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Abstract: The outbreak of coronavirus disease 2019 (COVID-19), by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has quickly developed into a worldwide pandemic. Mutations
in the SARS-CoV-2 genome may affect various aspects of the disease including fatality ratio. In this
study, 553,518 SARS-CoV-2 genome sequences isolated from patients from continents for the period 1
December 2020 to 15 March 2021 were comprehensively analyzed and a total of 82 mutations were
identified concerning the reference sequence. In addition, associations between the mutations and
the case fatality ratio (CFR), cases per million and deaths per million, were examined. The mutations
having the highest frequencies among different continents were Spike_D614G and NSP12_P323L.
Among the identified mutations, NSP2_T153M, NSP14_I42V and Spike_L18F mutations showed
a positive correlation to CFR. While the NSP13_Y541C, NSP3_T73I and NSP3_Q180H mutations
demonstrated a negative correlation to CFR. The Spike_D614G and NSP12_P323L mutations showed
a positive correlation to deaths per million. The NSP3_T1198K, NS8_L84S and NSP12_A97V mu-
tations showed a significant negative correlation to deaths per million. The NSP12_P323L and
Spike_D614G mutations showed a positive correlation to the number of cases per million. In contrast,
NS8_L84S and NSP12_A97V mutations showed a negative correlation to the number of cases per
million. In addition, among the identified clades, none showed a significant correlation to CFR. The
G, GR, GV, S clades showed a significant positive correlation to deaths per million. The GR and S
clades showed a positive correlation to number of cases per million. The clades having the highest
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frequencies among continents were G, followed by GH and GR. These findings should be taken into
consideration during epidemiological surveys of the virus and vaccine development.

Keywords: SARS-CoV-2; COVID-19; GISAID; deaths per million; cases per million; Spearman’s
correlation; genomic variations; case fatality ratio

1. Introduction

The novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), responsible for coronavirus disease 2019 (COVID-19), was first described in Wuhan,
China in December 2019 [1-3]. Subsequently, COVID-19 became a worldwide pandemic.
According to the World Health Organization (WHO), for the period of 1 December 2020 to
15 March 2021, the worldwide outbreak of COVID-19 has approximately 64,668,248 cases
and more than 1,339,685 deaths were reported. SARS-CoV-2 is an enveloped single-
stranded positive RNA virus [4]. The SARS-CoV-2 complete genome consists of about
30,000 nucleotides that translate structural and non-structural proteins (Nsps) [1,2]. Coron-
aviruses share a roughly spherical or moderately pleomorphic shape with distinct spike
(S) protein envelope projections [5]. The four SARS-CoV-2 structural proteins are the
spike (S), the envelope (E), the membrane (M) and the nucleocapsid (N) proteins, while
nonstructural proteins are 3-chymotrypsin-like protease (nsp3 and nsp5), papain-like pro-
tease and RNA-dependent RNA polymerase (nsp12) [6,7]. Surface S glycoprotein attaches
to the host’s angiotensin-converting enzyme 2 (ACE2) receptor and plays an important
role in viral adsorption and human transmission [8]. Nsps, created as cleavage products
from open reading frame 1lab (ORFlab), are assembled to facilitate transcription and viral
replication. Viral RNA is synthesized and controlled by the RNA-dependent polymerase
with assistance from Nsp7 and Nsp88 [9].

SARS-CoV-2 genetic mutations may allow the virus to adapt to a new host cell or alter
virus pathogenesis [10]. Therefore, detecting and analyzing virus mutations in different
countries could enhance our understanding of the contribution of such mutations to viral
pathogenesis and spread. In contrast to SARS-CoV in 2002 and Middle East Coronavirus
Respiratory Syndrome (MERS-CoV) in 2012, SARS-CoV-2 spread worldwide quickly. To
date, the greatest assessment of the fatality ratio of SARS-CoV-2 has come from data
recorded in China, France and the Diamond Princess cruise ship [11]. Effective vaccines
and treatments are urgently needed to decrease the mortality and morbidity ratio due to
COVID-19. Variations have been observed in mortality ratios from country to country [3].
However, factors explaining these variations have not been elucidated. Furthermore, the
contribution of SARS-CoV-2 genetic variations and host genetic factors to mortality ratio
remains unknown.

