
genes
G C A T

T A C G

G C A T

Article

A Causal Web between Chronotype and Metabolic Health Traits

John A. Williams 1,2,* , Dominic Russ 1,2 , Laura Bravo-Merodio 1,2 , Victor Roth Cardoso 1,2 ,
Samantha C. Pendleton 1,2 , Furqan Aziz 1,2 , Animesh Acharjee 1,2,3 and Georgios V. Gkoutos 1,2,3,4,5,6

����������
�������

Citation: Williams, J.A.; Russ, D.;

Bravo-Merodio, L.; Cardoso, V.R.;

Pendleton, S.C.; Aziz, F.; Acharjee, A.;

Gkoutos, G.V. A Causal Web between

Chronotype and Metabolic Health

Traits. Genes 2021, 12, 1029. https://

doi.org/10.3390/genes12071029

Academic Editor: Italia Di Liegro

Received: 14 May 2021

Accepted: 28 June 2021

Published: 1 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham,
Birmingham B15 2TT, UK; drr719@student.bham.ac.uk (D.R.); lxb732@student.bham.ac.uk (L.B.-M.);
V.RothCardoso@bham.ac.uk (V.R.C.); scp887@student.bham.ac.uk (S.C.P.); f.aziz@bham.ac.uk (F.A.);
a.acharjee@bham.ac.uk (A.A.); g.gkoutos@bham.ac.uk (G.V.G.)

2 Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK
3 NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham,

Birmingham B15 2WB, UK
4 MRC Health Data Research UK (HDR), Midlands Site, Birmingham B15 2TT, UK
5 NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
6 NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
* Correspondence: j.a.williams@bham.ac.uk

Abstract: Observational and experimental evidence has linked chronotype to both psychological
and cardiometabolic traits. Recent Mendelian randomization (MR) studies have investigated direct
links between chronotype and several of these traits, often in isolation of outside potential mediating
or moderating traits. We mined the EpiGraphDB MR database for calculated chronotype–trait
associations (p-value < 5 × 10−8). We then re-analyzed those relevant to metabolic or mental health
and investigated for statistical evidence of horizontal pleiotropy. Analyses passing multiple testing
correction were then investigated for confounders, colliders, intermediates, and reverse intermediates
using the EpiGraphDB database, creating multiple chronotype–trait interactions among each of the
the traits studied. We revealed 10 significant chronotype–exposure associations (false discovery
rate < 0.05) exposed to 111 potential previously known confounders, 52 intermediates, 18 reverse
intermediates, and 31 colliders. Chronotype–lipid causal associations collided with treatment and
diabetes effects; chronotype–bipolar associations were mediated by breast cancer; and chronotype–
alcohol intake associations were impacted by confounders and intermediate variables including
known zeitgebers and molecular traits. We have reported the influence of chronotype on several
cardiometabolic and behavioural traits, and identified potential confounding variables not reported
on in studies while discovering new associations to drugs and disease.

Keywords: circadian rhythm; chronotype; diabetes; alcohol intake; bipolar disorder; mendelian
randomization

