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Abstract: Distal arthrogryposis and lethal congenital contracture syndromes describe a broad group
of disorders that share congenital limb contractures in common. While skeletal muscle sarcomeric
genes comprise many of the first genes identified for Distal Arthrogyposis, other mechanisms of
disease have been demonstrated, including key effects on peripheral nerve function. While Distal
Arthrogryposis and Lethal Congenital Contracture Syndromes display superficial similarities in
phenotype, the underlying mechanisms for these conditions are diverse but overlapping. In this
review, we discuss the important insights gained into these human genetic diseases resulting from
in vitro molecular studies and in vivo models in fruit fly, zebrafish, and mice.
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1. Introduction

Arthrogryposis (arth = joint; grp = curved; osis = pathological state) describes a broad
range of phenotypes consisting of multiple congenital joint contractures presenting at
birth [1]. About 1 in 3000 live births presents with some form of arthrogryposis, many of
which are nonprogressive and improve with physiotherapy. The core root of arthrogryposis
is fetal akinesia, or lack of fetal movement, that results in contractures forming in the
joints [1–3]. Movement is required for normal joint development; it influences the structure
of the joints, as well as promoting cellular signaling that guides normal tissue development.
Mechanical forces also influence bone morphology, affecting organization of chondrocytes,
bone elongation, and differential growth, all affecting the shape of bones as they develop.
Fetal akinesia impairs joint formation, which may lead to joint fusions. Furthermore,
tension is required for normal tendon development, forming a connection between bone
and muscle [4]. Arrested movement during development has significant impact on the
formation of the skeleton, joints, muscle, and connective tissues.

The full range of joint movement in utero can be perturbed both intrinsically and ex-
trinsically. Intrinsically, mutations affecting the muscle, bone, connective tissue, and neural
system can affect the range of movement of joints. Currently, there are over 400 genes
associated with arthrogryposis broadly, encapsulating a wide diversity of genes affecting
different pathways, including genes associated with axon structure, circulatory develop-
ment, or synaptic transmission [5]. Extrinsically, maternal disease or exposures, uterine
space limitation, and decreased blood supply are also root causes for contraction de-
fects [1,2]. Because joint motion is affected by many different systems, a wide range of
issues during development can arrest joint motion.

A subset of arthrogryposis is described as Distal Arthrogryposis (DA), a group of
genetically induced contractures that predominantly affect the joints of the distal limbs,
including the hands, wrists, ankles, and feet. Clinically, the lower extremity manifestations
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commonly include clubfoot and vertical talus. There are currently 10 classifications of DA,
including Sheldon-Hall syndrome (DA2B) and Freeman-Sheldon syndrome (DA2A) [6–9].
Freeman-Sheldon syndrome is considered the most severe form of DA, and also presents
with facial contractures [9].

Currently, DA patients are offered supportive care to improve quality of life, including
occupational therapy, physical therapy, and surgery [10]. While these treatments improve
outcome for patients, they often fall short of complete restoration of range of motion in
the joints and functionality. This strategy also fails to address underlying causes for DA,
such as muscle weakness and impaired neurotransmission. Therefore, further investigation
is necessary to understand the impact of disease variants which will allow us to determine
the most effective treatment options for patients.

Lethal Congenital Contracture Syndromes (LCCS) are included in this review, as some
of the same genes and disease mechanisms apply to this serious condition, which is typically
fetal or neonatal lethal. LCCS presents with severe generalized contractures, along with
many other typical features including incomplete lung development, and polyhydram-
nios [11]. In contrast to DA, which is most often inherited as an autosomal dominant
condition, LCCS has only been described in the autosomal recessive state. Eleven subtypes
have been described to date [10].

Various disease models have been developed to examine the mechanisms behind
DA and to test therapeutic interventions (Table 1). Molecular and single-cell studies are
useful for precisely examining the effects of DA-causing variants on the affected proteins
and tissues. Access to human tissues, particularly from muscle biopsies, has facilitated
molecular analysis for research, yet is clinically useful only in select cases [12,13]. In ad-
dition, protein modeling can help predict the impact of various amino acid substitutions
on molecular interactions [14,15]. On the other hand, animal models are necessary to
analyze the effect of single gene variants on organisms on scales larger than single cells.
The effect of zygosity and gene dosage may also be better studied in animal models to
assess interactions between normal and abnormal gene products. Animal models are also
useful for studying experimental interventions that may improve patient quality of life and
outcome, acting as stand-ins for potential human patients.