In this study, we evaluated 553,518 SARS-CoV-2 genome sequences isolated from
different continents and explored their associations with CFR, cases per million and deaths
per million.

2. Materials and Methods
2.1. Data Availability

Full-length viral nucleotide sequence of the reference SARS-CoV-2 Wuhan-Hu-1 strain
(Accession NC_045512) [1] was obtained from the global initiative on sharing all influenza
data (GISAID). We used a total of 553,518 SARS-CoV-2 genome sequences isolated from
patients/individuals in different continents, including 157,691 from North America, 6702
from South America, 346,951 from Europe, 1670 from Australia, 34,736 from Asia and 5768
from Africa. SARS-CoV-2 genome sequences were collected from a publicly open database,
the GISAID (https:/ /www.gisaid.org/ (accessed on 1 December 2020)).
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2.2. Mutation Analysis

Only high-coverage SARS-CoV-2 sequences were downloaded from GISAID Epi-
CoVTM database [12]. Each of the SARS-CoV-2 sequences was compared with the reference
sequence SARS-CoV-2 Wuhan-Hu-1 (accession number MN908947.3) by using CoVsurver
enabled by GISAID (https://www.gisaid.org/epiflu-applications/covsurvermutations-
app/ (accessed on 1 December 2020)) [12,13]. After the alignment of the full-length viral
nucleotide sequence, we identified SARS-CoV-2 mutations in each of the isolated virus
sequences. Single mutations based on a population average were used for the estimation
of the CFR.

Genomic clades were inferred by GISAID database and defined according to its
nomenclature system at the time of data collection outlined in (https://www.gisaid.org/
references/statements-clarifications/clade-and-lineage-nomenclature-aids-in-genomic-
epidemiology-of-active-hcov-19-viruses/ (accessed on 1 December 2020)).

2.3. Data Acquisition

The number of deaths and confirmed cases related to COVID-19 was collected from the
Worldometer (https:/ /www.wfiveorldometers.info/coronavirus/ (accessed on 1 December
2020)). The CFR was calculated by dividing total deaths by total confirmed cases in each
country /region.

2.4. Phylogenetic Analysis

In comparison with the reference sequence of SARS-CoV-2 Wuhan-Hu-1 strain (Acces-
sion NC_045512.2), phylogenetic analysis was performed for the complete coding region of
all isolates using Nextstrain software [14].

2.5. Ethical Statement

The study was carried out following the Helsinki Declaration. Ethical approval was
obtained from the Institutional Review Board at the American University of Madaba
(Ref. H20010).

2.6. Statistical Analyses

The data were analyzed using the Social Sciences Statistical Package version 23 (IBM
Inc., Armonk, New York, NY, USA). Hierarchical cluster analysis was used to identify
mutant clusters among the countries/regions. Spearman’s correlation (r) values and two-
tailed significance (p) were used to identify the correlation between mutation frequencies
with CFR, cases per million and deaths per million. A p-value of less than 0.05 was
considered to be statistically significant.

3. Results

COVID-19 related information for different continents is shown in Table 1. Africa had
the highest CFR of 2.56%; Australia had the lowest CFR of 0.79% (Table 1). The highest
recorded number of cases per million in Europe (58,437), while the lowest was in Africa
(6295). The highest recorded number of deaths per million was in Europe (1117), while the
lowest was in Australia (45).

3.1. Clades Frequencies of SARS-CoV-2 Genome

The clades for 553,518 SARS-CoV-2 genome sequences from different world continents
were identified. The clades frequencies are shown in Figure 1A. The clades having the
highest frequencies among continents were G, GH and GR. The highest frequencies for G
clade were in South America and the predominance of clade GH in North America. The
clades GR predominated in Asia (Supplementary Table S1).
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Table 1. COVID-19 statistics in the different world continents.