1. Introduction

With the advent of large biobank cohorts to provide genome-wide association study
(GWAS), there have been several recent studies looking at the causal influence between
chronotype (morningness or eveningness) exposures and both neurobehavioral/psychiatric-
and cardiometabolic-related outcomes. Lind and colleagues found significant genetic cor-
relations between oversleeping, insomnia, and undersleeping exposures with an outcome
of post-traumatic stress disorder [1], but when testing for causality did not find evidence
for causal effects of sleep phenotypes on post-traumatic stress. Adams and Neuhausen
were interested in the interplay between chronotype and free fatty acid circulation, as
well as potential associations between free fatty acid circulation and type 2 diabetes [2].
So as to evaluate this, they conducted two Mendelian randomization (MR) studies using
two-sample data, and found that morning chronotype is associated with lower total fatty
acid levels (inverse variance-weighted estimator [IVW] β −0.21, p = 0.02) and that elevated
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fatty acid levels are associated with a decrease in diabetes, granting a protective effect
(IVW β −0.23, p = 0.01). They then extended their analysis to include subtypes of free fatty
acids and their conclusions held, indicating that a morning chronotype is associated with
lower mono-unsaturated fatty acid intake. Richmond and colleagues sought to model sleep
traits and risk of breast cancer using chronotype, sleep duration, and insomnia GWAS for
instrumental variable selection [3]. They showed a morning chronotype to be protective
against breast cancer (odds ratio [OR] 0.85). Additional analyses supported these findings,
showing a morning chronotype (IVW OR 0.88) to be protective against breast cancer, while
increased sleep duration had a detrimental effect (IVW OR 1.19). Gibson investigated
bi-directional causal effects of smoking on sleep duration and chronotype [4]. They found
no clear evidence that smoking initiation influenced sleep behaviors directly, nor evidence
for causal effects between chronotype on smoking behavior. However, they did find evi-
dence that insomnia could lead to an increase in smoking behavior (IVW β 1.21, p = 0.02)
in an under-powered analysis. Treur modelled caffeine consumption and sleep traits,
including chronotype, sleep duration, and history of insomnia [5]. While the association
between caffeine consumption and disturbed sleep is well known, their analysis did also
show strong genetic correlations between those traits; however, their MR analyses failed
to produce significant causal associations. At a wider scale, Lane and colleagues used
MR analysis as a follow up to their first GWAS of chronotype using the UK Biobank [6].
They found significant associations between evening phenotype and years of education
increasing and self-reported schizophrenia diagnosis, and associations between a morning
chronotype and a decreased body mass index.

These studies, each taken in isolation, paint a compelling picture of relationships
between chronotype and metabolic traits. However, p-values reported were generally
>0.001. If analyzed as a whole set of experiments under multiple testing, results would
often fail to achieve statistical significance.

Additionally, most studies fail to address confounding factors which may be identifi-
able by performing MR tests between exposures and potential confounders. In concurrence
with these studies being conducted, large databases of GWAS and MR studies have been
built, including the GWAS Catalog [7] and MR-Base [8]. In this study, we have taken
advantage of GWAS study statistics and MR analyses surrounding chronotype to identify
causal relationships between exposure to chronotype and several cardiometabolic- and
mental health-related traits. We have additionally mined MR repositories for potential
confounding factors, identifying both non-detrimental intermediate analyses (explanatory
mediators and reverse mediators) and confounders which will need to be controlled for in
mechanistic studies used to validate MR experiments.

2. Materials and Methods

A general workflow for this study is depicted in Figure 1. Using the EpiGraphDB R
API v1.0 [9], results of pre-computed Mendelian randomization studies were obtained with
the following parameters: exposure trait either “Morning/evening person (chronotype)”
or “Chronotype”, with a p-value threshold of 5 × 10−8 (GWAS genome-wide significance).
Results were filtered to significant random-effects inverse variance-weighted multi-SNP
meta-analyses (IVW), with 120 significant associations retained, and additionally manually
curated to keep associations between chronotype and mental or cardiometabolic health (see
Table S2 for SNP characteristics). Chronotype/chronotype and chronotype/sleep duration
studies were discarded, leaving 16 potential studies for investigation (Figure 1).
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Figure 1. Mendelian randomization (MR) workflow for testing the causal influence of chronotype on
traits in the EpiGraphDB database. An unbiased search for GWAS-derived two-sample MR studies
was performed with chronotype or moningness/eveningness as reported exposures, and IVW results
(p < 5 × 10−8) retained. Potential chronotype IVs were processed with Steiger filtering, LD clumping,
and stand/palindromic SNP harmonization. IVW and related MR analyses are then performed on
filtered SNP summary statistics, followed by pleiotropy (MR-Egger) and leave-one-out sensitivity
analyses. Associations that survive multiple testing correction are then uploaded to EpiGraphDB to
investigate potential confounders not present in exposure/trait analyses as reported.

