin
trials showed that CAD-associated morbidity and mortality could be efficiently decreased
by 16% with intensive cholesterol-lowering therapy compared with the standard statin
therapy [14]. Furthermore, every 1 mmol/l increase in LDL level was reported to be
related to a 1.45 increase in the risk ratio of MI in patients with genetic alterations [15].
Moreover, FH dramatically increased the early CAD risk by least 13- to 22-fold without
treatment [16]. However, to our knowledge, whether FH also influences the clinical
outcomes after revascularization in patients with signified CAD, especially those with
hypercholesterolemia, remains unclear. In this study, we examined the prevalence of FH
and the effects of genetic variants on the lipid profile and clinical presentations of patients
with hypercholesterolemia who underwent coronary angiography. This study is the first to
follow up a CAD-high-risk cohort for up to 10 years in a Han Chinese population.

2. Materials and Methods
2.1. Study Population

From January 2010 to January 2020, 6920 patients suspected of having acute coronary
syndrome were admitted to Taichung Veterans General Hospital to undergo coronary
angiography. Approximately 8% of the patients had high blood cholesterol levels, defined
as LDL-C levels ≥ 160 mg/dL. Among the patients, 285 subjects were randomly selected
and underwent genetic analysis for FH. This study was approved by the Human Research
Review Committee of Taichung Veterans General Hospital, Taichung, Taiwan. Informed
written consent was also obtained from all of the subjects enrolled in this study. All of the
study protocols were in accordance with the Declaration of Helsinki.
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2.2. Data Collection and Follow-up

The baseline characteristics (age, sex, body height, body weight, waist and hip cir-
cumferences, and blood pressure), clinical and biochemical data (the levels of lipids, glu-
cose, hemoglobin A1c [HbA1c], creatinine, etc.), medical history (diabetes mellitus [DM],
hypertension, CAD, etc.), angiographic images, catheterization reports, medication use
(statin [HMG-CoA reductase inhibitors], etc.), and medical chart records of all of the
285 subjects were collected and reviewed. DM was defined as a fasting blood glucose
level ≥ 126 mg/dL on two occasions or current intake of anti-diabetic medication. Hyper-
tension was defined as a systolic blood pressure (sBP) ≥ 140 mmHg or a diastolic blood
pressure (dBP) ≥ 90 mmHg or current intake of antihypertensive medication. CAD was
defined as having any one of the following conditions: acute or old MI, ≥50% stenosis
on coronary angiography, percutaneous coronary intervention (PCI), or coronary artery
bypass grafting (CABG). Early CAD was defined as an age of CAD onset of ≤45 years for
men and ≤55 years for women [17].

Moreover, a 10-year follow-up was conducted in all of the 285 enrolled patients using
the hospital-based electronic health record system. The impact of FH genetic variation
on the long-term cardiovascular (CV) outcomes was evaluated based on the presence of
major adverse cardiac events (MACEs), defined as a composite of all-cause death, nonfatal
myocardial infarction, or nonfatal stroke. Revascularization, defined as having PCI or
CABG, on follow-up was also evaluated.

2.3. Targeted Sequencing

A 2-mL peripheral blood sample was collected from each subject for genomic DNA
extraction. Genomic DNA was extracted from leukocytes using a QIAamp DNA Blood
Mini Kit (Qiagen, Hilden, Germany) for subsequent next-generation sequencing analysis.
Targeted sequencing was used to sequence the target area of interest linked to FH, including
only the whole exons of the LDLR, APOB, and PCSK9 genes. Probes/primers specific these
genes were designed. The targeted panel used was the FH gene test assay used for clinical
genetic trials in the Precision Medicine Laboratory of Taichung Veterans General Hospital.
Polymerase chain reaction was performed to amplify and then sequence the candidate DNA
fragments. Library construction was performed using a Qiagen target panel kit (Qiagen,
CDHS-15658z-227, Hilden, Germany) and was then quantified. The prepared library was
then loaded onto the Illumina Sequencing System (iSeq 100/MiniSeq, San Diego, CA, USA).
The final library concentration was 40 pM (iSeq 100) or 1 pM (MiniSeq). The sequence
experiment was performed in accordance with the QIASeq Targeted DNA Panel Handbook.
The FastQ files from the targeted DNA libraries were stored in CLC Genomics Workbench
12 (QIAGEN, Demark), and variants calling further performed by QIAGEN Panel analyses.
The assessment of variants’ pathogenicity was performed with the Illumina Basespace
Variant Interpreter. The pathogenicity (pathogenic or likely pathogenic variants) was next
confirmed with the ClinVar database. The ClinVar database is a public archive providing
information on human genomic variants that have been interpreted for their relationships
to diseases with supporting evidence of clinical or functional significance.

