Supplementary Material S2

The real DNA replication process is far more complex than any of the considered
models. To explore how accurately MM5 can map a more complex process, we built,
based on replication process in other eukaryotes [1-7] and our previous model [8], a
more elaborate model (MM6) to generate in silico data with 8%, 19% and 53% global
replicated fractions.

1 The MM6 model used to generate the in silico
data

In MMBS6, localized potential origins were distributed with a uniform density p =1 kb~!
and Ny, domains of size lg,,, were randomly positioned along a genome of length

L = 10° kb. As in previous works, we assumed that at the start to S phase Ny limiting
factors were available for origin firing and their number, N (¢), increased during the
course of S phase as N (t) = Ny + Jt, and that each factor was sequestrated by new
forks upon origin activation and released and made available again for origin firing upon
coalescence of converging forks. Forks progressed at a constant velocity

v = 0.5 kb.min~!. The probability of origin firing by encounter with a limiting factor
was higher inside the domains (Py + Pjor,) than outside them (Fp). In addition, origins
outside but not inside the domains had a non-null probability P, of being inhibited.
Two local effects were allowed to act within a distance d,.;, from active forks: Fy was
enhanced by Py, and origin inhibition was relieved with a probability Pyeinnis. We
simulated 300 complete S phases using the 10 parameter values listed in Table S1, and
extracted snapshots at 8%, 19% and 53% global replicated fractions. Each snapshot was
considered as an independent sample and for each of them: i) the genome was randomly
cut following the molecule length distribution presented in Figure 1 of materials and
methods, ii) the data were reshaped as described in material and methods to account
for the finite experimental resolution and iii) the distributions of I (f), replicated
fraction of single fibres, global fork density, eye-to-eye distances, gap lengths and eye
lengths were determined.

Table S1. Values of MMJ5’s parameters. These values are chosen arbitrarily.

Parameter  Value

Ny 107
J(s7h) 29
Py 0.11
Pinhiv 0.96
Pfort 0.28
d(kb) 94.91
N 196
ldom 192.39
Pacinhib 0.06
Piom 0.73
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2 Fitting the in silico data by MM5 model

By independently fitting the simulated profiles of each global replicated fraction, we
implicitly assume that samples could originate from separated experiments, hence MM5
parameters values are possibly different for each global replicated fraction. This allows
us to accurately reproduce observations from each sample (Figures S1, S2 and S3).
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Figure S1. Modeling 8% global replicated fraction simulated data with discrete MMJ5 model. Open circles are
simulated data and the red dashed line is the fit. GoFyopar = 0.96

2/8



Gof = 0.95912 Gof = 0.91867 «10% Gof=0.7174
0.8 —————— 0.25 ———— 71—
2 -
38 % 2 02 - - :\6
= 0.6 = ‘p o ®
o \ = N 5
5 \ G 0.15 %’ a - -
Ko} ' 5 // ‘\ 64 ’ SN
\ — \|
Soal 2ot S \ e ,%’
_g \ < ; “ © 3 , “
\ ks ’ o) ®
N \ o 005 4 ) © , \
T 0.2 s =2 ® N o2 \
g \ 5] 0 0 < 1 II \\
>
ZO \@_ -@- .@\ o < é S o
0 & - -0.05 0 &
0 0.5 1 0 0.5 1 0 0.5 1
Fraction of replication Fraction of replication Fraction of replication
Gof = 0.98414 c Gof = 0.99658 c Gof = 0.99797
c 0.3 S 0.8 S 0.5
o =] @ >
= Qo o
3 0.25 %\ = \ S 04 %
= L 1 L
"3) 0.2} 1 $ 06 1 ©
S 1 = 1 £ 031
o 015} 2 2 :
= ! %\ Lo4, 2 02 %
w01 & 3 ' a \
3 6 2 > | So01l ©
% 0.05 @i}% B2 {3 g %@L@m
E ®Cpopecosca = : 8 0 Ceceoscocece
S £ ® £
-0.05 S 0% S -0.1
0 20 40 60 80 < 0 20 40 60 80 Z 0 20 40 60 80
ETED (kb) Eyes length (kb) Gaps length (kb)

Figure S2. Modeling 19% global replicated fraction simulated data with discrete MMJ5 model. Open circles
are simulated data and the red dashed line is the fit. GoFyopar = 0.97
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Figure S3. Modeling 53% global replicated fraction simulated data with discrete MMJ5 model. Open circles
are simulated data and the red dashed line is the fit. GoFyopar = 0.82
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3 Reduction of MM6 to MM5

In the MM6 model origins fire globally with two origin firing probabilities (P, and