2.1. Mendelian Randomization Investigations

Each retained exposure’s data were downloaded from MR-Base via the TwoSampleMR
package version 0.5.5 [8]. For each instrumental variable (IV) SNP in the exposure study, the
following procedure was performed. First, the strandedness of each GWAS was checked to
ensure that at each allele, the minor and major alleles were equal. If these were reversed,
effect sizes were modified to correct for this. Pallendromic SNPs, which contain alleles
represented by the same base pairs on both strands of DNA, were discarded. If SNPs were
not present, proxies were found using PLINK with an R2 of at least 0.8, and strand was
checked again [10]. Next, SNPs, in the exposure GWAS set, were clumped by LD to ensure
statistical independence. In a window of 10,000 base pairs, an R2 cutoff of <0.001 was
set to obtain haplotype blocks using the European reference panel of the 10,000 Genomes
Project [11]. In each exposure/outcome pair, this left a variable number of SNPs for use
as valid, independent IVs (see Figure 1 top second step). Effect sizes for each SNP were
reported as a β or the transformed log(OR). The Wald ratio was then obtained, giving a
measure of the effect of the exposure on the outcome [12]:

θ̂j =
βYj

βXj
(1)

where β_Y_j is the effect of the IV on the outcome, and β_X_j is the effect of the IV on the
exposure is obtained for SNP j, and θ̂ is the effect size.

An initial IVW analysis between each exposure/outcome set was performed, with the
false discovery rate (FDR) controlled for [13]. An FDR of <0.05 was considered significant.
Rather than calculate Wald ratios individually, the outcome GWAS βs or odds ratios are
regressed on the exposure in an inverse variance-weighted (IVW) meta-analysis. The
slope of the regression line indicates the strength of the effect, as an increase in the unit
of outcome per unit of the exposure [14]. In a IVW meta-analysis, the IVW estimate is
calculated by:

β̂Yj = θIVW β̂Xj + εI j; εI j ∼ N(0, σ2se(β̂Yj)
2) (2)
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where θ̂ is the inverse variance-weighted average, se is the standard error, ε is an error term
(Figure 1 third step, right), and other terms are as above.

Ten significant IVW studies were then subject to four additional MR methods (Figure 1,
third level left). To address unseen horizontal pleiotropy, the Egger regression was per-
formed [15,16]. The Wald ratios of each SNP are used in meta-regression by taking the
inverse variance weights used in the IVW analysis without modeling the intercept. As
a result, a causal estimate, similar to IVW, is obtained, adjusted though for horizontal
pleiotropy which is necessary so as to ensure IVW validity [16]. MR-Egger regression
is an extension of IVW regression. Instead of assuming no intercept term, an intercept
is estimated:

β̂Yj = θ0E + θ1E β̂Xj + εEj; εEj ∼ N(0, σ2se(β̂Yj)
2) (3)

where θ0E is the intercept and θ1E the MR-Egger estimate. If the intercept is equal to zero,
then the IVW method and MR-Egger will be equivalent [14]. During the IVW process in
MR-Egger, the effect sizes of each SNP must have the same sign, and this decreases the
variation between them [16].

Inverse variance-weighted median analyses were performed, using the median of the
Wald ratios as an effect size. Unweighted analyses assume that over half of the instruments
are valid, while in a weighted median analysis the assumption is that the at least 50% of the
weight of the instruments are valid themselves [17]. This approach is robust to directional
pleiotropy when compared to a simple IVW meta-analysis.

The mode-based estimator (MBE) clusters Wald ratios before calculating random
effects in an IVW meta-analysis [18]. The simple MBE uses unweighted analysis, while the
weighted MBE uses inverse variance weighting. First, a smooth empirical density function
is calculated for each Wald ratio and are then clustered. The Zero Modal Pleiotropy
Assumption states that the biggest cluster with the same ratio estimates will be valid
instruments. These were used in each analysis, resulting in fewer SNPs and less power, but
an increase in potential robustness to horizontal pleiotropy.

Heterogeneity can occur when individual SNPs do not converge on an estimate; this
was estimated by Cochran’s Q [19]. In this context, heterogeneity may be a sign of horizon-
tal pleiotropy, wherein SNPs effect the outcome by their influence on other confounding
traits [20]. To inspect SNPs for outliers, we performed leave-one-out sensitivity analyses
using the IVW method, leaving out one SNP in each analysis.

We used the Steiger test to access the directionality of all causative analyses post
hoc [21]. The Steiger test first assesses which variables (exposure or outcome) are influenced
by the SNPs used, by testing if the SNPs explain more variance in the exposure than in the
outcome with a modified Z statistic. If the p-value of the IVW estimate and the Steiger
estimate are both significant, the sign of the Z statistic is used to assign the correct causal
direction between exposure and outcome.