Table 1. List of genes and associated conditions and models of distal arthrogryposis (DA) and lethal congenital contracture
syndrome (LCCS) used for study. Autosomal dominant (AD), Autosomal recessive (AR) [9,11,12,14,16–57].

Gene Full Name Disorder Inheritance
Pattern

Modeled
in Source Human Models of Disease

Source

ARTHROGRYPOSIS

MYH3

Myosin, Heavy
Polypeptide 3,

Skeletal Muscle,
Embryonic

DA1,
DA2A,

DA2B, DA8,
Spondylocar-

potarsal
Syndrome

AD, AR
Zebrafish,

Cell,
Biochemical

Toydemir et al.,
2006b [9];

Chong et al., 2015 [57];
Cameron-Christie

et al., 2019 [21]

Racca et al., 2015 [12];
Walklate et al., 2016 [54];

Wang et al., 2019 [55];
Whittle et al., 2020 [16];

Guo et al., 2020 [14];
Das et al., 2019 [25]

TPM2 Tropomyosin 2

DA1,
Cap Myopathy,

Nemaline
Myopathy

AD, AR Drosophila,
Biochemical Sung et al., 2003 [50]

Williams et al., 2015 [56];
Borovikov et al., 2017 [20];
Matyushenko & Levitsky,

2020 [39];

MYLPF

Myosin Regulatory
Light Chain 2,

Skeletal Muscle
Isoform

DA1,
DA2B AD, AR Zebrafish Chong et al., 2020 [23] Chong et al., 2020 [23]

MYBPC1
Myosin-Binding

Protein C,
Slow-Type

DA1,
DA2,

LCCS4
AD Zebrafish

Gurnett et al., 2010 [30];
Li et al., 2015 [58];
Ekhilevitch et al.,

2016 [28];
Shashi et al., 2019 [49];

Ha et al., 2013 [31]

MYBPC2
Myosin-Binding

Protein C,
Fast-Type

DA (unspecified) AD Zebrafish Bayram et al., 2016 [18] Li et al., 2016 [37]

TNNT3 Troponin T3, Fast
Skeletal Type DA2B AD, AR Mouse

Sung et al., 2003 [50];
Sandaradura et al.,

2018 [48]
Ju et al., 2013 [34]
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Table 1. Cont.

Gene Full Name Disorder Inheritance
Pattern

Modeled
in Source Human Models of Disease

Source

TNNI2 Troponin I2, Fast
Skeletal Type DA2B AD Mouse,

Drosophila Sung et al., 2003 [50] Zhu et al., 2014 [17];
Vigoreaux, 2001 [53]

PIEZO2

Piezo Type
Mechanosensitive

Ion Channel
Component 2

DA3,
DA5 AR Cell McMillin et al.,

2014 [40]
Coste et al., 2013 [24];

McMillin et al., 2014 [40]

ECEL1
Endothelin
Converting

Enzyme Like 1
DA5 (or DA5D) AR - McMillin et al.,

2013 [41] -

MYH8

Myosin, Heavy
Polypeptide 8,

Skeletal Muscle,
Fetal

DA7 AD -

Toydemir et al.,
2006a; [51]

Veugelers et al.,
2004 [52]

-

LETHAL
CONGENITAL
CONTRATURE

SYNDROME

GLE1 GLE1 RNA Export
Mediator LCCS1 AR

Zebrafish,
Cell,

Biochemical
Jao et al., 2012 [33] Folkmann et al., 2013 [29];

Jao et al., 2012 [33]

ERBB3 ERB-B2 Receptor
Tyrosine Kinase 3 LCCS2 AR Mouse Narkis et al., 2007 [44] Riethmacher et al.,

1997 [47]

PIP5K1C

Phosphatidylinositol
4-Phosphate

5-Kinase, type 1,
gamma

LCCS3 AR Mouse Narkis et al., 2007 [43] DiPaolo et al., 2004 [26]

MYBPC1
Myosin-Binding

Protein C,
Slow-Type

LCCS4,
DA1,
DA2

AD, AR Zebrafish Markus et al., 2012 [11] Ha et al., 2013 [31]

DNM2 Dynamin, 2

LCCS5,
Centronuclear

Myopathy,
CMT2M,

CMT Intermed

AD, AR Mouse Koutsopoulos et al.,
2013 [35]