2.4. Statistical Analyses

Continuous variables were expressed as their mean ± standard deviation (SD), while
categorical variables were expressed as numbers (percentages). An independent t-test
was used to analyze the continuous variables, and the chi-square test or Fisher exact test
was used for the categorical variables. Furthermore, univariate and multivariate logistic
regression analyses (enter method) were performed to evaluate the effects of FH genetic
variation on the incidences of cardiovascular disease (CVD) and mortality. Statistical
analyses were performed using the Statistical Package for Social Sciences (IBM SPSS
version 22.0; International Business Machines Corp, New York, NY, USA). A two-tailed
p-value < 0.05 was considered statistically significant.
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3. Results
3.1. High Prevalence of FH in Patients with High Blood LDL-C Levels Who Underwent
Coronary Angiography

Forty-one of the 285 study patients were identified as FH based on detected pathogenic/likely
pathogenic variants on their LDLR, APOB, or PCSK9 gene, which equated to a prevalence
as high as 14.4%. The clinical and biochemical characteristics of the study cohort, stratified
according to the genetic diagnosis of FH, were summarized in Table 1 (left panel). We found
that the prevalence rates of CAD and early-onset CAD were significantly higher among the
FH variant carriers (87.8% vs. 71.7%, p = 0.048 and 26.8% vs. 9.8%, p = 0.005, respectively).
Moreover, 90.9% (10/11) of the early CAD cases were male. In addition, we also analyzed
this cohort with LDL-C ≥ 190 mg/dL (The Dutch Lipid Clinical Network [DLCN] criteria
for diagnosing possible FH), the result pattern was similar (Supplementary Table S1).

Table 1. Comparison of the clinical characteristics of FH pathogenic variant carriers, LDLR c.986G>A/LDLR c.268G>A
variant carriers † and FH pathogenic variant non-carriers in subjects with high blood LDL-C levels who underwent
coronary angiography.

Variables FH Pathogenic
Variant Carriers

LDLR
c.986G>A/c.268G>A

Variant Carriers

FH Pathogenic
Variant

Non-Carriers
p Value 1 p Value 2

Number 41 9 244
Age, years 59.2 ± 13.9 52.9 ± 13.2 59.7 ± 11.7 0.819 0.089
Men, n (%) 34(82.9%) 6(66.7%) 174(71.3%) 0.174 0.720
Body mass index, kg/m2 27.6 ± 4.3 27.4 ± 5.1 26.7 ± 3.8 0.178 0.593
Waist/Hip Ratio 0.94 ± 0.05 0.91 ± 0.07 0.94 ± 0.06 0.888 0.183
sBP, mmHg 131 ± 23 127 ± 18 132 ± 20 0.859 0.494
dBP, mmHg 77 ± 13 77 ± 14 77 ± 12 0.934 0.876
Triglycerides, mg/dL 180 ± 156 190 ± 80 178 ± 106 0.937 0.743
Cholesterol, mg/dL 239 ± 48 259 ± 34 239 ± 53 0.944 0.260
LDL-C, mg/dL 193 ± 27 213 ± 25 190 ± 30 0.633 0.026 *
HDL-C, mg/dL 44 ± 13 40 ± 13 46 ± 12 0.280 0.151
HbA1c, % 6.4 ± 1.5 6.2 ± 0.6 6.3 ± 1.3 0.727 0.849
Creatinine, mg/dL 1.2 ± 1.1 1.0 ± 0.2 1.4 ± 1.6 0.609 0.437
eGFR, ml/min/1.73 m2 76 ± 23 85 ± 22 75 ± 27 0.945 0.310
Smoking, n (%) 21(51.2%) 4(44.4%) 120(49.6%) 0.980 1.000
DM, n (%) 12(29.3%) 2(22.2%) 57(23.4%) 0.535 1.000
Hypertension, n (%) 27(65.9%) 6(66.7%) 146(60.1%) 0.598 1.000
CAD, n (%) 36(87.8%) 8(88.9%) 175(71.7%) 0.048 * 0.451
Early CAD, n (%) 11(26.8%) 5(55.6%) 24(9.8%) 0.005 ** 0.001 **