2.2. Confounder and Intermediate Analysis

To address potential confounders, not seen in pairwise analyses even in the absence
of the statistical suggestion of horizontal pleiotropy, existing MR studies were obtained
from EpiGraphDB (Figure 1 last step). Each study exposure/outcome pair with significant
FDR-corrected IVW results was used to interrogate the database for intermediate, reverse
intermediate, collider, and confounding variables. Results from the study database surpass-
ing a p-value threshold of <1 × 10−5, using a fixed-effects IVW method only, were retained.
The β effect sizes for significant results between exposures and outcomes, exposures and
confounders, and outcomes and confounders were used to create a weighted directed
graph in Cytoscape [22] version 3.8.2, and the yFiles Organic (force directed) layout to
visualize the relationships between traits.

All statistical analyses were performed in R version 4.0.5 [23].
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3. Results

Initially, 120 prospective studies were identified using EpiGraphDB containing chrono-
type as an exposure,. Of these, there were 28 primary associations, with IVW p-values
of <5 × 10−8, directly relevant to this study, including measures of alcohol intake, bipolar
disorder, T2DM (type 2 diabetes mellitus) as well as testosterone and triglyceride levels.
See Table S1. Since the analyses were performed in a high-throughput environment, we
re-analyzed each relevant study with the IVW method using summary statistics (Figure 2).
Following filtering and quality control, 10 studies held up to a false discovery rate of
p < 0.05. The bi-directional nature of the forest plot exists due the different nature of the
chronotype exposure studies (treating morning or evening chronotype as case/control).
Each of the 10 studies were further analyzed with a tendency toward eveningness reflecting
a high β value in the exposure effect size.
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Figure 2. Causal relationships between exposure to chronotype and various traits. Causal associa-
tions mined from EpiGraphDB (IVW p < 5 × 10−8) were analyzed using two chronotype exposure
measures. Outcomes are listed with trait and study accession number. Exposure ebi-a-GCST003837
reflects SD increase in chronotype on a continuous morning–evening scale. Exposure ukb-a-11 repre-
sents odds of an evening chronotype. Effect sizes are from random-effects inverse variance-weighted
analyses with 95% confidence intervals. False discovery rate-corrected p-values are shown.

3.1. Chronotype Influences on Diabetes, Alcohol Consumption, and Bipolar Disorder

The strongest associations (β > 0.90) include risk for T2DM and total fatty acid concen-
tration. T2DM included seven independent SNPs, see Table S3. The weakest association
was with the MR-Egger method, β = 0.73, which while not highly significant (p = 0.04) did
not reveal evidence of horizontal pleiotropy (intercept p-value = 0.98) or heterogeneity
(Egger Q p-value 0.99). The IVW analysis and weighted median analysis each concurred
(p = 0.002 and 0.009), suggesting little loss of associative signal even if some of the seven
SNPs were biased by pleiotropy (Figure 3a). Leave-one-out sensitivity analyses suggests
that no one IV dominates the model, and all methods have similar effect sizes as judged by
slope, as shown in Figure 3b.

Chronotype has a weaker but more statistically significant association with the amount
of alcoholic beer or cider drinks consumed weekly, with the increase reflected in pints
per week consumed (mean among all respondents of 3/week). With an MR-Egger in-
tercept p-value of 0.31 and a significant Egger regression coefficient (p-value = 0.04), the
initial analysis provides strong evidence that the trait may not be subject to horizontal
pleiotropy. The weighted median and IVW method were again strongest (β = 0.089 and
0.79, p = 4.4 × 10−6 and 9.7 × 10−4), as shown in Figure 4a. There was, however, evidence
among the 82 SNPs which passed the threshold for strong heterogeneity (Cochran Q = 333),
suggesting pleiotropy or moderating factors for further investigation even in the absence
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of such suggestions from the MR-Egger intercept significance test. Heterogeneity among
SNPs can be observed in Figure 4b, while the leave-one-out analysis shows overlapping
confidence intervals in each iteration, suggesting homogeneity on the whole.
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Figure 3. An evening chronotype causes increased odds of a type 2 diabetes mellitus diagnosis.
(a) IVW, weighted median, mode, weighted mode, and Egger regressions shown. Panel (b) depicts
leave-one-out sensitivity analyses with the IVW method, where the red line indicates the consensus
IVW point estimate.
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Figure 4. An evening chronotype causes weekly (alcoholic) beer and/or cider intake. (a) IVW,
weighted median, mode, weighted mode, and Egger regressions shown. Panel (b) depicts leave-
one-out sensitivity analyses with the IVW method, where the red line indicates the consensus IVW
point estimate.