Case Fatality Virus Isolates

Region Population Total Cases Cases/IM  Total Deaths  Deaths/1IM Ratio
Africa 1,363,047,821 3,067,758 6295 78,435 101 2.56 5768
Asia 4,624,453,127 12,546,291 17,067 169,912 177 1.35 34,736
Australia 42,643,478 24,777 7705 196 45 0.79 1670
Europe 747,950,109 23,239,185 58,437 532,996 1117 2.29 346,951
North America 592,362,766 17,757,444 22,816 380,088 333 2.14 157,691
South America 433,264,918 8,032,793 30,293 178,058 701 222 6702

Dendrogram using Average Linkage (Between Groups)
Cluster C.
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Figure 1. (A) Continent distribution of various SARS-CoV-2 clades. (B) Dendrogram showing
clustering of SARS-CoV-2 isolates from different continents.

The cluster analysis of the mutations indicates similarity among SARS-CoV-2 isolates
from South America and Asia; isolates from Australia have a similarity to those in America
and Asia and a lesser degree similarity among SARS-CoV-2 isolates from Europe and
Africa. On the other hand, isolates from North America were least similar to those from
other regions (Figure 1B).
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3.2. Correlation between SARS-CoV-2 Genetic Clades with Case Fatality Ratio (CFR), Cases per
Million and Deaths per Million

Table 2 demonstrates Spearman’s correlation (r) values and two-tailed significance (p)
values between the SARS-CoV-2 clades and each of the CFR, cases per million and deaths
per million. Among the identified clades, none showed a significant correlation to CFR.
The G, GR, GV, S clades showed a significant positive correlation to deaths per million. The
GR and S clades showed a significant positive correlation to number of cases per million.

Table 2. Correlation analysis between SARS-CoV-2 clades and Case fatality rates, cases per million
and deaths per million among the identified clades in all world continents.

Clade Case Fatality Ratio Deaths/1IM Cases/1IM

r 14 r 14 r 14
Clade G 0.257 0.623 0.943 0.005 ** 1 -
Clade GH  0.086 0.872 0.6 0.2 0.771 0.072
Clade GR  0.371 0.468 0.829 0.042 * 0.943 0.005 **
Clade GV 0.371 0.468 0.829 0.042 * 0.657 0.156
Clade GL 0.086 0.872 0.771 0.072 0.6 0.208
Clade S 0.371 0.468 0.829 0.042 * 0.943 0.005 **
Clade V 0.086 0.872 0.771 0.072 0.6 0.208

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). r:
Spearman’s correlation. p: p-value.

3.3. Correlation between SARS-CoV-2 Genetic Variants with Case Fatality Ratio (CFR), Cases per
Million and Deaths per Million

Supplementary Table S2 demonstrates Spearman’s correlation (r) values and two-
tailed significance (p) values between the SARS-CoV-2 mutations and each of the CFR,
cases per million and deaths per million. Among the identified mutations, NSP2_T153M,
NSP14_142V and Spike_L18F mutations showed a positive correlation to CER (Figure 2A-C).
However, NSP3_T73I and NSP3_Q180H, NSP13_Y541C showed a negative correlation to
CER (Figure 3A-C). Spike_D614G and NSP12_P323L mutations displayed a positive corre-
lation to deaths per million (Figure 4A,B). The NSP3_T1198K, NS8_L84S and NSP12_A97V
mutations showed a significant negative correlation to deaths per million (Figure 4C-E).
NSP12_P323L and Spike_D614G mutations showed a positive correlation to number of
cases per million (Figure 5A,B). However, NS8_L84S and NSP12_A97V mutations showed
a negative correlation to the number of Cases per million (Figure 5C,D).

3.4. Global Mapping of Frequencies of the Mutations Correlating with CFR, Cases per Million and
Deaths per Million among World Continents

