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Abstract: Chromosomal rearrangement and genome instability are common features of cancer cells
in human. Consequently, gene duplication and gene fusion events are frequently observed in human
malignancies and many of the products of these events are pathogenic, representing significant
drivers of tumourigenesis and cancer evolution. In certain subsets of cancers duplicated and fused
genes appear to be essential for initiation of tumour formation, and some even have the capability of
transforming normal cells, highlighting the importance of understanding the events that result in
their formation. The mechanisms that drive gene duplication and fusion are unregulated in cancer
and they facilitate rapid evolution by selective forces akin to Darwinian survival of the fittest on a
cellular level. In this review, we examine current knowledge of the landscape and prevalence of gene
duplication and gene fusion in human cancers.

Keywords: tumour evolution; gene duplication; gene amplification; gene fusion; cancer genome;
genome rearrangement

1. Introduction

Gene duplication is thought to be one of the predominant processes by which new
genes and genetic novelty arise throughout evolution [1–5], and much of the same hallmark
structural variation that facilitates genomic evolution over long periods of time, including
gene duplication and gene fusion, can also be observed occurring rapidly in cancer during
tumour formation. Cancer is a disease characterised by rapid proliferation and spread
of clonal somatic cells within a tissue. To become tumourigenic, clones must evolve the
ability to ignore regulatory pathways that normally place strict constraints on cell division
and growth, increase the rate at which its cells proliferate and survive within a given
micro-environment, and escape immune system surveillance [6].

Despite our progressively increasing knowledge of the mechanisms behind cancer
formation and evolution the collective diseases remain the second leading cause of death
worldwide, with nearly 10 million fatalities as a result of cancer in 2020 [7]. Genome
abnormalities, including chromosomal rearrangement, changes in copy number, and single
nucleotide mutations, are commonly observed in cancers, with many of these abnormalities
serving as drivers of tumourigenesis [8]. Cancer cells undergo dynamic clonal expansion
and experience an increase in genetic diversity in a given tissue micro-environment over
a typically very short period of time [9]. Tumourigenesis and cancer progression could,
therefore, be viewed as a microcosm of accelerated evolution. Indeed, the idea that cancer
formation and progression can be considered an evolutionary process was first theorised
in 1976 [10], a theory which has since been validated using modern genomics approaches.

Tumourigenesis has traditionally been thought to occur in a multistage step-wise fash-
ion by gradual accumulation of genetic changes, accompanied by an increasing amount of
chromosomal rearrangement and genomic instability in cancer cells [6,11]. Such instability
can facilitate evolution by gene duplication, often termed gene amplification in cancer
biology, which can be either small-scale, where a single gene or small group of genes are
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duplicated, or on a much larger scale, where the gene content of an entire chromosome
or even the whole genome is doubled [8,12,13]. Additionally, frequent chromosomal re-
arrangement, tandem duplication, and deletion events in cancer cells can result in the
joining together of two distinct genes to form a fusion gene, the products of which play an
important role in tumour evolution and progression in many cancers [14,15].

In this review, we discuss and examine how gene duplication and gene fusion con-
tribute to tumourigenesis and acquisition of therapeutic resistance in human cancers.

2. Routes to Gene Duplication in Cancer

Tumour formation and evolution can occur as a result of different mechanisms—including
point mutations and structural alterations, including oncogene duplication—and common
belief is that multiple aberrations are usually required to initiate tumourigenesis [16–18].
It is well documented that structural variation is capable of driving tumour formation
and can result in the duplication and amplification of genes that may enhance cancer cell
proliferation and survival relative to wild-type normal cells, thereby enhancing the ability
of these cancerous cells to expand and further colonise their intratissue and extratissue
environments [6,9]. Such gene duplication is very common in many human cancers and
contributes to tumourigenesis usually due to the overexpression of oncogenes [19,20].
Additionally, cancers can acquire chemotherapeutic resistance to certain anti-cancer drugs
as a result of overexpression of certain genes via duplication [21]. Indeed, the first can-
cer gene amplification to be identified, in 1978, was the dihydrofolate reductase (DHFR)
gene; DHFR is inhibited by the anti-cancer drug methotrexate, leading to reduced cell
growth and proliferation in vulnerable cells. However, duplication of DHFR provides a
selective advantage by greatly enhancing DHFR synthesis and facilitating expansion of
methotrexate-resistant tumour clones [22].