p value 1: FH pathogenic variant carriers (n = 41) vs. FH pathogenic variant non-carriers (n = 244). p value 2: LDLR c.986G>A/LDLR
c.268G>A variant carriers (n = 9) vs. FH pathogenic variant non-carriers (n = 244). †: LDLR c.986G>A/c.268G>A variant carriers stand for
those patients who carry either a LDLR c.986G>A heterozygotic variant or a LDLR c.268G>A heterozygotic variant. * p < 0.05, ** p < 0.01.

3.2. FH Pathogenica Vatiants on LDLR, APOB, and PCSK9

A total of 16 FH genetic variants were detected in 41 subjects. Forty subjects carried
a heterozygous variant, and only one subject was a double heterozygous variant carrier
(LDLR c.1867 A>G and APOB c.10579 C>T). Among the variants, 13 were missense single
nucleotide variants (SNVs), two were splicing region SNVs, and one was a frameshift
deletion/insertion (Indel). Details are shown in Table 2.

As expected, most FH genetic variants (85.7%, 36/42) were identified on LDLR, includ-
ing 10 missense SNVs, two splicing region SNVs, and one frameshift Indel. Moreover, the
top four variants, namely LDLR c.1747C>T, LDLR c.986G>A, LDLR c.268G>A, and LDLR
c.1867A>G, accounted for more than half (57.1%, 24/42) of the LDLR variants. By contrast,
only two missense SNVs were detected on the APOB gene, which accounted for 11.9%
(5/42) of the variants, with one common variant, APOB c.10579C>T (9.5%, 4/42), and one
rare variant, APOB c.10700C>T (2.4%, 1/41). In addition, one rare PCSK9 c.658G>A variant
was identified in one of our study subjects.



Genes 2021, 12, 1413 5 of 11

Table 2. Identified FH pathogenic gene loci in the study cohort.

Gene Chromosome:
Position HGVSc HGVSp Variant

Type
Clinical

Significance SNV ID Number

LDLR chr19:11227576 c.1747C>T p.(His583Tyr)) missense pathogenic rs730882109 11
LDLR chr19:11221373 c.986G>A p.(Cys329Tyr) missense pathogenic rs761954844 5
LDLR chr19:11213417 c.268G>A p.(Asp90Asn) missense pathogenic rs749038326 4
LDLR chr19:11230789 c.1867A>G p.(Ile623Val) missense pathogenic rs555292896 4
LDLR chr19:11217315 c.769C>T p.(Arg257Trp) missense pathogenic rs200990725 2
LDLR chr19:11224008 c.1241T>G p.(Leu414Arg) missense likely pathogenic rs748554592 1
LDLR chr19:11213441 c.292G>A p.(Gly98Ser) missense likely pathogenic rs750474121 1
LDLR chr19:11227550 c.1721G>A p.(Arg574His) missense likely pathogenic rs777188764 1
LDLR chr19:11217357 c.811G>A p.(Val271Ile) missense likely pathogenic rs749220643 1
LDLR chr19:11226874 c.1691A>G p.(Asn564Ser) missense likely pathogenic rs758194385 1

