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Abstract: A nonsense variant in HPS3, c.2420G>A or p.Trp807*, was recently discovered as the cause
for a brown coat color termed cocoa in French Bulldogs. Here, we studied the genotype–phenotype
correlation regarding coat color in HPS3 mutant dogs that carried various combinations of mutant
alleles at other coat color genes. Different combinations of HPS3, MLPH and TYRP1 genotypes
resulted in subtly different shades of brown coat colors. As HPS3 variants in humans cause the
Hermansky–Pudlak syndrome type 3, which in addition to oculocutaneous albinism is characterized
by a storage pool deficiency leading to bleeding tendency, we also investigated the phenotypic
consequences of the HPS3 variant in French Bulldogs on hematological parameters. HPS3 mutant
dogs had a significantly lowered platelet dense granules abundance. However, no increased bleeding
tendencies in daily routine were reported by dog owners. We therefore conclude that in dogs, the
phenotypic effect of the HPS3 variant is largely restricted to pigmentation. While an effect on platelet
morphology is evident, we did not obtain any indications for major health problems associated with
the cocoa coat color in French Bulldogs. Further studies will be necessary to definitely rule out very
subtle effects on visual acuity or a clinically relevant bleeding disorder.

Keywords: Canis lupus familiaris; dog; thrombocyte; pigmentation; hematology; platelet

1. Introduction

Coat color is an important attribute of dogs and human preferences for specific coat
colors are subject to trends. In recent years, brown French Bulldogs have become more and
more popular. Brown pigmentation in dogs can be caused by at least six different variants
in the TYRP1 gene, which corresponds to the B locus from classical genetics [1–4]. Three of
these mutant TYRP1 alleles are widespread and segregate in many breeds, whereas the
other three mutant TYRP1 alleles appear to be much younger and restricted to specific
breeds. In a recent study, the HPS3:c.2420G>A nonsense variant was found as an additional
underlying genetic cause for the brown coat color in French Bulldogs. To distinguish it
from the TYRP1-related phenotype, the resulting color in HPS3 mutant dogs was named
cocoa [5]. TYRP1-related brown and HPS3-related cocoa are recessive traits. The wildtype
alleles at the TYRP1 and HPS3 genes are often abbreviated as B and Co, while the recessive
mutant alleles are represented as b and co. The cocoa coat color is slightly darker than the
TYRP1-related brown coat color in French Bulldogs [1,5].

Variants in the HPS3 gene in humans were reported to cause the Hermansky–Pudlak
syndrome type 3 (HPS3). This rare autosomal recessive disorder is characterized by
oculocutaneous albinism and a bleeding diathesis due to the absence of platelet dense
granules [6]. Patients also show mild nystagmus and mildly reduced visual acuity [7]. In
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mice, a similar phenotype with a brown coat color and prolonged bleeding time is known
as cocoa mouse mutant and caused by a genetic variant in the murine Hps3 gene [8,9].

The aim of this study was to characterize the phenotypic effect of the canine co allele
on coat color in combination with different genotypes at other coat color genes: tyrosinase
related protein 1(TYRP1), melanophilin (MLPH), melanocortin 1 receptor (MC1R), agouti signaling
protein (ASIP), major facilitator superfamily domain containing 12 (MFSD12), premelanosome
protein (PMEL). We also investigated whether the cocoa phenotype in French Bulldogs has
additional phenotypic consequences on thrombocyte function and coagulation parameters.

2. Materials and Methods
2.1. Animals and Test Material

The study animals included 34 privately owned French Bulldogs with different coat
colors. Blood samples consisting of whole blood anticoagulated with EDTA and sodium
citrate were drawn for diagnostic health checks after obtaining owners’ consent. Leftover
blood samples were used for the genetic screening and a kinetically resolved mepacrine
uptake and release test was used as a surrogate for platelet dense granule abundance and
release properties. Testing was performed within 24 h after taking samples. Photographs of
dogs 1–13 were taken by AL with a digital camera within one afternoon and under the same
technical conditions. Photographs of dogs 23–29 were taken by the owners. Photographs
were available for 20 dogs (5 co/co, 9 Co/co and 6 Co/Co).

2.2. Clinical Parameters

A complete blood count was performed with EDTA-anticoagulated whole blood using
the Sysmex XT2000 (Sysmex, Kobe, Japan). Samples were thoroughly inverted and then
analyzed as recommended by the manufacturer.

