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Abstract: Together, single-cell technologies and systems biology have been used to investigate
previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances,
gaps in analytical capacity remain. Machine learning, which has revolutionized biomedical imaging
analysis, drug discovery, and systems biology, is an ideal strategy to fill these gaps in single-cell
studies. Machine learning additionally has proven to be remarkably synergistic with single-cell data
because it remedies unique challenges while capitalizing on the positive aspects of single-cell data.
In this review, we describe how systems-biology algorithms have layered machine learning with
biological components to provide systems level analyses of single-cell omics data, thus elucidating
complex biological mechanisms. Accordingly, we highlight the trifecta of single-cell, systems-biology,
and machine-learning approaches and illustrate how this trifecta can significantly contribute to five
key areas of scientific research: cell trajectory and identity, individualized medicine, pharmacology,
spatial omics, and multi-omics. Given its success to date, the systems-biology, single-cell omics,
and machine-learning trifecta has proven to be a potent combination that will further advance
biomedical research.

Keywords: single-cell omics; systems biology; machine learning; single-cell systems biology

1. Introduction

Single-cell omics describes an ever-increasing arsenal of omic profiling technologies
that can interrogate individual cells for their unique genetic and molecular information. The
combination of single-cell technologies and systems-biology approaches provides novel
opportunities to study biological systems, but the data generated by single-cell technologies
also create unique analytical challenges that require powerful computational tools. Single-
cell data have low signal-to-noise ratios and high dimensionality compared to traditional
bulk omics and are often exceedingly sparse (Figure 1) [1]. The sparsity of scRNA-seq has
previously been attributed to technical losses termed “dropout”, but a growing body of
evidence suggests that in fact this sparsity is reflective of biological reality [2]. Regardless
of the source, computational methods analyzing scRNA-seq must be equipped to handle
this sparsity. Another key challenge in single-cell omics is the integration of multiple and
multimodal datasets, which requires extensive batch correction [3].

To overcome these challenges, machine-learning techniques have often been applied to
single-cell datasets. The efficiency and practicality of machine learning helps to cut through
the noise and dimensionality to reveal salient biological insights (Figure 1). Applications
of machine learning in biology have been increasing, with particular growth in the use
of complex deep-learning models [4]. Deep-learning architectures use multiple layers of
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networks to reveal high-level features. The two most common subclasses of deep learning
are recurrent neural networks (RNN), which progressively feed into themselves recursively,
and convolutional neural networks (CNN), which start with convolutional layers that can
emphasize input features before feeding into learning layers [5]. These architectures possess
unique strengths, making them suitable for differing data types and tasks which have
been described in more depth by several review articles [4–7]. A second unique category
of machine-learning approaches includes causal discovery algorithms like probabilistic
graphical models which can be used to infer causal relationships, and thus are heavily used
in the inference of biological networks [8].
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How a machine-learning algorithm accomplishes its tasks is not always known. “Black
box” techniques prevent the user from easily understanding learned features, an outcome
that can impede biological understanding and proper algorithm training [9]. Importantly,
some machine-learning algorithms, like decision trees and regression models, are highly
interpretable and thus termed “white box” techniques [9]. Furthermore, concerted efforts
have been made to decode “black box” models, particularly in deep-learning applica-
tions [9–11]. Both “white box” machine-learning algorithms and “black box” interpretation
increase interpretability substantially, but many opportunities remain to fully unveil the
learned insights of machine-learning models, particularly in the study of biomedicine,
where bias and confounding factors need to be addressed [4,7,9]. For many single-cell
applications, machine learning is applied in an unsupervised manner because a supervised
task is not known or labeled training data are unavailable, and it is mostly used to cluster
single cells into meaningful population groups [12]. This overrepresentation of unsuper-
vised machine-learning problems and the general context dependency of biology make
validation and significance testing challenging.

The need for advanced computational algorithms in single-cell biology has never been
more salient, as the number of techniques has expanded rapidly in the past decade. RNA
sequencing is the most common profiling modality at the single-cell level, and technology
from platforms such as 10× and Smartseq have continuously pushed the processivity,
sensitivity, and affordability of single-cell RNAseq (scRNAseq) [12]. Following the success
of scRNAseq, techniques for accessing the genome, epigenome, metabolome, and proteome
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in single cells have emerged [13]. Thus, it is now possible to access almost all types of
omic data at single-cell resolution. Currently, multimodal single-cell omics, where two
omic profiles (e.g., proteomics and transcriptomics) are captured for the same cell [14], and
spatially resolved techniques are pushing the frontier of possibility [15]. The breadth of
single-cell omics available underlines the importance of innovative strategies for advanced
data analysis.