The influence of chronotype on bipolar disorder appears substantially varied, with
different SNPs with large standard errors apparent in Figure 5. The Cochran’s Q statistic
(Q = 149, p = 2 × 10−24) echoes the visible heterogeneity of SNPs in the analysis. Never-
theless, there is a consistent β effect size among the IVW, weighted median, and weighted
mode analyses (0.188, 0.175, and 0.181) with are highly statistically significant (p = 4 × 10−4,
1 × 10−11, and 3 × 10−6, respectively). This presents a small but powerful signal that an
evening chronotype leads to an increase in activation of pathways leading to bipolar dis-
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order. The test for horizontal pleiotropy, in contrast to the Q statistic, does not suggest
horizontal pleiotropy (p = 0.47).

−0.02

0.00

0.02

0.04

0.015 0.020 0.025 0.030
SNP effect on Morning/evening person (chronotype)

S
N

P
 e

ffe
ct

 o
n 

B
ip

ol
ar

 d
is

or
de

r

MR Test

Inverse variance weighted

MR Egger

Simple mode

Weighted median

Weighted mode

(a)

0.00 0.25 0.50
MR leave−one−out sensitivity analysis for

'Morning/evening person (chronotype)' on 'Bipolar disorder', red = IVW effect size

S
N

P
 e

ffe
ct

 o
n 

B
ip

ol
ar

 d
is

or
de

r

(b)

Figure 5. An evening chronotype contributes to the likelihood of a bipolar disorder diagnosis. (a)
IVW, weighted median, mode, weighted mode, and Egger regressions shown. Panel (b) depicts
leave-one-out sensitivity analyses with the IVW method, where the red line indicates the consensus
IVW point estimate.

Results for other seven individual analyses are given in the Supplemental Materials,
Figures S1–S7.

3.2. Confounder Case Studies: Bi-Polar Disorder and Alcohol Intake

Each of the 10 exposure/outcome analyses were included in a confounder analysis,
searching via existing MR associations for possible intermediate variables. Results in full
are available in the Table S4. In Figure 6, a directed graph was created to visually inspect the
relationships between types of confounders, outcomes, and potentially causal exposures.
Exposures are represented in green, reflecting the two independent GWAS analyses used
to access chronotype. Outcomes are reflected in red, and potential intermediate or con-
founding traits as white notes. As may be evident, there are many potential confounders
(111), followed in number by intermediates (52), colliders (35), and reverse intermediates
(18) all with p < 1 × 10−5 in the EpiGraphDB database. The graph shows two clusters
sharing potential confounding traits (time to first cigarette and lung cancer). Both are
confounders between chronotype and two outcomes: cigarettes confound omega-3 fatty
acid concentration and waking too early; lung cancer also confounds omega-3 fatty acid
wile also impacting average weekly beer/cider intake.

Not all MR analyses are beset by confounders, however. The relationship between
exposure to an evening chronotype and bipolar disorder was not found to be influenced
by a statistically significant confounder or collider. In addition to the direct relationship
between chronotype and bipolar disorder, a mediator of the odds of ER+ breast cancer was
discovered, see Figure 7a. The relationship from chronotype to cancer (β 0.32) was stronger
than the unmediated relationship directly to bipolar (β 0.17), but weaker than the possible
relationship of breast cancer to bipolar disorder (β 0.42).
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Figure 6. Causal and confounding relationships between chronotype exposures (green nodes) and traits (red nodes).
White nodes are potential confounding variables. Edges indicate the direction of causality (arrows). Green edges = causal
relationships; purple = colliders, orange = confounders, brown = intermediates, and blue = reverse intermediates.