There are a variety of mechanisms by which—in large part due to increased genomic
instability and formation of double-strand breaks—oncogenes can become duplicated in
human cancers, including intrachromasomal deletion and tandem duplication, breakage-
fusion-bridge events, or the formation of neochromosomes in certain tumour types [11,23–26].
Recent evidence shows that aberrant long interspersed nuclear element (LINE-1) retrotrans-
poson integration in cancer genomes can also mediate large-scale duplication of chromosomal
regions [27]. Duplicated genes can usually be found either in tandem arrays along a chro-
mosome, contained within small, circularised extrachromosomal DNA (ecDNA) fragments,
or interspersed randomly across the genome in intrachromosomal homogenously staining
regions (HSRs) [19,28]. Additionally, certain hotspots may exist in cancer genomes that
give rise to a greater frequency of tandem duplication of oncogenes, including MYC and
CCND1 [29]. Cancer associated ecDNAs are generally large (>1 Mb) and contain one or
more full genes and regulatory regions which are often oncogenic, and a subset of ecDNAs
(~30%) form pairs of chromatin bodies, termed double minutes (DMs) [20,21,30]. Once DMs
and ecDNA fragments arise they are capable of reintegrating into chromosomal DNA at or
near telomeres, which further propagates genomic instability. Furthermore, unequal segrega-
tion of ecDNAs from parent to daughter tumour cells can be a powerful driver of tumour
evolution by rapidly increasing intratumour heterogeneity, allowing some daughter cells
to posses many more ecDNAs than their parents, which could confer additional selective
advantages [31–34]. Although oncogenic DMs and ecDNAs are important players in cancer
pathogenesis, ecDNA fragments are not unique to cancer cells; smaller ecDNA fragments
(200–500 bp) lacking full genes can be found in normal somatic tissues across different
eukaryotic species—including human, Caenorhabditis elegans, and Drosophila melanogaster—as
well as in the germline genomes of a subset (~0.5%) of human individuals [35–39]. However,
the function and evolutionary relevance of ecDNAs in healthy somatic and germline tissues
remains poorly understood.
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2.1. Chromothripsis

In cancer, duplication and amplification events are sometimes preceded and facilitated
by chromothripsis, which is a massive, catastrophic breakage and random rearrangement
of genomic DNA encompassing one or several chromosomes that occurs in a single event
(Figure 1) [40–42]. Evidence suggests that in many cases chromothripsis occurs early in
tumourigenesis and quickly provides a huge selective advantage, which lends credence to
the idea that in many cases cancer evolution may proceed in a series of rapid events in a short
period of time before stabilising somewhat, in a manner akin to punctuated equilibrium
and in contrast to the commonly accepted theory of evolutionary gradualism [9,18,43–47].
These observations are contrary to the idea that chromothripsis occurs as a result of cancer
genome instability, when in fact reverse causation appears to be true for many tumours.
Indeed, in recent years the two-phased model of cancer evolution—involving a punctuated
phase and a stepwise phase—is gaining more acceptance, whereby the punctuated phase
involves large, macroevolutionary events, such as chromothripsis facilitating rapid advances
in tumour evolution, followed by the stepwise phase where cells featuring advantageous
macro-evolutionary events grow and expand clonally and experience smaller-scale gene-
based mutation [13,48–50]. These large genome-rearrangement events change the karyotype
coding of the cell—essentially the genomic organisation and system-level information—and
it is thought that this can substantially influence subsequent cancer evolution by altering
gene expression and interaction networks [51].

The role and frequency of chromothripsis in cancer is becoming more apparent,
but the mechanisms responsible for its initiation remain poorly understood. One of the
most attractive models explaining chromothripsis is the micronuclei model, whereby
mitotic errors in cells with defective chromosomal segregation during the transition from
metaphase to anaphase can result in the formation of micronuclei, which can contain
whole chromosomes or chromosome fragments [52,53]. After these micronuclei experience
defective and asynchronous DNA replication the DNA damage response pathway is
activated, but the DNA repair and cell cycle checkpoint pathways subsequently fail to
activate and the incorrectly replicated micronuclei become fragmented. These fragments
can be rearranged to form a new chromosome, which is then reintegrated into the primary
nucleus of a subsequent daughter cell [54]. Regardless of how chromothripsis is initiated,
studies have shown that it can thus result in extensive genome rearrangement, gene
amplification, and deletion of chromosomal regions in cancer cells, and evidence points to
chromothripsis as an important mechanism driving formation of ecDNAs/DMs and fusion
genes during tumourigenesis and acquisition of chemotherapeutic drug tolerance [13,55].

Selective pressure on cancer cells from chemotherapeutic intervention can drive fur-
ther evolution of cancer genomes, resulting in enhanced genomic instability, intra- and
extrachromosomal gene amplifications, and chromothripsis. Shoshani et al. [13] demon-
strated that when cancer cells were subjected to variable levels of selection pressure—in
the form of the anticancer drug methotrexate—weaker selection pressure was associated
with low-level gain in copy number, whereas applying stronger selection resulted in for-
mation of circular DMs derived from chromothripsis. They further showed that cancer
cells can undergo subsequent rounds of chromothripsis in response to increasing selection
pressure, leading to further amplification of DMs—which require non-homologous end
joining for proper formation—and allowing the cells to develop tolerance to the drug
by duplication and amplification of DHFR. These observations highlight the remarkable
ability of chromothripsis to drive tumourigenesis and adaptation to unfavourable environ-
mental conditions.
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Figure 1. Overview of the process of chromothripsis in cancer. A single massive shattering event
breaks up one or more chromosomes into multiple segments, which are then repaired and re-
assembled randomly to form new, rearranged chromosomes. Some segments can form circularised
extracellular DNA fragments, and some can be lost to the cell.