Durieux et al., 2010 [27];
Koutsopoulos et al.,

2013 [35]

ZBTB42
Zinc finger-and

BTB Domain-
containing
Protein 42

LCCS6 AR Zebrafish Patel et al., 2014 [45] Patel et al., 2014 [45]

CNTNAP1
Contactin-
associated
protein 1

LCCS7,
Congenital

Hypomyelinating
Neuropathy

AR Mouse Laquerriere et al.,
2014 [36] Bhat et al., 2001 [19]

ADCY6 Adenylyl cyclase 6 LCCS8 AR Zebrafish Laquerriere et al.,
2014 [36]

Laquerriere et al.,
2014 [36]

ADGRG6
Adhesion

G-protein coupled
receptor G6
or GPR126

LCCS9 AR Zebrafish Ravenscroft et al.,
2015 [46] Monk et al., 2009 [42]

NEK9 Nima-related
kinase 1 LCCS10 AR - Casey et al., 2016 [22] -

GLDN Gliomedin LCCS11 AR - Maluenda et al.,
2016 [38] -

Models of human disease are rapidly becoming more sophisticated, with the abil-
ity to knock-in single nucleotide variants and create conditional (tissue specific or time-
dependent) knockouts [16,17]. Loss-of-function alleles, which are often easier to generate,
provide critical information about gene function, but may not fully explain autosomal
dominant phenotypes in which gain-of-function or dominant negative effects can cause
markedly different phenotypes. Conditional knockouts, while very helpful in defining
gene function, rarely replicate the human phenotype in its entirety, but may be required
when early lethality limits further study. These methods allow researchers to design models
that more accurately represent these human conditions, and replicate pathogenic effects
broadly or in specific tissues.
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This review will examine genetic models of DA and LCCS, and the impact they have
had in understanding the underlying pathophysiology. While we will describe both in vitro
and in vivo approaches, we will focus primarily on vertebrate models, as these have the
potential to provide insight into the multifaceted effects of disease variants on the multiple
tissue types that contribute to these complex human phenotypes. We will also examine the
current trajectory of DA research, and how these research strategies can help those afflicted
by DA.

2. Muscle-Related Distal Arthrogryposis
2.1. MYH3

Missense mutations in MYH3, the earliest expressed embryonic myosin heavy chain
gene that is predominantly expressed in myotubes destined to become fast-twitch my-
ofibers [9], are strongly associated with DA clinically, and contribute to multiple subtypes
including DA1, DA2A, and DA2B with varying degrees of severity [7–9,59,60]. MYH3-
associated DA is almost always caused by single missense variants, as frameshift knockout
or premature stop mutations are frequently observed in healthy population controls [9].
However, nonsense MYH3 variants may contribute to autosomal recessive spondylocar-
potarsal syndrome in the compound heterozygous state when presenting along with a
missense allele [21], and have also been described with autosomal dominant spondylocar-
potarsal syndrome [61]. DA-associated pathogenic variants cluster in the motor domain,
but have also been found in the tail region of the protein [9]. Many of these missense
variants are de novo, but some segregate in families with complete, or nearly complete
penetrance [9]. MYH3 appears to be one of the most common genes associated with DA,
therefore various in vitro and in vivo studies, including protein modeling, cell models,
and vertebrate studies, have been performed to elucidate the effects of MYH3 variants on
muscle function and the subsequent effects on the joints and skeleton.

2.1.1. Biochemical and Cell Models for MYH3-Associated Distal Arthrogryposis

Single molecule and single cell studies are useful to examine the precise impact of
a variant on protein function. The effects of amino acid substitutions are difficult to pre-
dict without mechanistic examination. Single-molecule studies facilitate understanding
the effect of a missense variant on protein function and can later be translated into an
understanding of how small mechanical differences affect tissues and whole body systems.
Missense variants can be studied in human skeletal muscle biopsies. However, these are
not routinely performed for DA diagnosis, which makes these studies challenging. To study
this mechanistic link between DA phenotype and gene variant, Racca et al. performed
contractility studies on isolated muscle cells and myofibrils derived from biopsied mus-
cle tissue from DA2A patients [12]. They found that a DA2A-associated MYH3 variant
inhibited cross-bridge detachment, thereby slowing muscle relaxation and lowering force
production. A later study replicated these results while examining multiple MYH3 variants
associated with DA2 [54]. In addition to slower actin-myosin detachment, ATP binding
and ATPase activity were lower in variant MYH3 molecules.