Machine learning has been a foundational tool for single-cell analysis from the begin-
ning, but machine learning and single-cell omics are not enough to unveil the full spectrum
of mechanistic insights in many applications. Thus, a third pillar is required to push the
analytical envelope. Systems biology is a field focused on using computational and mathe-
matical tools to model the systems-wide behavior of biological systems, thus holistically
revealing new insights. Given these new technologies and their significant potential for
application, a characterization of the utility of the trifecta and remaining gaps is required.
Here, we highlight the pros and cons of single-cell omics, machine learning, and systems
biology (Figure 1) and describe recent innovations and opportunities in single-cell analysis
enabled by this trifecta (Figure 2). We highlight applications of the trifecta in the key fields
of cell trajectory and identity, individualized medicine, pharmacology, spatial omics, and
multi-omics. Furthermore, we address areas where the trifecta shows great promise and
the future paths for its integration in each of these areas.
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2. Cell Identities and Trajectories

Single-cell technologies have significantly advanced the understanding of evolution-
ary processes. In particular, single-cell transcriptomic analysis has provided an unbiased
approach to query cell trajectories and states. Specifically, single-cell transcriptomics have
enabled a unique analysis termed pseudotime, which attempts to place single cells on
a plausible developmental trajectory [16]. In a seminal review by Saelens et al., several
pseudotime algorithms were compared head to head on complex datasets so that the
optimal algorithm for each data type and topology could be determined [17]. Many of
these algorithms rely on machine learning to appropriately place cells into a coherent
trajectory [17]. Although specific methodologies for trajectory inference are outside the
scope of this review, key insights from these trajectories can be gleaned by layering systems
information on top of pseudotime trajectories. These annotations include sample identity,
cluster membership, and gene expression [18]. This layering approach has provided ample
new insights, but future approaches need to integrate systems biology earlier to produce
more mechanistically faithful trajectories while simultaneously revealing biological in-
sights. Similarity matrix-based optimization for single-cell analysis (SoptSC) accomplishes
this by simultaneously inferring pseudotemporal clusters and cell–cell communication
networks using unsupervised machine-learning methods [10]. By accomplishing these
tasks in an integrated pipeline, the inferred trajectories were more coherent with under-
lying biology such as the asynchronous development of the myeloid compartment in
murine hematopoiesis [19]. Such integration of systems biology and machine learning into
coherent pipelines for developmental inference will certainly lead to more insights in the
future (Figure 2).

Trajectory analysis of single-cell data has often revealed previously unknown inter-
mediate cell states. Prior to this analysis, cell states were determined by looking for the
presence of known markers, thus representing a binary classification. Now we can appre-
ciate the intermediate states that are poorly delineated with known cell markers. With
these states identified, systems biologists can now model such states to better understand
the biology occurring at crucial transitions [20,21]. For example, the probabilities that
granulocyte–monocyte progenitors would differentiate were modeled using single-cell ex-
perimentation and Bayesian computing, and this modeling elucidated the time dependency
and probabilities of this transition [21]. Cellular identity and transitions are currently a
major focus of evolutionary single-cell studies, but more work is needed. Wagner et al. pro-
posed in their review that single cells possess multiple “vectors of cellular identity” which
encapsulate the functions and cellular circuitry that in aggregation lead to identity [22].
Advanced machine learning will likely be needed to deconvolute these identity vectors due
to the high dimensionality of single-cell data and the numerous identity and transitional
vectors that remain to be uncovered (Figure 2). Reconstructing cell identity vectors is not
currently possible using existing pipelines, but with careful construction using machine
learning such pipelines should be feasible.