2.2. Whole-Genome and Whole-Chromosome Duplication

In addition to chromothripsis and small-scale intrachromasomal duplication, gene
amplification in cancer can occur as a result of ploidy changes including tetraploidy/whole-
genome duplication (WGD) and aneuploidy in the form of whole-chromosome duplication
(WCD). WGD and aneuploidy are classic hallmarks of cancer, are incredibly common
across diverse cancer types, and are significantly associated with poor prognosis for pa-
tients [56,57]. Despite the frequency of WGD in human cancers, its impact on tumourigen-
esis and the underlying mechanisms that cause it to occur still remain somewhat elusive.
The presence of WGD and WCD in tumour cell populations (WGD+/WCD+) is thought
to result from flawed or defective cell division and checkpoint activation: a failure of
cytokinesis—which is normally tightly controlled—to correctly segregate chromosomes
in dividing cells [12,58]. A variety of causes have been proposed to explain cytokinesis
failure (reviewed extensively in Lens et al. [59]): physical obstruction by a number of
factors such as the presence of asbestos fibres or chromatin that can disrupt cleavage fur-
row ingression; delayed mitosis giving rise to mitotic slippage, such that anaphase is not
initiated and tetraploidisation occurs; or possible rare mutations in—or aberrant expres-
sion of—regulators of cytokinesis. Regardless of how it occurs, these macroevolutionary
WGD/WCD events provide tumours with an abundance of adaptive potential and tumour
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cell diversity since all genes on a chromosome or in the genome are duplicated. Oncogenes
that facilitate enhanced cellular proliferation and survival can, therefore, be upregulated
while duplicated tumour suppressor genes can be selectively lost and returned to a diploid
state, or lost entirely.

Evidence suggests that WGD, like chromothripsis, tends to occur early in cancer evo-
lution, causing cells to become oncogenic and driving additional chromosomal instability
(CIN) and aneuploidy, which in turn further facilitates tumourigenesis and intratumour
heterogeneity [59,60]. Large regions of the newly tetraploid chromosomes can be sub-
sequently lost after WGD, such as regions of chromosome arm 4q in colorectal cancer
tumours; loss of these regions is significantly associated with increased genomic instability
and worse prognosis for patients [61]. Although the majority of WGD+ clones are sub-
tetraploid, the median ploidy of WGD+ advanced tumours was found to be 3.3, relative
to a ploidy of 2–2.1 for WGD− tumours, suggesting many of the doubled chromosome
regions are retained after WGD [56,57]. Evolutionary simulations showed that WGD can
be selected for in cancer to increase tolerance of aneuploidy and to act as a buffer against
the accumulating deleterious effects of somatic mutations, loss of heterozygosity, and
chromosomal aberrations [62]. Additionally, certain chromosomes are more frequently
subject to WCD during tumourigenesis than expected by chance, including chromosomes
7, 12, and 20 [63]. These observations may indicate that there is selection for retention of
these chromosomes in many tumours, possibly due to the enhanced cellular proliferation
and survival benefits conferred by their duplicated gene content. However, experimental
systems have shown that too much CIN can be detrimental to tumours, which suggests
that a balance exists between the tumourigenesis-promoting effects of aneuploidy and its
accompanying instability and fitness cost, much like the effects of any genomic change or
innovation that arise during species evolution [64]. Furthermore, WGD appears to open up
tumour cells to genetic vulnerabilities due to additional requirements for survival, such as
the p53 tumour–suppressor pathway that becomes active in response to WGD, as well as
the physiological fitness costs associated with WGD [65,66]. These vulnerabilities could be
exploited to enhance cancer therapies.

3. Frequency of Structural Variation Leading to Duplication in Cancer

The importance of structural variants to tumourigenesis and cancer evolution can be
summarised with the following statistic: between 68% to 80% of human solid tumours
are aneuploid, possessing an abnormal number of chromosomes [59,63]. That said, cer-
tain types of cancers are more susceptible to undergoing structural variation and genome
rearrangement during tumour evolution than others. For instance, the frequency of chro-
mothripsis varies widely across cancer types, with a recent pan-cancer analysis of whole
genomes (PCAWG) study estimating that, pan-cancer, chromothripsis occurs at a rate of
~29% (considering high-confidence events only); however, several cancer types experience
a chromothriptic rate of >40%, with liposarcomas and osteocarcinomas reaching 100%
and 77% occurrence, respectively [18,55]. These levels of chromothripsis are much higher
than previous estimates, though this is primarily attributed to the higher sensitivity of
the algorithms used by PCAWG [40,56,67–69]. By contrast, some cancer types experience
chromothripsis infrequently—at rates <5%—including pilocytic astrocytomas and chronic
lympocytic leukaemia, suggesting certain tumour environments or cellular states can be
more or less favourable for chromothripsis. Intriguingly, at least 11.1% of focal amplifica-
tions involving oncogenes—including CDK4, MDM2, and MYC—localise to regions that
have undergone chromothripsis and are frequently upregulated as a result, highlighting
the importance of chromothripsis to gene amplification.