Development of single cell models, in which MYH3 variants are exogenously ex-
pressed or overexpressed from a plasmid or virus, have been limited by the difficulties
of expressing large genes, like MYH3, in vitro. Other key challenges of in vitro modeling
include the paucity of skeletal muscle cell lines other than C2C12 cells, and the propensity
of muscle cells to form a syncytium. In addition, difficulties in differentiating human
induced pluripotent stem cells (iPSCs) into skeletal muscle have also limited their use for
arthrogryposis disease modeling. Likewise, because many features of DA are due to com-
plex relationships between different cell types, co-cultures of muscle cells with tenocytes
and bone may be required to recapitulate the human condition. Thus, many investigators
have preferred to study DA genes in whole organisms.



Genes 2021, 12, 943 5 of 14

2.1.2. Invertebrate Models for MYH3-Associated Distal Arthrogryposis

Drosophila melanogaster (fruit flies) are useful tools for studying muscle function and
myofibril assembly, particularly as introduction of single variants are traditionally simpler
in this system compared to other models. MYH3 and the Drosophila myosin heavy chain
gene, Mhc, are highly conserved. Drosophila have the advantage of having only a single
myosin heavy chain, which eliminates the possible obscuration of effects due to compen-
sation by other myosin heavy chain analogs. Therefore, the effect of variants on protein
function can be examined in a setting without other myosin heavy chain isoforms.

Drosophila transgenic models have been generated by overexpressing Mhc constructs
containing DA variants [14,25]. Guo et al. predicted that a DA1 variant would perturb
a hydrophobic interaction, while a DA2B mutation would introduce a hydrogen bond
that was not present in the wild type. The effect of these predicted interactions was
tested mechanistically in Drosophila models. Muscle fibers containing the DA alleles were
extracted and found to have lower actin affinity, reduced power output, and increased
stiffness, which may explain the motor deficits [14].

Morphological studies of Drosophila skeletal muscle expressing three DA2A Mhc trans-
genes (R672H, R672C, and T178I) showed branching and splitting defects, which were most
severe in the R672C variant, which caused Z-discs to be split and malformed. In addition,
Z-disc distance was shorter in the transgenic flies indicating an overall shortening of the
sarcomeres, perhaps due to an enhanced contractile state of the myofibers. Presumably,
the shortened sarcomeres observed in Drosophila contribute to the formation of contractures
in human patients. Indeed, ATPase activity was reduced in these transgenic flies, leading
to functional defects in muscle activity [25].

In studying the intact adult Drosophila, Guo et al. showed that the MhcF437I mutants
had a much longer lifespan than MhcA234T mutants, consistent with the less severe phe-
notype of DA1 patients compared to DA2B patients [14]. In addition, the researchers
found that both mutants displayed aberrant myofibril assembly, as well as misaligned
sarcomere structure including distorted M and Z lines [14]. Again, this phenotype was
more severe in A234T mutants than in the F437I mutants. MhcF437I mutants displayed
essentially normal myofibers and sarcomeres, while MhcA234T mutants had small myofibers
with disrupted morphology, as well as abnormal sarcomeres [14]. Das et al. also found that
decreased climbing capability of adult flies also correlated with the phenotypic severity in
humans [25].

Like Drosophila, Caenorhabditis elegans (C. elegans) has also been used to study myosin
heavy chain genes [62]. There are many advantages of C. elegans and Drosophila for disease
modeling, including large numbers of progeny, knowledge of ontogeny of individual
cells, and ease of functional studies for drug screening. However, as described in Gil-
Galvez et al., the evolutionary distance, and differences in number of myosin heavy chain
genes between invertebrates and humans makes it difficult to determine whether the
gene being studied has the same function, particularly in terms of spatial and temporal
expression, as its human counterpart. Furthermore, Gil-Galvarez et al. caution against
overexpression studies in C. elegans broadly, citing interference with muscle cell function
overall [62]. The major drawback of invertebrate models is, quite obviously, the lack
of skeletal structures which limits their use in understanding the complex relationship
between muscle, nerve, and bone.