3. Pharmacology

Pharmacology has been revolutionized by omic data characterization. Systems biolo-
gists have been an integral part of this revolution, which has led to the new discipline of sys-
tems pharmacology that has since produced high-value resources and discoveries [23–25].
The connections between drugs, diseases, and biological signatures have been mapped
using hierarchical clustering on the bulk gene expression profiles of drugged perturbed
cell lines, thus establishing a “connectivity map” (CMAP) of pharmacological and disease
mechanisms [26]. Several other resources like CMAP have emerged from the efforts of
systems pharmacologists to reveal new mechanisms and coordinate large amounts of data
using advanced mathematics and machine learning (Figure 2) [27–29]. Furthermore, many
research groups have ventured into predictive pharmacology, where they identify putative
drug targets, disease response to a therapy in question, or side effects. Systems networks
constructed from transcriptomic data like CMAP have been utilized to predict both new
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drug targets and existing drug side effects. Taking this a step further, the multi-omic
late integration framework uses deep neural networks to predict chemotherapy agent
response from multi-omics and has demonstrated that transfer learning is a successful
strategy for increasing prediction accuracy in pharmacology [30]. The further development
of pharmacotherapy predictive systems working from single-cell data presents several
key opportunities. First, drugs often target and create side effects in specific cell types,
which makes deconvoluting these populations molecularly imperative (Figure 2). Second,
in many diseases, a drug must combat disease-causing cells that are part of a heteroge-
nous population, particularly in cancer and infectious disease (Figure 2). Thus, single-cell
techniques will likely increase the accuracy of predictive systems algorithms because they
allow for increased cell type specificity and characterization of heterogeneity.

Most systems biology research has focused on scRNA-seq, as it is the most ubiquitous
single-cell technique. However, several niche single-cell technologies have extraordinary
potential in pharmacology and can be combined with systems-biology and machine-
learning approaches for maximum benefit. Single-cell biofluorescence analysis provides
detailed and high-throughput screening and, when analyzed using deep neural networks,
can reveal the mechanisms of action of screened drugs [31]. In another application of
biofluorescent drug screening and machine learning, the idTRAX algorithm was able to
find cancer-selective kinase inhibitors [32]. In a final example, machine learning was used
to classify phenotypic variations caused by drugs from three-dimensional screening data
of leukemia cells [33]. These applications demonstrate how single-cell screening paired
with machine learning can provide biological insights beyond the drug efficacy readouts
seen in past screening strategies.

4. Spatial Omics

As single-cell frontiers are increasingly being explored, new technology has emerged
that allows for the retention of spatial information when probing omics data. In standard
single-cell omics protocols, cells from the sampled tissue are separated to allow for bar-
coding and preprocessing. Recently, advances in in-situ hybridization (ISH) techniques,
spatial dissection, and spatial barcoding have allowed for the simultaneous capture of
RNA abundance data while retaining spatial architecture [15,34]. These studies have a
high degree of relevance for understanding a diverse range of topics, including embryonic
development, normal tissue organization, and tumor niche architecture. To date, these
pipelines experience limitations in the number of genes they are able to probe, scalabil-
ity, and resolution, but consistent progress is being made in overcoming these hurdles
(Figure 2) [34].

A host of computational algorithms has grown around spatial transcriptomics for
data integration and analysis. Seurat and other pipelines use machine learning to match
ISH data to scRNAseq from the dissociated tissue, thus allowing for spatial assignment
of single-cell transcriptomes [35]. CSOmap takes an alternative approach and constructs
a spatial map de novo using a ligand–receptor network and dimensional reduction [36].
The spatial coordinates and scRNAseq can be further understood using downstream
analysis pipelines that reveal receptor–ligand pairs, neighborhood properties, and spatial
expression patterns [37,38]. Each of these programs reduces the barrier to entry for spatial
transcriptomics, which will allow this to become a more routine analysis.

Systems-biology analyses will need to grow with the field of spatial omics. Some
concepts from older systems approaches can be adapted to handle spatial data, just as bulk
concepts were adapted to single cells. However, like the bulk of the single-cell transition,
many will not be transferable because they lack the high throughput needed to handle
the increased dimensionality of spatially resolved omics (Figure 1). Nevertheless, systems-
biology analysis is needed to understand the emergent properties in spatial data, and
in particular to better elucidate spatial signaling and the spatial dynamics of regulatory
networks (Figure 2). Machine-learning and dimensionality-reduction techniques will likely
prove to be the workhorse tools of this effort, as they possess more throughput than
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statistically based processes. Thus, machine learning and systems biology will likely reveal
exciting insights in the spatial omics realm, as we have seen with single-cell omics as
a whole.

5. Multi-Omic Characterizations

As described in the introduction, single-cell technology can now concurrently profile
pairs of omic modalities [39]. Integrative analysis pipelines such as MOFA and LIGER allow
for cells to be clustered based on features from both modalities using machine learning and
dimensionality reduction [40,41]. Integrative analysis that considers both omic profiles at
once is key, because cluster identity is then based off both levels of omic analysis. Advanced
mechanistic analysis of multi-omics at the systems level remains difficult even for bulk
datasets (Figure 2) [42]. The key challenge of bulk multi-omics remains the variance in
scale, noise, and quantitative ability [42]. Single-cell analysis adds additional obstacles of
higher noise and dimensionality.