Supplementary Table S3 demonstrates the clustering of SARS-CoV-2 isolates and
heatmap of the frequency of mutations of the SARS-CoV-2 genome by continent. The
NSP2_T153M mutation was reported at 1.18%, 0.02%, 0.04%, 0.07% and 0.07% in SARS-
CoV-2 genome sequences isolated from Africa, Asia, Europe, North America and South
America, respectively (Figure 2D). The NSP14_I42V mutation was reported at 0.017 and
0.003 in SARS-CoV-2 genome sequences isolated from Africa and Europe, respectively
(Figure 2E). The Spike_L18F mutation was reported at 16.02%, 0.72%, 1.86%, 10.90%, 1.25%
and 5.94% in SARS-CoV-2 genome sequences isolated from Africa, Asia, Australia, Europe,
North America and South America, respectively (Figure 2F).
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Figure 2. Correlation analysis and global mapping of mutations having a positive correlation with CFR among different
world continents. (A) Spearman’s correlation between NSP2_T153M mutation and CFR among different world continents,
(B) Spearman’s correlation between NSP14_I42V mutation and CFR among different world continents, (C) Spearman’s
correlation between Spike_L18F mutation and CFR among different world continents, (D) Global mapping of NSP2_T153M
mutation having a positive correlation with CFR among different world continents. (E) Global mapping of NSP14_I42V
mutation having a positive correlation with CFR among different world continents. (F) Global mapping of Spike_L18F
mutation having a positive correlation with CFR among different world continents r: Spearman’s correlation coefficient. p:

p-value.
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Figure 3. Correlation analysis and global mapping of mutations having a negative correlation with CFR among different

world continents. (A) Spearman’s correlation between NSP3_T73I mutation and CFR among different world continents,

(B) Spearman’s correlation between NSP3_Q180H mutation and CFR among different world continents, (C) Spearman’s
correlation between NSP13_Y541C mutation and CFR among different world continents, (D) Global mapping of NSP3_T731
mutation having a negative correlation with CFR among different world continents. (E) Global mapping of NSP3_Q180H

mutation having a negative correlation with CFR among different world continents. (F) Global mapping of NSP13_Y541C

mutation having a negative correlation with CFR among different world continents r: Spearman’s correlation coefficient. p:

p-value.
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Figure 4. Correlation analysis and global mapping of mutations having a positive correlation with deaths per million

among different world continents. (A) Spearman’s correlation between Spike_D614G mutation and deaths per million,

(B) Spearman’s correlation between NSP12_P323L mutation and deaths per million, (C) Spearman’s correlation between
NSP3_T1198K mutation and deaths per million. (D) Spearman’s correlation between NS8_L84S mutation and deaths per
million. (E) Global mapping of NSP12_A97V mutation having a positive correlation with deaths per million. (F) Global map-
ping of Spike_D614G mutation having a positive correlation with deaths per million. (G) Global mapping of NSP12_P323L
mutation having a positive correlation with deaths per million. (H) Global mapping of NSP3_T1198K mutation having a

negative correlation with deaths per million. (I) Global mapping of NS8_L84S mutation having a negative correlation with
deaths per million. (J) Global mapping of NSP12_A97V mutation having a negative correlation with deaths per million r:
Spearman’s correlation coefficient. p: p-value.
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Figure 5. Correlation analysis and global mapping of mutations with cases per million among different world continents.

(A) Spearman’s correlation between NSP12_P323L mutation and cases per million, (B) Spearman’s correlation between

Spike_D614G mutation and cases per million (C) Spearman’s correlation between NS8_L84S mutation and cases per million.

(D) Spearman’s correlation between NSP12_A97V mutation and cases per million. (E) Global mapping of NSP12_P323L
mutation having a positive correlation with cases per million. (F) Global mapping of Spike_D614G mutation having a
positive correlation with cases per million. (G) Global mapping of NS8_L84S mutation having a negative correlation with

cases per million. (H) Global mapping of NSP12_A97V mutation having a negative correlation with cases per million. r:
Spearman’s correlation coefficient. p: p-value.
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The NSP3_T73I mutation was reported at 0.02%, 0.05%, 0.18%, 0.05%, 0.10% and
0.03% in SARS-CoV-2 genome sequences isolated from Africa, Asia, Australia, Europe,
North America and South America, respectively (Figure 3D). The NSP3_Q180H mutation
was reported at 0.05%, 0.15%, 0.18%, 0.08%, 1.18% and 0.10% in SARS-CoV-2 genome
sequences isolated from Africa, Asia, Australia, Europe, North America and South America,
respectively (Figure 3E). The NSP13_Y541C mutation was reported at 0.01%, 0.84%, 0.01%,
0.15% and 0.04% in SARS-CoV-2 genome sequences isolated from Asia, Australia, Europe,
North America and South America, respectively (Figure 3F).