In a parallel PCAWG study of structural variation within 2559 tumour samples from
38 distinct tumour types, nearly 95% of samples (2429/2559) had at least one detectable
somatic copy number alteration (SCNA) that was not present in their respective germline
control samples [8,18]. The most common class of simple SCNA that was identified was
deletion, followed by tandem duplication, with unbalanced translocations being less likely.
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Significant variability in the frequency and distribution of these different SCNAs was
observed both between and within different tumour types. Ovarian cancer in particular ap-
pears to have a high frequency of tandem duplication or deletion. Additionally, this study
also identified a subset of liver cancer samples that exhibit SCNAs resulting in duplication
of the Telomerase reverse transcriptase (TERT) gene and enhancing its expression; TERT is
a well known oncogene frequently duplicated in cancer and is responsible for extending
telomeric DNA, thereby facilitating immortalisation of cancer cells by overcoming the
Hayflick limit on the number of cell divisions [70–74]. Interestingly, while duplication
usually contributes to tumourigenesis by enhancing oncogene expression, tandem duplica-
tion can also result in deactivation of tumour suppressor genes by disrupting exon open
reading frames, such as PTEN in ovarian and breast tumours.

Aside from obvious cases involving oncogenes, such as TERT, disentangling gene
amplifications that drive cancer evolution from those that arise as a result of passenger
SCNA events remains a challenging task for cancer biologists, particularly since SCNAs
can encompass many genes [75]. This is further complicated by the frequent presence
of complex, secondary chromosomal rearrangements which can mask the initial copy
number breakpoints that give rise to genomic amplifcations [76–78]. Pan-cancer, small-scale
intrachromosomal focal amplifications, have been identified in regions that are duplicated
recurrently across diverse cancer types. Some of these duplicated regions do not contain
known oncogenes, but are significantly enriched for epigenetic regulatory genes suggesting
an underappreciated role for these genes in cancer formation [56]. The recurrent nature of
these duplicated regions suggests that they experience positive selection, which generally
has an edge over purifying selection during tumourigenesis [79].

WGD is emerging as one of the most common pan-cancer genomic aberrations in
human and is unsurprisingly associated with increased levels of SCNA. Bielski et al. [57]
sequenced the tumours of 9692 patients with advanced cancers and observed WGD at a
prevalence of almost 30%; these WGD+ cancers were associated with increased morbidity
and decreased overall survival regardless of age, TP53 mutation, or cancer type. Using data
from The Cancer Genome Atlas (TCGA), Quinton et al. [66] found a WGD+ prevalence
of ~36% across 10,000 primary tumour samples comprising 32 different tumour types,
consistent with the above mentioned and previous studies [56]. Among metastatic cancers
the rate appears to be even higher, with 56% of metastatic solid tumours exhibiting WGD
events, highlighting the contribution of WGD to cancer progression and poor prognosis for
patients [80]. Furthermore, tumours with mutant TP53—a potent tumour-suppressor gene
that is thought to guard against WGD+ and aneuploid cells continuing through successive
cell cycles and proliferating—were significantly associated with WGD+ (1.8-fold increase
in frequency), as well as chromothripsis (1.54-fold increase) [55,81]. Consistent with the
hypothesis that TP53-disabling mutations facilitate WGD and not vice versa, studies have
shown that functional mutations in TP53 precede WGD in >90% of unambiguous cases [82].
However, it is evident that mutant TP53 is not required for WGD or chromothripsis to
arise, as ~21% and ~24% of wild-type TP53 tumours also exhibit WGD and chromothripsis,
respectively. Similarly to chromothripsis, the purported occurrence of WGD in cancer varies
substantially by tumour type and even molecular and histological sub-types. Germ cell
tumours appear to most frequently exhibit WGD events, at a rate of ~58%, compared to <5%
of gastrointestinal neuroendocrine tumours [57]. These observations suggest that certain
cellular environments are more favourable or tolerant of WGD than others, and may be
under contrasting selective forces in different tissues. In support of this idea, recent studies
have shown that the frequency of aneuploidy in different cell types can be influenced by
the immune system, which can often recognise cancer cells in early tumourigenic stages
due to the presence of aneuploidy and genome instability [83,84]. Immune tolerance of
aneuploidy could, therefore, depend on the tumour micro-environment and the presence
or absence of certain immune cells, which may determine whether aneuploidy promotes
either immune system recognition or evasion of nascent cancers [85–87] Nevertheless, WGD
clearly represents a significant macroevolutionary driver event in a swath of human cancers.
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4. Gene Fusions Give Rise to Genetic Novelty