Thromboelastography (TEG) was performed with recalcified citrate whole blood using
the TEG 5000 Thromboelastograph Hemostasis Analyzer (Haemonetics GmbH, Boston,
MA, USA). The cup was placed according to the manufacturer’s instructions and 20 µL
of 0.2 M CaCl2 was pipetted in the cup. One milliliter of the citrate whole blood was
transferred to a kaolin tube (Haemonetics GmbH) and mixed by gentle inversion 5 times.
Immediately afterwards, 340 µL of the kaolin citrate whole blood mixture was pipetted to
the CaCl2 solution in the cup and the thromboelastograph was started.

The coagulation parameters, prothrombin time (PT), activated partial thrombin time
(aPTT) and thrombin time, were analyzed using the STA Compact Max3 (Asnières-sur-
Seine, France) according to the manufacturer’s instructions.

Dog breeders/owners were contacted via phone and asked for conspicuities regarding
bleeding tendencies and vision.

2.3. Mepacrin Assay

The mepacrine uptake and release assay in whole blood was assessed by measuring
a 60 s baseline fluorescence of resting platelets on a FACSCelesta flow cytometer (Becton
Dickinson, Heidelberg, Germany). Platelets were then loaded with mepacrine dihydrochlo-
ride dye (Sigma-Aldrich, Darmstadt, Germany) to a final concentration of 25 µM for 30 min
at 37 ◦C and the mepacrine-based fluorescence after sub-gating to CD61-positive platelets
(antibody clone Y2/51; Bio-Rad Laboratories, Feldkirchen, Germany) was recorded for
further 60 s. Stained platelets were activated using 0.1 U/mL thrombin from human
plasma (Roche, Freiburg, Germany) and directly analyzed for additional five minutes. The
difference between unloaded and loaded as well as loaded and released platelets was
calculated as deltaMFI (mean fluorescence intensity) [10].

2.4. Genotyping

Genomic DNA was isolated from EDTA blood samples using MagNAPure (Roche,
Basel, Suisse) with the MagNA Pure DNA and viral NA kit according to the manufac-
turer’s instructions. Genotyping for Cocoa, A, B, D, E and I loci was performed by using
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TaqMan SNP Assay (LifeTechnologies, Carlsbad, CA, USA) specific to the related variant
and LC480 (Roche, Basel, Suisse). Genotyping for the SINE insertions black and tan (at)
phenotypes was performed by fragment length analysis on an ABI Genetic Analyser 3130
(LifeTechnologies, Carlsbad, CA, USA) after amplification of the region of interest with
FAM-marked primers. Genotyping for Merle was carried out by Laboklin sro, Bratislava.
Details of the tested variants are listed in Table S1.

3. Results
3.1. Coat Colors

We obtained photographs from 20 French Bulldogs with different coat color genotypes,
including five co/co dogs (Figure 1, Table S2). We confirmed the earlier observation that
the eumelanin coat color in adult cocoa dogs (co/co) is of a darker brown shade than the
eumelanin coat color in TYRP1 deficient dogs (b/b) (Figure 1A,B) [5]. However, the data
also illustrate an enormous complexity of additive and/or epistatic gene–gene interactions
of HPS3 and TYRP1 with other coat color genes. It is often not possible to deduce the
underlying genotype from the phenotype. At the same time, genotyping only the HPS3
gene alone does not allow one to make reliable predictions of the coat color of a French
Bulldog. The comprehensive characterization of the coat color of a French Bulldog often
requires the genotyping of several coat color loci.