The Spike_D614G mutation was reported at 91.97%, 96.46%, 91.02%, 98.99%, 97.91%
and 97.02% in SARS-CoV-2 genome sequences isolated from Africa, Asia, Australia, Europe,
North America and South America, respectively (Figures 4F and 5F). The NSP12_P323L
mutation was reported at 88.66%, 95.52%, 91.08%, 98.35%, 94.79% and 96.43% in the SARS-
CoV-2 genome sequences isolated from Africa, Asia, Australia, Europe, North America and
South America, respectively (Figures 4G and 5E). The NSP3_T1198K mutation was reported
at 0.21%, 1.56%, 0.18%, 0.01%, 0.02% and 0.07% in SARS-CoV-2 genome sequences isolated
from Africa, Asia, Australia, Europe, North America and South America, respectively
(Figure 4H). The NS8_L84S mutation was reported at 4.09%, 1.39%, 3.29%, 0.25%, 0.51%
and 0.25% in SARS-CoV-2 genome sequences isolated from Africa, Asia, Australia, Europe,
North America and South America, respectively (Figures 41 and 5G). The NSP12_A97V
mutation was reported at 0.28%, 0.52%, 1.98%, 0.05%, 0.23% and 0.09% % in SARS-CoV-2
genome sequences isolated from Africa, Asia, Australia, Europe, North America and South
America, respectively (Figures 4] and 5H).

Other mutations have a frequency higher than 20% without having a significant
correlation with CFR, cases per million and deaths per million among world continents. The
N_G204R mutation was reported at 22.31%, 75.69%, 46.59%, 52.36% and 76.01% in SARS-
CoV-2 genome sequences isolated from Africa, Asia, Australia, Europe and South America,
respectively. The N_R203K mutation was reported at 24.24%, 75.88%, 47.90%, 53.51%,
15.08% and 76.41% in SARS-CoV-2 genome sequences isolated from Africa, Asia, Australia,
Europe, North America and South America, respectively. The NSP2_T85I mutation was
reported at 40.20% and 59.59% in SARS-CoV-2 genome sequences isolated from Africa and
South America, respectively. The NS3_Q57H mutation was reported at 46.10%, 32.99%
and 63.30% in SARS-CoV-2 genome sequences isolated from Africa, Australia and North
America, respectively. The Spike_E484K mutation was reported at 35.63% in SARS-CoV-
2 genome sequences isolated from Africa. The Spike_N501Y mutation was reported at
36.55% and 47.23% in SARS-CoV-2 genome sequences isolated from Africa and Europe,
respectively. The Spike_H69del mutation was reported at 48.93% in SARS-CoV-2 genome
sequences isolated from Europe. The Spike_K417N mutation was reported at 34.36%
in SARS-CoV-2 genome sequences isolated from Africa. The NS8_S24L mutation was
reported at 33.88% in SARS-CoV-2 genome sequences isolated from North America. The
NS8_Q27stop mutation was reported at 46.36% in SARS-CoV-2 genome sequences isolated
from Europe. The Spike_A222V mutation was reported at 26.59% in SARS-CoV-2 genome
sequences isolated from Europe. The Spike_V1176F mutation was reported at 29.30% in
SARS-CoV-2 genome sequences isolated from South America. The N_I292T mutation was
reported at 20.50% in SARS-CoV-2 genome sequences isolated from South America. The
NS3_5171L mutation was reported at 30.37% in SARS-CoV-2 genome sequences isolated
from Africa.

3.5. Phylogenetic Clades Tree of SARS-CoV-2 in Different World Continents

The phylogenetic analysis indicated that several clades were present on different
continents. The analysis also revealed that clades 20 became dominant. Clades 20 (including
20A, 20B, 20C, 20E (EU1), 20F, 20G, 20H/501Y.V2, 20I/501Y.V1 and 20J/501Y.V2) by
Nextstrain nomenclature, are also known as clades G, GR and GH by GISAID nomenclature
(Figure 6).
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Figure 6. Phylogenetic analysis of SARS-CoV-2 isolates from different continents. SARS-CoV-2 clades were present in

different continents.