Thus far, systems biology and machine learning in multi-omics have primarily been
applied to predictions of cancer clinical variables (Figure 2). Ma et al. integrated multi-omic
bulk data with molecular interaction networks to predict clinical variables like survival;
by adding domain knowledge, e.g., molecular integration networks such as STRING and
Reactome data, as inductive biases, they prevented overfitting of their deep-learning al-
gorithms [43]. Ramazzoti et al. focused on creating multi-omic-based cancer subtypes
using multikernel learning. These new subtypes correlated with clinical outcomes and re-
capitulated known and novel omic markers [44]. These hallmark studies demonstrated the
utility of multi-omics in the bulk setting; further insights will undoubtedly be gained from
similar studies in single-cell contexts. In both the bulk and single-cell settings, however,
innovation needs to be applied further to reveal more systems-informed mechanisms by
operating at different omic levels and with several omic modalities.

6. Individualized Medicine

Individualized medicine seeks to tailor treatment to each patient. The advent of
omic analysis has propelled this field into an entirely new era. Sequencing and omic
techniques give unparalleled insights into each patient’s cellular environments, and single-
cell techniques allow us to further characterize the heterogeneity and microenvironments
seen in each patient. In bulk omics, machine-learning and systems-biology approaches have
primarily focused on identifying disease variants in genomic sequencing data [45]. Fewer
studies have tackled precision medicine mechanistically. Deep learning has been shown to
accurately classify disease-causing splice site mutations that, when annotated with protein
binding and disease data, reveal disease mechanisms in individual patients [46]. Zhou et al.
took this a step further by predicting both disease risk and expression changes caused by
mutational variants [47]. More clinically based studies have used machine learning on
bulk omics to classify cancer subtypes and stratify patients, but little was revealed by these
studies about causal mechanisms or new therapeutic opportunities (Figure 2) [48,49].

To date, systems-biology-enabled mechanistic investigation of individual patients has
not transferred into the single-cell realm. The scarcity and high dimensionality of single-cell
data renders many of the prior precision medicine algorithms impractical for single-cell
applications (Figure 1). However, single-cell approaches represent a significant opportunity
in the precision medicine space because they can provide thousands of data observations
(cells) per patient, which is often required for machine-learning algorithms. In this way,
interpretable machine-learning algorithms could be constructed based purely on a single
patient’s data, and the learned features of these algorithms could reveal individualized
disease mechanisms (Figure 2).

7. The Future of the Trifecta

The era of single-cell systems biology is still in its infancy, but the promise remains
immense. The dimensionality, sparsity, technical and biological noise, and diversity of
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single-cell omic profiles requires novel advanced computing strategies. Thus far machine
learning techniques have proven to be a major avenue for overcoming these hurdles
(Figure 1). To truly go beyond outcomes and statistical correlates, a systems perspective
that emphasizes mechanistic insights is required. This perspective has been incredibly
successful with bulk omic assays; the next frontier is to create a similar variety of approaches
for single-cell data.

To illustrate the impact of this trifecta of machine-learning, single-cell omics, and
systems biology, we have discussed five key research areas herein. The trifecta has been
applied to differing extents in each of these areas (Figure 2). Some, like pharmacology and
individualized medicine, still primarily pull from bulk datasets, but use machine learning
and systems biology extensively. These fields thus lack a high-resolution perspective that
displays the diversity of cellular phenotypes (Figure 1). In contrast, spatial omics and
multi-omics researchers frequently use machine learning to process single-cell data, but
mechanistic and biological meaning is not often explored at the systems level (Figure 1).
Adding systems biology with enhanced interpretability of deep- or machine-learning
algorithms will push the mechanistic learning of the fields forward substantially. Cell
trajectory and identity studies have made strong use of all three methods; accordingly, this
is one of the most advanced areas of single-cell biology. For each of these sections, we have
highlighted a variety of works that display the state of the art and propose a path forward
for new innovations that would require the discussed trifecta (Figure 2).

8. Conclusions

As single-cell techniques expand in breadth and availability, the sea of big data grows
deeper and more mysterious. Machine learning can recover pearls of predictive variables
and correlative associations, but the mechanism behind these instances is left unknown.
However, with recent endeavors to “open the black box” of machine learning, we believe
such obstacles will be resolved in near future. With machine-learning-enabled systems
biology, we have armed analytical approaches to find both the “what” and the “why”
behind biological phenomena within the depths of single-cell omics. Computational
researchers must continue to utilize this trifecta to reveal meaningful emergent properties
of cellular systems at an ever-increasing resolution.
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