Gene fusion is a process that involves the merging of distinct, independent genes or
fragments of genes via chromosomal inversion, tandem duplication, interstitial deletion,
or translocation events (Figure 2) [14,15]. As mentioned previously, gene duplication,
deletion, and chromosomal rearrangement are common in cancer genomes, and these
events often precede presentation of observable malignant phenotypes [6,88,89]. The first
translocation to be described in human cancer was in 1960, where a reciprocal transloca-
tion between chromosomes 9 and 22 in chronic myeloid leukaemia (CML) was described,
resulting in the formation of the Philadelphia (Ph) chromosome (Figure 2A), an unusu-
ally shortened version of chromosome 22 [90,91]. This discovery subsequently led to the
molecular elucidation of the first gene fusions and translocations in the early 1980s: fusion
of ABL1 and BCR resulting from the formation of the Ph chromosome causes constitutive
activation of a tyrosine kinase in CML (Figure 3A); and a translocation in ~80% of Burkitt
lymphomas that places the MYC gene within a region of highly active promoters belonging
to immunoglobulin heavy chain genes causing upregulated and persistent expression
of oncogenic MYC [15,92–97]. The chimeric ABL1-BCR protein has demonstrated the
ability to transform benign cells into malignant cells, highlighting the necessity of under-
standing the mechanistic and evolutionary processes that result in the formation of such
fusion genes [98].

Since their initial discovery and due to the advent of high-throughput sequencing a
plethora of further gene fusions in malignancies have been identified and characterised
(Table 1) [99–102]. A transcriptome RNA sequencing (RNA-seq) study—which allowed
the detection of aberrant RNA transcripts across 675 commonly used cancer cell lines—
uncovered 2200 gene fusion events, with a median of 3 fusions per cell line and 120 fusions
that were found more than once [103,104]. Interestingly, the majority of these represented
novel fusion transcript events that had not been observed previously. However, among
the pairs of genes that constitute these 2200 fusions, 359 5′-partners and 238 3′-partners
had previously been observed in other gene fusions with different partner genes, and 1822
fusions had one partner than could be observed in other fusions in RNA-seq data from
TCGA database. These gene fusion events are known to occur with variable frequency
among different cancer types, with some cancers almost guaranteed to posses one or more
gene fusions, whereas, by contrast, in other cancers they are exceedingly rare [15,104]. As of
writing (15 July 2021) there are currently 32,721 unique gene fusions involving 14,019 genes
represented in the Mitelman Database of Chromosome Aberrations and Gene Fusions
in Cancer (MDCAGFC), which is regularly and manually curated [102]. Given the large
proportion of human genes represented in this database it is likely that many of these
unique fusion genes are formed from passenger structural variants and are unlikely to be
oncogenic in nature, having simply arisen as a result of the large amount of chromosomal
rearrangement facilitated by increased genomic instability during tumourigenesis.

Interestingly, two distinct genes can give rise to several possible fusion gene variant
isoforms, as several breakpoint hotspots within intronic DNA have been identified for
many fusion pairs (Figure 3A,C). This suggests that only certain regions of each gene are
important for tumourigenesis; indeed, for some genes in many fusion pairs it appears only
the initial promoter elements and first exon are required. In this manner, oncogenes which
are ordinarily tightly controlled can gain more permissive expression by co-opting the
promoters of other genes. This also may explain why fusion genes arise so frequently in
cancer genomes, as the location of the breakpoints leading to their formation do not need
to be so precise.
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Figure 2. Overview of gene fusion in cancer with examples of well-known fusion events. (A) Re-
ciprocal translocation between different chromosomes can result in gene fusion, such as during the
well-characterised fusion of BCR and ABL1 in CML. (B) Chromosomal inversion events can give rise
to gene fusions, including the AKAP9-BRAF fusion found in thyroid carcinomas [105]. Inversion
events can be pericentric (spanning the centromere) or paracentric (excluding the centromere) (C)
Deletion of chromosomal segments between two genes can result in their fusion, which constitutes a
large proportion of the fusion events forming TMPRSS2-ERG in prostate cancers.
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Table 1. List of common fusion genes identified in cancer.

Cancer Type Fusion Gene(s) References

Acute lymphoblastic leukaemia BCR-ABL1 ∗, ETV6-RUNX1, TCF3-PBX1 [106–108]

Acute megakaryoblastic leukaemia RBM15–MKL1 ∗ [109]

Acute myeloid leukaemia RUNX1-RUNX1T1(AML1-MTG8), PML-RARA,
CBFB-MYH11, BCR-ABL1 ∗, RBM15–MKL1 ∗

[15,110–113]

Anaplastic large T-cell lymphoma NPM1–ALK [114]

Breast carcinoma TRMT11-GRIK2 ∗, CCNH-C5orf30 ∗,
ETV6–NTRK3 ∗, ODZ4–NRG1,
TBL1XR1–RGS17, MYB-NFIB ∗, MAST-fusions,
NOTCH-fusions