2.1.3. Vertebrate Models for MYH3-Associated Distal Arthrogryposis

Germline loss of Myh3 in mice results in altered muscle fiber size, fiber number,
fiber type, and misregulation of genes, and adult Myh3 null mice develop scoliosis [32].
However, the molecular defect may make these mice a better model for recessive MYH3
spondylocarpotarsal synostosis syndromes than for autosomal dominant DA [21,61].
Notably, many patients with spondylocarpotarsal synostosis syndrome also have con-
genital contractures, which highlights the phenotypic overlap between DA and spondylo-
carpotarsal synostosis syndrome. Interestingly, MYH3 was also shown to be expressed in
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bone, which the authors state may explain the effects of MYH3 variants on both skeletal
muscle and bone, particularly for patients with spondylocarpotarsal synostosis syndrome
and bony fusions [61].

To more accurately model DA2A, Whittle et al. recently introduced one of the most
common Freeman-Sheldon syndrome MYH3 variants, R672H, into an analogous gene in
zebrafish (Danio rerio) (smyhc1R673H) [16]. Zebrafish breed profusely and are cost-effective
compared to mice. They also mature quickly, develop in vitro, and are transparent in the
first few days of life, which facilitates imaging. Zebrafish are also vertebrates, making
them more closely related to humans than Drosophila or C. elegans. Because two zebrafish
lines were created, including smyhc1 null and smyhc1R673H lines, gene dosage effects were
studied by examining the variant in the context of different zygosities. Indeed, smyhc1R673H

homozygotes displayed severe, early lethal phenotype compared to smyhc1R673H heterozy-
gotes, indicating that the smyhc1R673H mutation acts as a hypermorph [16]. This result
suggests human fetal lethality if a DA missense variant occurs in the homozygous state,
which has not yet been described.

Zebrafish larvae harboring the smyhc1R673H variant demonstrated severe notochord
kinks [1], and adults had vertebral fusions that were similar to those seen in patients auto-
somal dominant spondylocarpotarsal synostosis due to MYH3 variants. On histological
examination, skeletal muscle showed severely shortened and misshapen muscle fibers.
Similar to studies in Drosophila, the somite length was reduced in smyhc1R673H mutants,
consistent with shortening of the sarcomere.

A major advantage of zebrafish is the ease with which drugs can be administered for
therapeutic investigations and drug screening. Based on knowledge that myosin ATPase
inhibitors are now being evaluated to treat human cardiomyopathy due to similar variants
in cardiac myosin genes [63], Whittle et al. preemptively treated embryos with para-
aminoblebbistatin to prevent contractures from forming in larvae. Para-aminoblebbistatin
inhibits myosin heavy chain ATPase activity, which chemically relaxed the skeletal muscle
and prevented the curved phenotype of the treated smyhc1 mutant fish (Figure 1) [16].
Previous molecular and single fiber studies predicted this mechanistic effect. Based on
this experimental work, myosin ATPase inhibitors may be a viable avenue for MYH3-
associated DA treatment, but will most likely require development of skeletal-muscle-
specific inhibitors and treatment at an appropriately early developmental window.
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2.2. MYBPC1 and MYBPC2

Strong evidence now exists linking variants in the slow skeletal muscle myosin binding
protein C1 (MYBPC1) to dominantly inherited DA1 [30], DA2 [58], arthrogryposis multiplex
congenita [28], myopathy with tremor [49], and, in the recessive state, to lethal congenital
contracture syndrome LCCS4 [11].

Morpholino knockdown of mybpc1 in zebrafish resulted in embryos with severe body
curvature, as well as impaired motor excitation with defective myofibril organization
and reduced sarcomere numbers [31]. Furthermore, overexpression of human MYBPC1
DA1-associated variants in zebrafish resulted in hypermorphic effects with body curvature,
decreased motor activity, and impaired survival. No effect was seen with overexpression
of wild-type transcripts, suggesting that overexpression studies in zebrafish could be an
efficient model for future functional testing of the human variants of uncertain clinical
significance.

In contrast to MYBPC1, which is strongly implicated in human disease, the role of fast
skeletal muscle myosin binding protein C2 (MYBPC2) in DA is less clear, as there is only a
single report of MYBPC2 variants in DA patients in whom other known arthrogryposis
gene variants were also observed, suggesting a possible role as a modifier [18]. Knockdown
of MYBPC2 with morpholino oligonucleotides produced a myopathic phenotype [37],
but single variants have not yet been studied.