Figure 1. Cont.
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Figure 1. Different coat color and pattern phenotypes of French Bulldogs, depending on genotypes at HPS3 in combination
with different genotypes at TYRP1, MLPH, MC1R, ASIP, MFSD12 and PMEL genes. Genotypes at the underlying loci
are indicated (see Table S1). (A) Cocoa and tan dog with dark brown eumelanin, yellow pheomelanin markings, dark
brown nose and light brown eyes. The muzzle is dark brown, due to dominant EM allele at MC1R. Note the intense yellow
markings; pheomelanin has not been diluted by co/co. (B) TYRP1-related brown and tan dog with brown eumelanin, light
yellow pheomelanin markings, brown nose and yellow eyes. (C) Dilute cocoa plus brown and tan dog with greyish-brown
eumelanin, yellow pheomelanin markings, greyish-brown nose and light green eyes. (D) Pale yellow dog due to the
dominant yellow Ay allele at the ASIP gene. Cocoa plus brown eumelanin can be seen around the muzzle due to the
presence of EM at MC1R. The dog has a greyish-brown nose and yellow eyes. (E) Dilute cocoa plus brown and tan dog
with greyish-brown eumelanin, pale yellow pheomelanin markings, greyish-brown nose and light green eyes. Note the
slightly paler markings than in C, due to the genotype i/i at the MFSD12 gene. (F) Dilute brown and tan dog with pale
yellow markings, greyish-brown nose and light green eyes. Greyish-brown muzzle due to EM at MC1R. Eumelanin is
further diluted in random areas, creating a pattern of greyish-brown patches in different shades on body, upper parts of legs,
neck and head, due to the presence of the dominant Merle allele (M) at PMEL. (G) Intense yellow dog with greyish nose
and light brown eyes. Compare the intense pheomelanin color to the pale yellow of D, due the genotype i/i at MFSD12.
(H) TYRP1-related brown dog with brown nose and brown eyes. Phenotypical differentiation between co/co B/- (cocoa)
and Co/- b/b (brown) is most reliable in dogs with a large proportion of eumelanin (e.g., black and tan or solid black base
color, see A, B and H) and no other eumelanin diluting and/or attenuating genotypes (e.g., d/d at MLPH). Coat, nose and
eye color phenotypes are influenced by different gene loci. The genotype b/b d/d affected the phenotype of co/co dogs
by further diluting eumelanin from dark brown to greyish brown (C,E,F). Note: It is not possible to reliably differentiate
co/co from Co/- phenotypically, if further eumelanin reducing (e.g., Ay at ASIP) (see (D,G)) and/or eumelanin attenuating
(especially TYRP1 and/or MLPH) (see (C,E–H)) alleles are present.

3.2. Hematological Investigations

Complete blood counts were mostly without any particular findings (Table S3). Mild
leukocytosis was seen almost exclusively in young dogs at the age of six months (n = 10). In
this group, 60% of the dogs showed mild absolute lymphocytosis and about 40% showed
very mild to mild absolute neutrophilia, monocytosis and partially mild eosinophilia.
A mild thrombocytosis was seen in five dogs, also mainly in the younger population (six
to eleven months). Very few changes were seen in the examination of the PT, aPTT and
thrombin time. All three parameters were mildly prolonged in one dog. Four dogs showed
a very mildly prolonged aPTT. Two of the latter additionally showed very mildly to mildly
prolonged PT and one of those showed a normal aPTT when examined a second time. The
thromboelastography discovered four cases of hypocoagulopathy in the dogs older than
16 months and seven cases of hypercoagulopathy in the puppies of up to six months. Of
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the latter, three were very mild hypercoagulopathies. None of these findings showed a
significant correlation with the genotypes at the HPS3 gene.

To study a possible influence of the HPS3 variant on platelet dense granule abundance,
we performed a kinetic mepacrine assay. Mepacrine is an antibiotic that spontaneously
incorporates itself into platelet dense granules and can be released upon stimulation of
platelets in response to multiple/distinct agonists [11]. Due to its intrinsically fluorescent
capacity, mepacrine fluorescence can easily be detected and recorded by flow cytometry,
for instance, and hence is a reliable marker to detect storage pool deficiencies [10]. In co/co
dogs (n = 10), mepacrine load was overall significantly decreased compared to dogs with
the genotypes Co/Co (n = 15) or Co/co (n = 9) (Figure 2). This indicates a recessive dense
granule defect in those animals. No coagulation problems were reported by owners of the
dogs included in this study.

Figure 2. Platelet storage pool deficiency in cocoa dogs. Platelets of cocoa dogs (co/co; n = 10, white
ball) present with a clearly reduced mepacrine loading capacity indicative of a lack of platelet dense
granules. Heterozygous carriers (Co/co; n = 9, half ball) show mepacrine loading values comparable
to wildtype animals (Co/Co; n = 15, black ball). Purple box indicates 95% confidence interval of
the wildtype group. Non-parametric one-way ANOVA according to Kruskal–Wallis was used to
calculate statistical significance (ns = no significance).

4. Discussion

In this study, we investigated the phenotypic consequences of the HPS3co allele causing
the cocoa coat color phenotype in French Bulldogs. In humans, the most obvious sign
of Hermansky–Pudlak syndrome type 3 (HPS3) is the hypopigmentation of the skin and
hair, leading to a mild form of oculocutaneous albinism. Furthermore, HPS3 in humans
is characterized by ocular findings such as nystagmus, reduced visual acuity and a mild
bleeding tendency caused by the absence of platelet dense granules [6,7].