[15,89,103,115]

Burkitt lymphoma IGH–MYC, IGK–MYC, IGL–MYC [92,116,117]

Chronic myeloid leukaemia BCR-ABL1 ∗ [94]

Colorectal carcinoma TRMT11-GRIK2 ∗, CCNH-C5orf30 ∗,
RSPO2-EIF3E, RSPO2-PTPRK

[89,118]

Ewing’s sarcoma EWSR1-FLI1 ∗ [119]

Fibrosarcoma ETV6–NTRK3 ∗ [15]

Follicular lymphoma BCL2-IGH ∗ [120,121]

Glioblastoma multiforme TRMT11-GRIK2 ∗, CCNH-C5orf30 ∗,
MAN2A1-FER ∗, FGFR3-TACC3, FIG-ROS1 ∗

[89,122–124]

Hepatocellular carcinoma TRMT11-GRIK2 ∗, CCNH-C5orf30 ∗,
MAN2A1-FER ∗

[89,122]

Lung cancer TRMT11-GRIK2 ∗, CCNH-C5orf30 ∗,
EML4-ALK1, MAN2A1-FER ∗, FIG-ROS1 ∗

[89,122,124–126]

Oesophageal adenocarcinoma TRMT11-GRIK2 ∗, CCNH-C5orf30 ∗,
MAN2A1-FER ∗

[89,122]

Ovarian adenocarcinoma TRMT11-GRIK2 ∗, CCNH-C5orf30 ∗,
MAN2A1-FER ∗, ESRRA-C11orf20, FIG-ROS1 ∗

[89,122,124,127]

Pilocytic astrocytoma BRAF-KIAA1549 ∗ [128]

Prostate carcinoma TMPRSS2-ERG, TMPRSS2-ETV1,
TMPRSS2-ETV4, MAN2A1-FER ∗,
TRMT11-GRIK2 ∗, SLC45A2-AMACR,
TMEM135-CCDC67, MTOR-TP53BP1,
CCNH-C5orf30 ∗, RPS10–HPR

[15,129–131]

Thyroid carcinoma APAK9-BRAF ∗, RET–CCDC6, PAX8–PPARG,
TFG–NTRK1, TPM3–NTRK1

[15,105,132]

∗ Recurring fusions across different cancer types.

4.1. Tools for Detection of Fusion Genes

Several bioinformatic algorithms, including deFuse, FusionCatcher, PRADA, Fusion-
Hunter, SOAPfuse, JAFFA, STAR-Fusion, and Arriba, have been developed to detect fusion
genes from RNA-seq and high-throughput sequencing (HTS) data to enable further cancer
research and precision oncology therapy, and to filter out those fusions deemed to be
non-functional [133–141]. The efficiency and accuracy of these tools vary, and many of
them have been assessed and benchmarked to determine the best methods for accurate
detection of fusion transcripts in cancer. From analyses performed on both simulated and
cancer-cell-line-derived RNA-seq data, STAR-Fusion, and Arriba emerged as the most
highly ranked algorithms with respect to prediction accuracy, while maintaining relatively
fast execution times [141,142]. DeFuse, the most widely cited and one of the oldest pro-
grams, developed in 2011, performed comparatively poorly. However, different tools may
situationally provide different advantages, depending on read length, and quantity and
quality of the read data, so care should be taken when deciding on which software to
utilise [139,143,144]. These tools have massively contributed to the plethora of gene fusions
that have been identified in cancers thus far, represented in the MDCAGFC.
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4.2. Role of Fusion Genes in Cancer Evolution

In some cancers fusion genes are thought to represent a crucial step in the initiation
of tumourigenesis and contribute significantly to tumour burden and morbidity [145].
In hormone receptor-positive (HR+) breast cancer, tumours positive for rearrangement-
mediated expressed gene fusions resulted in overall lower survival for patients relative
to those with tumours negative for gene fusions [146–148]. Furthermore, certain onco-
genes appear to require specific gene fusion events to become oncogenic, and most of
these events show little variability in the type of structural variant that is capable of
generating them [8]. In pilocytic astrocytomas, the KIAA1549 and BRAF genes are fre-
quently found fused as a result of tandem duplication, and in papillary thyroid cancers
and thyroid carcinomas, inversion events are most often the cause of RET-CCDC6 and
APAK9-BRAF gene fusions, respectively (Figures 2B and 3B) [105,128]. Additionally, spe-
cific chromosomal translocations common in follicular lymphomas juxtapose BCL2 with
the IGH immunoglobulin locus, causing overexpression of the anti-apoptotic BCL2 and con-
tributing to tumourigenesis [120,121]. Furthermore, fusion genes can also produce circular
RNAs (circRNAs)—including EML4-ALK1 and EWSR1-FLI1—that promote cellular trans-
formation and tumour growth [125]. The overall relevance of circRNAs to tumourigenesis
remains unclear, though it is possible these aberrant molecules are more oncogenically
potent than their linear counterparts since circRNAs are generally thought to be more
stable with longer half-lives, due to their resistance to exonuclease degradation [149–151].