Py + Paom) eventually increased by a local origin firing probability (Pye) close to an
active fork, and the genome is divided into domains that either support or escape some
inhibitory probability of firing (assumed to represent inhibition by the intra-S
checkpoint). As the position of these domains is not identical between repeated
simulations, we can reduce their description by specifying a fraction 6 (8 = %) of
the genome where origins escape checkpoint inhibition. In these domains, the global
origin firing probability P;,, = % (Po + Piom), with the % pre-factor being due to
normalization considerations. The local probability of origin firing (close to a fork)

inside a domain is P/, = L (Py + Paom + Pjori). Outside these domains, the global

local —
probability of origin firing 152 modulated by the probability of origin inhibition
P, = %PO (1 = Pinpip). In the same manner the local probability of origin firing is
modulated by the action of intra-S checkpoint and the local cancellation of inhibition
process P2t = % (Po + Prork) [1 4+ Pinniv (Paeinniv — 1)]. Local probabilities of origin
firing only influence origins over a distance dyorr downstream of a fork. The MM5 model
contains a unique local probability of origin firing, that corresponds to the average value
of the two local probabilities of origin firing, Pjoca = 0P, + (1 — ) P2“,. Therefore,
by considering the essential ingredients of the MM6 model, we combined the parameters

of the model to retrieve the parameters of MM5 (Table S2). The values of these

Table S2. Reducing MM6 to MMS5.

MM5

equivalence with MM6

No

J (s7h
0

P;
Bocal
Pout

d (kb)

Ny
J
Naomldom
1 L
2 (PO + Pdom)
% (PO + Pfork) []- + (]- - 9) Pinhib (Pdeinhib - ]-)] + apdom
2Py (1 = Pinhib)

d

parameters can be compared directly to parameters of MM5 model obtained from the
fitting of the simulated data for each sample (Table S3). To assess if the difference

between the expected and the inferred value of a parameter is statistically significant we

. 2
calculate ¢ = (expected Valz;s;rgferred value)” “for ¢ > 1 the difference is statistically

significant otherwise it is not. The values of parameters changed as the global replicated
fraction increased (Figure S4 and Table S3). To assess the level of significance of these

(parameter, —parameter,)?

L - coefficient between the values of
elrror1+er1ro1r2

the same parameter obtained for different global replicated fraction. If ¥ < 1 the
difference between the two values was not statistically significant otherwise it was
significant. Figure S5 shows that the differences of predicted parameters values among
the 3 considered samples were not statistically significant, as was expected. All ¢t <1
and x? < 1 (Figure S5), meaning the constancy of parameters values for all three
samples. Therefore, we conclude that the optimization procedure was able to
circumscribe the expected parameters values in an accurate manner for each sample. It
should be noted that we choose a very conservative criterion to assess if two parameters
are different or not. The conditions of x2 = 1 or ¢t = 1 are equivalent to a confidence
level of o = 1077 in the case of a two sided and one sided t statistics. In other words,
with our criterion the probability to find that the values of two parameters are different
by chance is smaller than 1077,

variations we calculated y2 =
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Figure S4. The fitting strategy infers accurately the expected values for the reduced MM6 free parameters.
The black circles correspond to the averaged value of the parameter over 100 independent fits and the error bars are the
standard-deviations. The solid blue line is the expected value of the parameter as obtained in Table S3. The red dashed line
is the mean value of the parameter obtained by averaging the parameter inferred values over the 3 samples.

Table S3. Comparison between the expected and inferred values of MMJ5 parameters.

MM5 Input 8% 19% 53%

No 107 8386+ 32(t<1) 125+£29(t<1) 129 + 26 (t < 1)
J (s7h 29 43.6 £ 46 (t < 1) 17T+9(t<1) 27+ 3.4 (t < 1)
6 038 0254+02(t<1) 035+0.16 (t<1) 042+0.1 (t<1)
P 042 04+02(<1) 0414£017(<1) 05+£02(t<1)
Piocal 022 0234009 (t<1) 0.174+0.05(t<1) 0.23+£004(t<1)
Pyt (x 1073) 2.2 11+1(t<1) 1.94+1(t<1) 23+1(t<1)
d (kb) 94.91. 135+ 86 (t<1) 119 £ 57 (t < 1) 51 £32 (< 1)

The ability of the fitting procedure i) to circumscribe the values of MM5 model
parameters close to the expected ones (Table S2) and ii ) to retrieve the constancy of
these parameter’s values as the global degree of replication increases (Figure S5)
demonstrates the adequacy of our fitting strategy to recover the dynamic of DNA
replication during S phase in the framework of MMb model by setting the null
hypothesis as : the values of MM5 parameters do not change as S phase progresses.
Therefore, rejection of this hypothesis for a considered parameter means its variation
during S phase.
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Figure S5. The values of each MM5 model parameter were compared pair-wise between samples with
different global replicated fraction. The statistical significance of their difference was assessed by x2 test and
represented as a binary heat map where not statistically significant differences are coloured in white and statistically
significant difference are coloured in blue. The number in each box is the y? coefficient.

In conclusion, any variation in parameter value detected by MMb5 when analysing
samples at different time points independently can be considered as statistically
significant. Therefore, MM5 can adequately predict complex DNA replication dynamics
using a limited number of processes.
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