4. Discussion

The current COVID-19 outbreak has spread rapidly worldwide. Most COVID-19
infected patients suffering from COVID-19 are either asymptomatic or experience mild
symptoms. Around 15% of all COVID-19 patients progress to severe pneumonia and
approximately 5% of COVID-19 patients have acute respiratory disorder syndrome, septic
shock and multiple organ failure [15,16]. The CFR associated with COVID-19 differs from
continent to continent and is higher in Africa, Europe, South America and North America
countries compared with those in Asia and Australia. While several hypotheses have been
put forward to explain the variations in CFR, including age distribution differences, blood
groups, gender, virus genomic types and ethnic backgrounds, many of these hypotheses
still require confirmation.

This study explored and compared mutation profiles of SARS-CoV-2 isolates from
different continents. We identified differences among continents relating to COVID-19 CFR,
cases per million and deaths per million. The differences may be attributed to differences in
age distributions [17,18], blood groups [19], gender [20,21], virus genomic types [3], strict
lockdown strategies [22] social distancing [23] and genetic backgrounds [24,25]. Hence, this
study also investigated the contribution of genetic variations in the SARS-CoV-2 genome to
the COVID-19 CFR, the number of cases per million and the number of deaths per million.

Like other RNA viruses, genetic variation in SARS-CoV-2 is important for fitness,
survival and pathogenesis. Spontaneous mutations and recombination are two main
sources of genetic variation for SARS-CoV-2 [26].

Based on data obtained from a public database GISAID for the period 1 December 2020 to 15
March 2021, the mutation rate of the SARS-CoV-2 virus is about 8 x 10~# nucleotides/genome
per year [27], which is considered a high rate for an RNA virus [27-29]. Analysis of
553,518 genomic sequences from the GISAID databases showed that the number and the
frequency of mutations in Africa and Europe were considerably higher than in Asia [30].
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The identification of SARS-CoV-2 mutation patterns indicated differences relating to geog-
raphy, time of isolation and subject age, but not relating to gender [31].

The mutation is one of the most effective evolutionary mechanisms in RNA viruses [32].
SARS-CoV-2 genomic studies described mutations in several genes, including ORFlab,
ORF3a N, S, M, E, ORF8, ORF7, ORF6 and ORF10 [33-35]. The S, ORFlab, NSP15, NSP12,
NSP3, NSP2, NSP1 and ORFS8 genes had significantly higher mutation frequencies than
other genes [33,36,37]. Several studies have been carried out to identify genomic variants of
SARS-CoV-2, including synonymous, nonsynonymous, deletion, addition and non-coding
mutations [31,33,38]. The most common mutations among the SARS-CoV-2 genome were
nonsynonymous and synonymous mutations [31,36]. In the current study, the mutations
having the highest frequencies among continents were missense, including Spike_D614G
and NSP12_P323L. Moreover, the highest frequencies for Spike_D614G and NSP12_P323L
mutations were among isolates from Europe with 98.99% and 98.35%, respectively.

Our study indicated a significant correlation between the number of both the number
of cases per million and the number of deaths per million, with the Spike_D614G mutation,
which is a mutation outside the receptor-binding domain (RBD). In line with previous
studies, this study revealed that the Spike_D614G mutation showed a positive correlation
with viral infectivity and enhanced transmissibility [39-41].

The genome of SARS-CoV-2 is about 30 kb and codes for 14 open frames (ORFs). 5'-
ORF-1a/1b forms 67% of the genome and encodes polyproteins la (ppla) and polyproteins
1 ab (pplab), which are then processed into sixteen non-structural proteins (nsp1-16) [42].
Other nsp proteins are believed to be associated with viral replication or host immune
response modulation [43]. In our study, many genetic variants in non-structural proteins,
including NSP3_T73I, NSP3_Q180H and NSP13_Y541C mutations showed a significant neg-
ative correlation to CFR. In addition, NSP3_T1198K, NS8_1.84S and NSP12_A97V mutations
showed a significant negative correlation to the deaths per million. NSP12_P323L mutation
showed a positive correlation to deaths per million. The NS8_L84S and NSP12_A97V
mutations showed a negative correlation to number of cases per million. In addition,
the NSP1_M85I, NSP3_E475D showed a significant positive correlation to the number of
cases per million. These mutations may affect viral replication or host immune response
modulation, leading to change in viral pathogenicity [44].