LDLR chr19:11211025 c.190+4A>T splice_region,
intron pathogenic rs769446356 2

LDLR chr19:11222317 c.1186+2T>G splice donor likely pathogenic rs779921498 2

LDLR chr19:11230789:
11230788 c.1867dupA p.(Ile623AsnfsTer22) frameshift likely pathogenic rs1555807206 1

APOB chr2:21229161 c.10579C>T p.(Arg3527Trp) missense pathogenic rs144467873 4
APOB chr2:21229040 c.10700C>T p.(Thr3567Met) missense pathogenic rs368278927 1

PCSK9 chr1:55518323 c.658G>A p.(Ala220Thr) missense
splice_region pathogenic rs768795323 1

HGVSc: human genome variation society cDNA; HGVSp: human genome variation society protein.

3.3. Association of FH Pathogenic Variants with the Incidence of CVD or Mortality

To evaluate the impact of FH pathogenic variants on the incidence of CVD or mortality,
a 10-year follow-up was conducted among patients in the cohort. After a mean follow-up of
6.1 ± 3.1 years, 55 study subjects (19.3%) experienced MACEs, which resulted in all-cause
death in 41 patients (14.4%), nonfatal MI in 15 patients (5.3%), and nonfatal stroke in
5 patients (1.8%). Supplementary Table S2 summarizes the MACEs in the cohort, stratified
according to the genetic diagnosis of FH. No significant difference in the incidence of
MACEs was found between the FH pathogenic variant carriers (n = 41) and non-carriers
(n = 244). In addition, 75 patients (26.3%) were found to have revascularization (PCI
or CABG) on follow-up (Table 3, left panel). As expected, the FH variant carriers had
significantly more revascularization on follow-up than the non-carriers (51.2% vs. 22.1%,
p < 0.001), especially those who received CABG (19.5% vs. 2.0%, p < 0.001).

Table 3. Revascularization on follow-up. Comparison of FH pathogenic variant carriers, LDLR c.986G>A/LDLR c.268G>A
variant-carriers † and FH pathogenic variant non-carriers in subjects with high blood LDL-C levels who underwent
coronary angiography.

Variables FH Pathogenic
Variant Carriers

LDLR
c.986G>A/c.268G>A
Variant Carriers *

FH Pathogenic
Variant Non-Carriers p Value 1 p Value 2

Number 41 9 244
Revascularization on

follow-up, n (%) 21(51.2%) 6(66.7%) 54(22.1%) <0.001 ** 0.007 **

PCI, n (%) 12(29.3%) 4(44.4%) 48(19.7%) 0.235 0.089
CABG, n (%) 8(19.5%) 2(22.2%) 5(2.0%) <0.001 ** 0.022 *

p value 1: FH pathogenic variants carriers (n = 41) vs. FH pathogenic variants non-carriers (n = 244). p value 2: LDLR c.986G>A/LDLR
c.268G>A variant carriers (n = 9) vs. FH pathogenic variants non-carriers (n = 244). †: LDLR c.986G>A/c.268G>A variant carriers stand for
those patients who carry either a LDLR c.986G>A heterozygotic variant or a LDLR c.268G>A heterozygotic variant. * p < 0.05, ** p < 0.01.

The univariate logistic regression analysis revealed that eight indicators, namely male
sex, smoking habit, low high-density lipoprotein cholesterol (HDL-C) level, high LDL-C
level, low estimated glomerular filtration rate (eGFR), DM, hypertension, and FH genetic
variation, were associated with the incidence of CVD or mortality (Table 4). Even after
adjustment for sex, smoking, blood pressure, LDL-C level, eGFR, and DM, the multivariate
logistic regression analysis revealed that the FH genetic variation was associated with the
highest incidence of CVD or mortality (odds ratio [OR] = 3.17, p = 0.047), which implied
the strong impact of the FH genetic variation.
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Table 4. Association between the variables and the incidence of cardiovascular disease or mortality as determined by
univariate and multivariate regression analyses in the study cohort (n = 285).