Cancers in which fusion genes are commonly found, at least at levels detectable with
current technologies, include prostate cancer and other cancers of the male genital organs,
breast cancers, bone cancers, cancers of soft tissues and of the endocrine system, epithe-
lial carcinomas, and some haematological malignancies [15,103,152–154]. Prostate cancer
in particular, one of the most prevalent cancers in men worldwide, frequently exhibits
several distinct fusion genes. For instance, fusions of ETS transcription factor gene ERG
with promoter elements of TMPRSS2 are observed in roughly 50% of prostate cancers
(Figures 2C and 3C), as well as MTOR-TP53BP1, SLC45A2-AMACR, and MAN2A1-FER
fusions found at lower frequencies [89,129,131,155]. Although several studies suggest
that presence of these fusion genes in prostate cancer, TMPRSS2-ERG in particular, is
associated with more aggressive malignancy and worse clinical prognoses, not all studies
agree [15,152,156–161]. However, these studies generally agree that there is a consistent as-
sociation between presence of TMPRSS2-ERG and prostate cancer recurrence [131,152,157]
In breast cancer, many gene fusion events have also been identified, with a recent ge-
nomic landscape study of adjacent gene rearrangements uncovering 99 recurrent gene
fusions [162]. The most notable fusions involve microtubule-associated serine-threonine
(MAST) kinase genes, which occur in a subset of around 3–5% of cases, and fusions in-
volving NOTCH gene family members which occur in some HR− breast cancers, with
no overlap between cases positive for either fusion gene [103]. Overexpression of both
MAST1 and MAST2 kinase-containing fusions in normal epithelial cells confers a prolifera-
tive advantage, and the presence of NOTCH-containing fusions in breast cancer cell lines
leads to reduced cell-matrix adhesion, substantial morphological changes, and a unique
vulnerability to NOTCH signaling inhibition, suggesting these fusion events, present in
at least 5–7% of breast cancer cases overall, are most likely oncogenic in nature and con-
tribute to tumourigenesis. Furthermore, it is thought that currently known gene fusions
are responsible for at least 17–20% of morbidity in human cancer, in large part due to their
high prevalence in prostate cancer [15].
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A. BCR-ABL1 fusion
ABL1

b19b13 b15
BCR

Stop codon

1b 1a a2 a3 a10 a11

Chr9

b1 b2 b20 b23b6 b7 b14 b16

Chr22
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Tyrosine kinase domain
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B. AKAP9-BRAF fusion

BRAFAKAP9

b9 b8 b2 b1a1 a2 a50
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49 Mb~a6 a7 a8 a9 a10 b17b18

b9 b8 b2 b1a1 a2 a50
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49 Mb~a6 a7 a8 a9a10b17 b18

AKAP9-BRAF

Inverted region

C. TMPRSS2-ERG fusion

Chr21

t1 t13 e2 e11t2 t3 t14 2.8 Mb~t4 t5 t6 e1 e3 e4 e5 e6

TMPRSS2 ERG

Chr21

t1 e11e4 e5 e6

Deleted region
TMPRSS2-ERG

Figure 3. Snapshots of exon arrangements in well-known gene fusions in cancer. (A) Reciprocal
translocation between different breakpoints within introns of BCR and ABL1 can give rise to different
fusion gene variants. (B) Chromosomal inversion between specific introns of AKAP9 and BRAF
results in fusion gene formation. (C) Breakage at multiple possible loci in TMPRSS2 and ERG with
subsequent interstitial deletion results in fusion of the two genes. Many fusion products are possible.
Illustrations are simplified and are not to scale. Red arrows indicate breakpoints that have been
previously experimentally identified.

Specific fusion genes can be observed recurrently both within and between distinct
cancer types across different patients [89,115,163]. For instance, the MAN2A1-FER gene
fusion, which activates FER tyrosine kinase—a well characterised oncogene that causes
increased cellular proliferation via enhanced epidermal growth factor receptor activation—
has been found in at least 6 distinct malignancies and is capable of inducing hepatocellular
carcinomas by transforming normal liver cells [122,164]. This fusion gene exhibited 4-fold
higher expression of FER kinase activity relative to wild-type expression. Furthermore,
several fusion genes, such as CCNH-C5orf30 and TRMT11-GRIK2, have been observed at
variable frequencies across cancer cell lines and primary samples from 7 different malig-
nancies including ovarian adenocarcinoma, oesophageal adenocarcinoma, hepatocellular
carcinoma, non-small cell lung cancer, glioblastoma multiforme, breast cancer, and colon
cancer [89]. Notably, the presence of TRMT11-GRIK2 in ductal type breast cancers and
in liver cancers was associated with more favourable outcomes, in contrast to prostate
cancers positive for this fusion gene where patients exhibit worse clinical outcomes [131],
suggesting fusion genes may have different effects depending on the cancer. However, the
observation that the many of the same genes are commonly found across multiple fusion
pairs in cancers (e.g., BRAF, FGFR, ABL1, NTRK1/3) suggests that selection favours fusions
that contain these genes when they arise due to the competitive advantages they confer
on their host cells [165–169]. In fact, many recurrent oncogeneic fusions that have been
shown to drive cancer evolution—such as BCR-ABL1 in CML—involve constitutive kinase
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expression or activation, which enhances downstream signalling pathways and elevates
the rate of cell division [170–172]. Other common mechanisms of oncogenesis involve
fusions which promote aberrant transcription, such as TMPRSS2-ERG seen across many
prostate cancers [129,155].