First, we characterized the pigmentation phenotype. A great variety of distinct coat
color phenotypes was observed, due to different genotypes at seven different color loci.
By determining the variants of just one gene, no coat color phenotype can be predicted.
Cocoa in French Bulldogs can be identified phenotypically, but only if no further eumelanin
attenuating variants at TYRP1 and/or MLPH and PMEL are present and if the base color is
solid eumelanin or eumelanin and tan. Phenotypical differentiation between cocoa and
brown eumelanin is possible in some cases due to the slightly darker color intensity of
cocoa but might be difficult for an inexperienced viewer. In the context of our study, no
final assessment could be made regarding epistasis between HPS3 and TYRP1, because
there was no dog with the genotype co/co b/b with a solid eumelanin or tanpoint coat
color among the recruited dogs. The brown mask of dog 8 (Figure 1D) appeared lighter
than the brown mask of dog 2 (Figure 1A), which may indicate epistasis of b/b over co/co.



Genes 2021, 12, 1092 6 of 8

Due to the large number of different coat color alleles that segregate in French Bulldogs, it
is often not possible to unambiguously determine the underlying genotype based on the
phenotype alone. In many cases, genetic testing of several coat color loci is necessary to
accurately determine the genotype of a dog. All coat colors produced by variants on HPS3,
TYRP1, MLPH, PMEL and/or the genotypes at/at, at/a and a/a on ASIP are not recognized
by the official FCI, AKC and KC breed standards of the French Bulldog.

Second, laboratory tests were performed and breeders/owners were asked for con-
spicuities regarding bleeding tendencies and vision. Clinical evidence of bleeding diathesis
or of visual impairments was not reported. As the signs concerning bleeding disorders
of HPS3 in humans are mild, it cannot be excluded that subtle clinical signs in dogs were
overlooked. Therefore, we determined clinical parameters for increased bleeding tendency
including PT, aPTT and thrombin time, TEG and complete blood count. No gross changes
indicating bleeding diathesis were seen in cocoa dogs in all clinical parameters investi-
gated. For these clinical parameters, values in the reference range were expected as these
parameters are in reference ranges in humans too [12,13].

For additional data on bleeding tendencies in the examined dogs, a buccal mucosal
bleeding time should be performed since the bleeding time is also significantly prolonged
in humans, even if the other coagulation tests mentioned above are in the reference
range [12,14]. Regarding the hypercoagulopathies in the results, it is worth mention-
ing that these only occurred in young dogs. This has already been described in a few cases
in the literature. Furthermore, brachycephaly plays a role in hypercoagulopathies [15,16].

For diagnosis of HPS3 in humans, investigation of platelet dense granules via elec-
tron microscopy is considered to be the gold standard [17]. The mepacrine assay by flow
cytometry was introduced as a more rapid and cost-effective alternative to electron mi-
croscopy [10,18]. A significant reduction in mepacrine load was observed in homozygous
co/co dogs, probably caused by the lack of dense granules. One would expect that dogs
with reduced mepacrine binding are prone to prolonged bleeding, as seen in humans.
However, neither breeders, owners nor veterinarians reported any bleeding incident in
a co/co dog in this study. Unlike in humans, the lack of platelet dense granules does
apparently not lead to bleeding diathesis. Of note, the platelet dysfunction described for
human patients with HPS3 also causes only a mild bleeding tendency that can nonetheless
result in severe bleeding problems in response to trauma [19] or certain types of surgical
procedures including tooth extraction, adenoidectomy or tonsillectomy. Given the sparse
data, it cannot yet be excluded with certainty that very mild bleeding tendencies might
be overlooked by owners. Additionally, no dog of the examined co/co cohort underwent
any surgical procedure so far. For confirmation that the storage deficiency is clinically not
relevant in dogs, the buccal mucosal bleeding time should be performed in a future study.

5. Conclusions

In conclusion, we provided comprehensive genotype–phenotype correlations in
French Bulldogs with various combinations of genotypes at the HPS3, TYRP1, MLPH,
MC1R, ASIP, MFSD12 and PMEL genes. We also showed a significant impact of the HPS3
variant on the function of the dense granules in platelets via mepacrine testing in ac-
cordance with findings in humans. In contrast to humans, the identified HPS3 variant
presumably does not lead to significantly increased bleeding tendencies in dogs though.
As long as bleeding diathesis cannot be definitely excluded in co/co dogs by further studies,
we recommend evaluating the buccal mucosal bleeding time before scheduled surgical
interventions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12071092/s1, Table S1. Details of the coat color variants tested in this study, Table S2. Coat
color genotypes and available photographs of the dogs investigated, Table S3. Clinical parameters of
the study population of 34 clinically healthy French Bulldogs ranging from two months to nine years.
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