Variables
Univariate Analysis Multivariate Analysis

Odds Ratio (95% CI) p Value Odds Ratio (95% CI) p Value

Age, years 1.02 (1.00–1.04) 0.090
Sex, men 2.40 (1.35–4.28) 0.003 ** 2.23 (1.06–4.68) 0.034 *

Body mass index, kg/m2 1.04 (0.97–1.12) 0.253
sBP, mmHg 1.01 (1.00–1.03) 0.097 1.02 (1.00–1.04) 0.081
dBP, mmHg 1.00 (0.98–1.02) 0.875 0.98 (0.95–1.01) 0.219

Triglycerides, mg/dL 1.00 (1.00–1.01) 0.123
Cholesterol, mg/dL 1.00 (1.00–1.01) 0.262

LDL-C, mg/dL 1.02 (1.00–1.03) 0.024 * 1.02 (1.00–1.03) 0.019 *
HDL-C, mg/dL 0.97 (0.95–1.00) 0.037 *

HbA1c, % 1.67 (1.05–2.65) 0.032 *
Creatinine, mg/dL 1.33 (0.91–1.94) 0.143

eGFR, mL/min/1.73 m2 0.99 (0.98–1.00) 0.011 * 0.99 (0.98–1.00) 0.079
Smoking 2.51 (1.41–4.46) 0.002 ** 2.09 (1.04–4.19) 0.039 *

DM 2.93 (1.32–6.49) 0.008 ** 2.42 (1.02–5.73) 0.045 *
Hypertension 2.38 (1.36–4.16) 0.002 **

FH genetic variation
Non-carriers Reference Reference

Carriers 3.29 (1.13–9.59) 0.029 * 3.17 (1.01–9.92) 0.047 *

Logistic regression. * p < 0.05, ** p < 0.01.; CI: confidence interval.

3.4. Association of the LDLR c.986G>A and LDLR c.268G>A Variants with High Blood LDL-C
Levels and Early-Onset CAD

We further focused on the five FH genetic variants with high allele frequencies in car-
riers to examine the impact on blood LDL-C level and its associated CV risk. We found that
carriers with either the LDLR c.986G>A (n = 5) or LDLR c.268G>A variant (n = 4) had higher
blood LDL-C levels (214 ± 25 mg/dL vs. 212 ± 29 mg/dL) than the other three variants
(Supplementary Table S3). In the combined analysis, Table 1 (right panel) demonstrated that
the carriers of LDLR c.986G>A/LDLR c.268G>A (n = 9) had significantly higher blood LDL-
C levels than the FH variant non-carriers (n = 244; 213 ± 25 mg/dL vs. 190 ± 30 mg/dL,
p = 0.026). Moreover, the mean age of the men with either of the two variants was sig-
nificantly younger than that of others (47.3 ± 11.9 years vs. 58.4 ± 12.1 years, p = 0.028),
especially the carriers of LDLR c.268G>A (39.0 ± 1.7 years, Supplementary Table S3). In
addition, more than half of the carriers of the two variants (5/9), all of whom were male,
had early-onset CAD as compared with the others (55.6% vs. 9.8%, p = 0.001).

We also investigated the onset age of CAD between the two groups. As shown in
Supplementary Figure S1, the age of CAD onset in the carriers of LDLR c.986G>A/LDLR
c.268G>A was earlier than that in the other patients, with a borderline effect in the statistical
analysis (median, 44.2 years vs. 59.9 years, p = 0.060). Moreover, all of the five younger
subjects with CAD (mean = 40.9 years) were male.

4. Discussion

FH is well known as the classic genetic cause of hypercholesterolemia, which leads
to an increased risk of ASCVD. As such, substantial studies have focused on exploring
the prevalence of FH genetic variants in several different CAD-associated high-risk pop-
ulations. The present 10-year follow-up study specifically focused on a CAD-high-risk
cohort of patients with high blood LDL-C levels (≥160 mg/dL) who underwent coronary
angiography. A high FH prevalence rate (14.4%) was detected. FH genetic variation was
shown to be associated with an increased risk of subsequent CV incidence or mortality.
Furthermore, we demonstrated that FH genetic variants, especially LDLR c.986G>A and
LDLR c.268G>A, had significant impacts on high blood LDL-C levels and early-onset CAD.
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Our results indicated that FH genetic variants could be an independent factor for predicting
CV risks.