As a last example study, the relationship between exposure to an evening chronotype
and an increase in beer/wine intake was explored. There is a possible bi-directional rela-
tionship between chronotype and beer/alcohol intake, mediated by reverse intermediates
of a lack of physical activity (types of physical activity in the last 4 weeks: none of the
above) and concentration of the UBE2G2 protein. Additionally, direct intermediates include
the lifetime number of sexual partners. No colliders were present, but several potential
confounders were identified which may need to be conditioned on, depending on study
design. These included dietary consumption (milk type and coffee consumed), loneliness
and isolation, hip circumference, and other metabolite measures. See Figure 7b. Data
underlying the confounder graph in Figures 6 and 7 are in the Supplementary Table S4.



Genes 2021, 12, 1029 9 of 13

(a)

(b)
Figure 7. (a) An evening chronotype associates with bipolar disorder. In addition to a valid associa-
tion between chronotype and bipolar disorder, an intermediate association (p < 1 × 10−5) was found
for ER+ breast cancer. (b) An evening chronotype associates with increased beer and cider consump-
tion. There is a potential bi-directional relationship between increased alcohol intake and an evening
chronotype both directly (blue lines) and mediated by lack of physical activity and elevated UBE2G2.
Chronotype may influence the number of sexual partners, which may influence average alcohol
intake (brown). There are numerous potential confounders relating body composition, loneliness,
and diet.

4. Discussion

This analysis characterised the influence of an evening chronotype on cardiometabolic
and behavioral traits. Chronotype, a measure of circadian rhythm, is a largely endogenous
process though there are sustaining queues, zeitgebers, which influence chronotype [24].
The translational importance of understanding circadian biology is not limited to neu-
robehavioral function; the interplay between metabolism and circadian biology has been
highlighted heavily in recent years. The gut microbiome, adipose cytokines, and metabolic
hormones from ghrelin to leptin are all strongly regulated by circadian biology [25–27].
Recent Mendelian randomization studies have also suggested a strong causal link between
chronotype (a gross circadian phenotype) and body composition, free fatty acid circulation,
and adiposity [2,28]. The current analysis revealed strong associations between chronotype
and 10 other biological traits. In Figure 2, we reproduced causal associations between dia-
betes and triglycerides. Additionally, we report novel associations between chronotype and
metabolomic data (omega-3 fatty acids, total fatty acids, bilirubin). The strongest signals
include diabetes and bipolar disorder, highlighting chronotype as a link between metabolic
and psychiatric health. While not all IVW MR studies passed multiple testing correction,
those that did had complex relationships with other traits, various degrees of heterogeneity
and potential interplay in horizontal pleiotropy. All serum triglyceride associations and a
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link to type 2 diabetes had the same relationship to chronotype: increased risk or concen-
tration of the trait on an exposure to a genetic predisposition to eveningness. Interestingly,
there was a significant (albeit small) association between eveningness and a decrease in
likelihood to be taking nicorandil, a ventilator used to treat angina (see Figure S4). Nico-
randil has been shown in one study to affect the diurnal rhythms in body temperature
and heart rate in rats [29]. There is no evidence that the drug affects circadian behavior
in humans, although variant angina (treated with nicorandil) has a circadian component,
supporting the idea that the influence of circadian biology may contribute to some types
of angina that are amenable to nicorandil treatment [30]. The influence of chronotype on
alcohol consumption was recently investigated by Hisler and colleagues, who revealed a
24 hour rhythm of alcohol craving in late adolescent adults and showed that an evening
chronotype corresponds to a later craving for alcohol [31]. The associations between an
evening chronotype and bipolar disorder are well documented [32], and has been pro-
posed as an endophenotype to classify subtypes of bipolar [33], though several interacting
traits may play a role in these subtypes. Not surprisingly, there were over 200 potential
confounders or mediators observed between chronotype and the ten significant exposures
studied. As evidenced by Figure 6, they vary in type from acceptable in an MR analysis
(intermediate, possibly reverse intermediate depending on follow-up studies) to those
that must be conditioned upon to maintain causality (the most abundant intermediate,
confounders) to the more problematic colliders. Colliders are so called because the causal
arrows in a directed acyclic graph from exposure and outcome both impact (collide on)
the variable. Unlike confounders, conditioning on colliders in regression introduces bias
into the association between exposure and outcome [34]. The four associations subject to
collider bias are the relationship between chronotype and omega-3 fatty acids, serum total
triglycerides, total fatty acids, and lethargy. Possible confounders for the three metabolites
include other cardiometabolic parameters, including total fatty acids, fasting insulin, and
VLDL concentrations. The release of metabolomic data in the UK Biobank [35] caters
for new opportunities to investigate these collisions experimentally since they relate to
chronotype and both psychiatric and cardiometabolic diseases. The only collider associated
to lethargy was narcolepsy, an intuitive yet potentially complex relationship. The only
confounder between an evening chronotype found in this study was ER+ breast cancer.
The confounding was as an intermediate, which maintains the causal nature of the analysis
while adding an extra explanatory “path” to get from exposure to outcome. While there is
no current literature directly linking chronotype to breast cancer and then to the presence
of bipolar disorder, this may be investigated in current murine models of breast cancer via
knockdown experiments or by manipulating light as an external zeitgeber.