The trimetric viral spike (S) glycoprotein is the main determinant of coronaviruses’
host specificity and pathogenesis. The 52 domain activates the viral and host cell mem-
branes’ fusion to encourage viral penetration and uncoating [45,46]. In our study, The
Spike_L18F mutation showed a significant positive correlation to CFR. On the other hand,
The Spike_D614G mutation showed a significant positive correlation to the number of
cases per million and the number of deaths per million. According to our findings, The
Spike_D614G mutation in the S2 domain has a positive correlation between viral infectivity
and transmissibility.

A recent report have shown that the crystal structure of the SARS-CoV-2 nucleocapsid
(N) protein is identical to that of the known coronavirus N proteins, but their surface
electrostatic potential properties were distinct [47]. Sheik et al. examined the variables
impacting the variation of the N gene among 13 coronaviruses, as well as how they affect
the virus-host relationship, reporting high AT% and low GC% in the coronavirus SARS N
gene [48]. The N protein of coronaviruses plays a major role in the packaging of the viral
genome and virus assembly [49]. In our study, NS8_L84S mutation showed a significant
negative correlation to deaths per. These mutations may have a critical role in multiple
steps of the viral life cycle.

The phylogenetic analysis indicated that several virus clades were deployed in differ-
ent continents and it was observed that clades 20 became dominant. Clades 20 included 20A,
20B, 20C, 20E(EU1), 20F, 20G, 20H/501Y.V2, 201/501Y.V1 and 20]J/501Y.V2 by Nextstrain
nomenclature, which is also known as clades G, GR and GH by GISAID nomenclature [50].
The majority of genomes were classified into one of seven major clades: L, S, V, G, GH, GR,
or GV [51-53]. The clades G, GH, GR and GV, which account for 98% of the genomes, were
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found to have the D614G mutation. Clade G was identified the most frequently, followed
by GR and GH. The mutation was discovered in a glycosylated residue of the viral spike,
which is conserved throughout this species [54]. Mutations in this area could be associated
with alterations in host cell membrane fusion capacity [53], an effect that should also result
in increased transmission and pathogenicity between individuals. Korber and colleagues
subsequently provided experimental evidence that associate this mutation in COVID-19 pa-
tients with increased infectivity and greater viral loads [39]. Sub-clusters of clade G began
to evolve into clades GH, GR and, more recently, clade GV. The current study’s analysis of
the chronological distribution of SARS-COV-2 clades revealed a significant increase in the
number of sequenced genomes clustered into the GR clade relative to clade G. Additionally,
a change in the number of genomes clustered into clade GH was observed. Finally, on the
basis of the details presented, the adaptation-driven genetic evolution hypothesis appears
to be more viable. However, experimental evidence designed to allow for comparison of
clades needs to be established.

5. Conclusions

The mutations having the highest frequencies among continents were Spike_D614G
and NSP12_P323L. Among the identified mutations, NSP2_T153M, NSP14_I42V and
Spike_L18F mutations showed positive correlation to CFR, while NSP13_Y541C, NSP3_T73I
and NSP3_Q180H showed a negative correlation. The Spike_D614G and NSP12_P323L mu-
tations showed positive correlation to deaths per million, while NSP3_T1198K, NS8_L84S
and NSP12_A97V mutations showed negative correlation. NSP12_P323L and Spike_D614G
mutations showed positive correlation to number of cases per million, while NS8_L84S and
NSP12_A97V mutations showed negative correlation. In addition, among the identified
clades, none showed a significant correlation to CFR. The G, GR, GV, S clades showed a
significant positive correlation to deaths per million. The GR and S clades showed a posi-
tive correlation to number of cases per million. The clades having the highest frequencies
among continents were G, followed by GH and GR. Further confirmation and biological
significance studies are needed to verify association of identified mutations and clades
with a CFR, number of deaths per million and number of cases per million

6. Limitations

Case fatality ratios, number of deaths per million and number of cases per million may
be affected by several factors including age distribution differences, blood groups, gender,
virus genomic types and ethnic backgrounds; many of these factors still require confirmation.
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