The incidence of FH genetic variants varied depending on inclusion criteria, ethnicities,
or genotyping methodology. In this study, we found a 70-fold increase in the prevalence of
FH pathogenic variants (14.4%, 41/285) through targeted sequencing of the patients with
high blood LDL-C levels who underwent coronary angiography as compared with the
general Chinese population (0.2%) [1,3]. When only patients with CAD were considered,
the FH prevalence rate increased to 17.1% (36/211). Furthermore, the prevalence even
doubled (31.4%, 11/35), with a >150-fold increase, in the patients with early-onset CAD.
Our study showed that FH pathogenic variants carriers had significantly earlier CAD
onset than non-carriers, despite the comparable blood LDL-C levels, which implied that
FH pathogenic variation influenced the early development of CAD. We speculated that
the long-term LDL exposure of FH variant carriers may result in a deleterious impact on
the development of atherosclerosis. As they induce vascular inflammation, high blood
LDL-C levels are well-known as a major risk factor for the initiation and promotion of
atherosclerosis. Therefore, FH variant carriers with lifelong excess LDL-C accumulated in
their arteries produce atheromas, leading to accelerated atherosclerosis and CVD devel-
opment. Consistent with this, significantly higher carotid intima-media thickness (IMT)
has been reported in child [18] and adult [19] patients with FH, indicating a higher car-
diovascular risk. Recently, several significant potentially differently expressed genes and
their functions, which were theoretically contributing to atherosclerosis development in
FH patients, had been investigated to explore the mechanism of FH using various bioinfor-
matic tools [20]. However, the specific molecular pathomechanisms of the atherosclerosis
progression process in patients with FH are still not completely understood. Both the
detailed effects and specific underlying mechanisms remain to be elucidated.

Previous studies reported that the total number of FH genetic variants identified
in Caucasians [21–24] so far was much higher than that reported in the Han Chinese
population [3,25]. In this study, the top three most frequent genetic variants in FH
(LDLR c.1747C>T, LDLR c.986G>A, and APOB c.10579C>T) were consistent with pre-
vious studies in the Han Chinese population [3,25]. However, the prevalence of spe-
cific genes in our study might have been biased by the inclusion criteria, ethnicities, or
genotyping methodology.