4.3. Therapeutic Relevance of Fusion Genes

Proteins and transcripts from fusion genes can be used as diagnostic markers and can
be therapeutically targeted in cancer treatment [172]. Since fusion genes are usually highly
specific to cancer cells and not normally found in normal cells, targeting them may min-
imise off-target, debilitating side effects, which commonly occur during cancer treatment
and decrease quality of life for many patients [173]. Indeed, several effective therapies
exist that target specific oncogenic fusion genes (Table 2), including imatinib (Gleevec) for
BCR-ABL fusions in haematological malignancies, and NVP-TAE684 for fusions involving
ALK in anaplastic large-cell lymphomas and non-small-cell lung cancers [126,174–177].
Each of these drugs are receptor tyrosine kinase (RTK) inhibitors, suggesting that RTKs
that form fusion genes may be selected for in certain cancers due to their strong onco-
genic properties, given that targeting them appears particularly effective. Additionally,
larotrectinib and entrectinib are recently approved drugs capable of targeting gene fusions
containing neurotrophic RTK (NRTK) genes, which are commonly found in certain rare
cancer types and in small subsets of many more common cancer types (Table 2) [168,178].
However, while these drugs can be quite effective at initially reducing tumour burden
and morbidity they are, by their nature, environmental forces that exert potent selective
pressure and can facilitate evolution and expansion of therapy-resistant cancer clones,
thus simply delaying tumour progression rather than curing the cancer [9,172,179,180].
Recent theoretical studies have investigated the idea that tumour containment, not elimi-
nation, may be more beneficial to patient survival and quality of life [181]. These studies
suggest that, by using a lower drug dosage regimen to reduce tumour burden instead of
the maximum tolerated dose to try eliminate it completely, drug resistant clones are less
likely to arise with a containment strategy and thus tumour growth can be restricted to a
manageable level, potentially leading to more favourable outcomes. However, clinical trials
using this strategy have not been attempted and so its effectiveness is, as of yet, unknown.
Clearly, while gene fusions remain attractive therapeutic targets, further research on the
evolution of cancer resistance to therapy is necessary.

Table 2. List of therapeutically-targeted fusion genes.

Fusion Gene Cancer Type(s) Therapy/Drug References

BCR-ABL1 Acute lymphoblastic leukaemia, acute
myeloid leukaemia, chronic myeloid
leukaemia

imatinib, axitinib,
dasatinib, nilotinib, arsenic
trioxide, ponatibib

[108,176,182–185]

ALK-fusions Anaplastic large T-cell lymphoma NVP-TAE684, crizotinib [168,177,186]

NRTK-fusions Secretory breast carcinoma, mammary
analogue secretory carcinoma,
congenital mesoblastic nephroma,
infantile fibrosarcoma, thyroid cancer,
melanoma, breast cancer

larotrectinib, entrectinib,
LOXO-195, TPX-0005

[168,178]

ROS1-fusions Non-small cell lung cancer entrectinib [124,168,177,186]

PML-RARA Acute promyelocytic leukemia All-trans retinoic acid,
arsenic trioxide

[108]

Overall fusion genes represent powerful drivers of tumourigenesis and cancer evo-
lution. Gene fusion events can bring together unrelated genes to form novel functions or
enhance the function of one of the fusion partners, with much of the novelty often origi-
nating from altering or deregulating gene expression to enhance cellular proliferation and
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survival. The evolution of gene expression regulation is thought to represent an important
molecular evolutionary mechanism by which phenotypic differences arise between species
over time [187,188].

5. Conclusions

It is clear that gene duplication and gene fusion represent significant drivers of cancer
evolution, the extent to which is becoming increasingly apparent with the ever expanding
plethora of genomic data that has been generated in recent years. Genomic events and alter-
ations that facilitate extensive gene duplication and fusion—including macroevolutionary
events like whole-genome duplication and chromothripsis—are frequently beneficial to
tumourigenesis and are positively selected for time and time again, often arising early in
cancer formation. Given their significant and wide-ranging effects, elucidating the mecha-
nisms behind these processes is crucial and will help us gain a greater understanding of
cancer evolution on a somatic cellular level, allowing for the development of more effective
therapeutic approaches to treating human malignancies.
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