Instrumental variable analysis relies on strong assumptions, and occasionally unveri-
fiable conditions [36]. Subject knowledge is the most reliable method for concluding as-
sumptions are valid, especially when choosing exposures and outcomes correctly. A naive,
phenome-wide search for causation between traits is likely to include among many tests
non-plausible experimental designs, leading to an artificial increase in multiple testing
burden and design flaws. This is evident by the need to prune associations in the first step
of this study. In our re-analysis of traits in step 2, we failed to replicate the extremely low
p-values present in the EpiGraphDB, even when using the same outcome and exposure
studies obtained by a sister database, MR-Base. Differences may be partly explained by
analysis choice in the IVW models. We modeled a random effect, assuming that while each
SNP contributed overall to the model in a similar direction or magnitude, the Wald ratio
generated by each SNP will not be identical. In other words, if each SNP is analogous to a
“study” in a meta-analysis, the effect sizes and variances may be similar but a model would
not assume they are identical. As a large focus of this study was investigating possible con-
founders between traits and the possibility of pleiotropy among SNPs, a more conservative
random effects approach was chosen as the basis for further analyses. Additionally, the
EipGraphDB calculated several models and filtering strategies, and an optimal method
for each MR analysis was chosen from a random forest model optimized on artificial
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data. When re-analyzing data, we chose one strategy, though we included any of their
fixed-effect models when incorporating pre-calculated confounder MR analyses as this
was the most abundant analysis method in the database. Without access to the underlying
filtering methods used in the large repositories, we can speculate that instrumental variable
selection, LD clumping, and filtering also played a part. However, this re-analysis has
produced associations that stand up to multiple testing while revealing novel associations.
This study was limited to viewing causality through the lens of Mendelian randomization
alone. In our previous work, we have used gene expression data to identify causal reg-
ulatory networks using Bayesian approaches [37]. Opportunities exist to combine these
approaches, creating multimodal graphs of gene regulatory networks from that approach
with the multitrait networks created in this work.

5. Conclusions

Our findings have revealed potential causal associations between chronotype and
several behavioral and metabolic traits. While using publicly available data to confirm
previously known associations (T2DM, cholesterol) we have found novel associations
which may be validated experimentally in models. These include associations between
chronotype and the vasodilator nicorandil, and a relationship between chronotype and
bipolar disorder potentially mediated by estrogen-receptive breast cancer. Lastly, we
have revealed potential confounders and colliders impacting the relationship between
chronotype and commonly reported cardiometabolic traits which should be addressed
through a combination of multivariate and multistage analyses as appropriate.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/7/1029/s1, Table S1: EpiGraphDB data downloaded to produce Figure 2. Table S2: SNP-level
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S3: Summary level results for each of the 10 MR analyses. Table S4: Statistics downloaded from
EpiGraphDB needed to reproduce Figures 6 and 7. Figures S1–S7: Remaining MR Results Figures.
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Abbreviations
The following abbreviations are used in this manuscript:

GWAS Genome-wide association study
MR Mendelian randomization
IVW Inverse-variance weighted
OR Odds ratio
SNP Single nucleotide polymorphism
LD linkage disequilibrium
IV Instrumental variable
MBE mode-based estimator
FDR alse discovery rate
T2DM Type 2 diabetes melletus
ER+ Estrogen Receptor positive
VLDL Very low density lipoprotein
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