FH variation-caused high LDL-C level has been clinically related to high risks of
ASCVD [4,5] and ischemic stroke [6,7]. Genetically, the presence of a pathogenic FH
variant increases CVD risk more than threefold when compared with those with the same
LDL-C level who do not carry such gene variants [26]. Our results also indicated that
the FH variants were associated with an increased risk of CAD (OR = 3.17). Therefore,
genetic testing provides additional prognostic and risk stratification values for CVD [8].
Furthermore, the severity of coronary and carotid atherosclerosis has been reported to be
higher in those with monogenic FH than in those with high LDL-C levels due to a polygenic
etiology [27]. A mean long-term follow-up of 6.1 years was conducted in our high-risk
CAD cohort. Increased revascularization on follow-up was found in the subjects who were
FH variant carriers. Moreover, our study showed that FH was the most important risk
factor of increased incidence of CVD after controlling traditional CV risk factors. The risk
was greater than threefold, which was the highest among all of the factors. Therefore, it is
essential to identify FH in hypercholesteremic patients undergoing coronary angiography
and provide stringent risk mitigation accordingly. In addition to FH, male sex, a smoking
habit and diabetes, higher LDL-C levels also increased the mortality among patients with
CAD symptoms. Our results were similar to those of the previous study [11], which
demonstrated much higher prevalence rates of smoking and diabetes in the young subjects
with CAD. As genetic factors are non-modifiable, our findings suggest that proactive
control of blood pressure and glucose level and cessation of smoking might be a feasible
method to curtail the CAD risks in patients with FH.
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Another important finding in this study was that the two FH genetic variants, LDLR
c.986G>A and LDLR c.268G>A, were associated with high blood LDL-C levels and early
CAD. The LDLR c.986 G>A variant is located in the epidermal growth factor (EGF) like
repeats (Figure 1A), and the functional domain interacts with PCSK9, which promotes
degradation of the LDLR [28]. Therefore, a variation in this site may affect the binding
efficiency of PCSK9, which leads to loss or defect of functional hepatic receptors for the
uptake and clearance of circulating LDL-C. The LDLR c.286G>A variant is located in class A
repeats 2 (Figure 1A), which is required for maximal APOB binding to LDL [29]. Therefore,
it may interfere with ligand binding and lead to severely high blood LDL-C levels [30].
Although genetic variation severity is a known concept within FH [18,26], our results
indicated that FH genetic variants may exhibit differential effects on early-onset CAD
and revascularization risks in patients with hypercholesterolemia undergoing coronary
angiography. In particular, the LDLR c.986G>A and LDLR c.268G>A variants had the most
significant impacts on high blood LDL-C levels and early-onset CAD. This FH genetic infor-
mation might help identify high-risk patients with typical CAD symptoms for appropriate
intervention. Furthermore, abundant evidence showed sex-related differences in CVD,
demonstrating that men were at a higher risk of developing CVD than women [31,32]. In
agreement with previous studies, our results showed that all five patients with early CAD
were men among the LDLR c.986G>A/LDLR c.268G>A variant carriers.
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The increased risk of FH prevalence in hypercholesterolemic patients with CAD
symptoms strengthened the significant contribution of FH in patients undergoing coronary
angiogram. We found that FH was identified in every 6–7 hypercholesterolemic CAD
patients in this study cohort, a 20–30-fold increase compared with the general population.
Increased prevalence of FH (4.5%) in early CAD patients [13] was accompanied by a surge
of FH in the group with higher LDL-C. Additionally, in hypercholesterolemic patients with
CAD symptoms, the FH carriers had a relatively higher risk of angiographically diagnosed
CAD compared with patients of a similar age and with a similar LDL-C level. Therefore,
it might be valuable to detect FH in hypercholesterolemic patients with CAD symptoms.
Furthermore, more active intervention was recommended in hypercholesterolemic patients
with CAD symptoms carrying FH variants due to their highest risk of myocardial infarction.

There were several limitations to this study. Firstly, we only detected the FH variations
on three major genes (LDLR, APOB, and PCSK9) by targeted sequencing. Rare variants in
other genes such as LDL receptor adaptor protein 1 (LDLRAP1) [1,8], ATP-binding cassette
(ABC) hemitransporters, ABCG5 or ABCG8 [33] lysosomal acid lipase (LIPA) [34], and
apolipoprotein E (APOE) [35] may also cause an FH-like phenotype. However, we were the
first to identify two crucial variations on LDLR genes (LDLR c.986G>A and LDLR c.268G>A)
in patients undergoing coronary angiography. Secondly, the relatively small numbers in
our study cohort may not represent the general population. Nevertheless, we believed that
FH genetic variations were crucial for early CAD events independent of traditional CV risk
factors. Thirdly, the information on lipid-lowering medication prescriptions was lacking.
Thus, we propose that future investigations should emphasize the ways that FH-associated
genes might interact with the therapeutic effects of statins in this population.

In conclusion, we detected a high FH prevalence rate (14.4%) in our cohort of patients
with high blood LDL-C levels undergoing coronary angiogram. Our results were the first
to demonstrate that FH genetic variations, especially LDLR c.986G>A and LDLR c.268G>A
variants, possess a significant impact on high blood LDL-C levels and early CAD. Thus,
genetic variations could serve as an essential contributing factor for CV risk assessment in
the future.
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