2.3. TPM2

TPM2 variants cause a spectrum of phenotypes, including DA1, DA2, as well as
nemaline myopathy and cap myopathy (reviewed in (Tajsharghi et al., 2012)) [64]. All are
autosomal dominant with the exception of a pathogenic null variant identified in a consan-
guineous family with Escobar variant of multiple pterygium syndrome that was observed
in the recessive state [65]. Biochemical studies were undertaken to study TPM2 gain-of-
function phenotypes, including in vitro motility assays, which showed variable effects on
calcium sensitivity and tropomyosin flexibility [20,39]. In addition, TPM2 was recently
shown to have noncanonical roles other than its sarcomeric function, where it binds thin
filament actin to regulate muscle contraction. In this work, TPM2 directly regulated mus-
cle morphogenesis by directing myotubes toward tendon attachment sites [56]. Muscle
morphology was disrupted in both flies and zebrafish expressing DA1-associated TPM2
variants, likely by causing myofiber hypercontraction (Figure 2).

2.4. TNNI2

While the function of the fast skeletal muscle Troponin I (TNNI2) has been described in
flightless Drosophila models [53], only a single DA disease-associated missense variant has
been modeled in mice, which accurately recapitulated the human disease [17]. However,
the small body size of mice carrying the TNNI2 DA variant could not be explained by the
direct effect of the variant on skeletal muscle morphology or function. Rather, TNNI2 was
shown to be expressed in osteoblasts and chondrocytes of long bone growth plates, through
which its effects on growth was predicted to occur. Therefore, like the studies described
above for MYH3, this model provides evidence that some DA phenotypes may be directly
attributable to expression in non-muscle tissue, such as bone.
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2.5. TNNT3 
DA-associated variants in fast skeletal muscle Troponin T (TNNT3) are also domi-

nantly inherited missense variants, and therefore, like those in many genes described pre-
viously, cause disease through a gain-of-function manner and therefore cannot be ade-
quately modeled using a simple knockout approach. Therefore, while knockout ap-
proaches have shown a critical function of TNNT3 during vertebral development [34], no 
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Figure 2. DA associated TPM2 variants cause muscle phenotypes in Drosophila. Confocal micrographs of live L3 larva that
express GFP-tagged TPM2 variants in skeletal muscles (body wall muscles). Mef2.Gal4 was used to activate UAS.TPM2
transgenes. Lateral and dorsal views are shown for each genotype. (A,B) Larva that express TPM2.GFP showed normal
muscle histology. Larva that expresses TPM2.E41K.GFP (C,D) or TPM2.R91G.GFP (E,F). GFP have rounded myofibers that
appear to result from internal tears (arrows; note affected muscles remain associated with tendons at segment boundaries)
and shortened segments that could be due to hypercontractile muscles (arrowheads). Thoracic segments (T1–T3) and
abdominal segments (A1–A8) are labeled. Scale bars, 500 mM. Previously unpublished data.

2.5. TNNT3

DA-associated variants in fast skeletal muscle Troponin T (TNNT3) are also dominantly
inherited missense variants, and therefore, like those in many genes described previously,
cause disease through a gain-of-function manner and therefore cannot be adequately
modeled using a simple knockout approach. Therefore, while knockout approaches have
shown a critical function of TNNT3 during vertebral development [34], no models with
disease-specific missense variants have been generated, and future studies are needed.

2.6. MYLPF

Exome sequencing recently identified MYLPF, a phosphorylatable fast skeletal muscle
regulatory light chain, as a cause of DA [23]. Some affected individuals were homozy-
gous for rare variants in the gene, while other individuals have autosomal dominant
disease, a finding similar to what was described for MYH3-related disorders. However,
unlike MYH3-related disorders, the phenotypes for MYLPF autosomal dominant and re-
cessive conditions are apparently indistinguishable. Protein modeling of MYLPF alleles
suggested that the autosomal dominant pathogenic variants cause disease through their di-
rect interaction with myosin, while the recessive alleles only indirectly affect the interaction
with myosin [23].

Previously described mylpf knockout mice did not develop either fast or slow type
skeletal muscle mass, which resulted in early death before or after delivery, presumably
due to respiratory failure [66]. Similarly, an individual with recessive MYLPF-associated
DA1 was found to have absent skeletal muscle in an amputated foot, which could best
be described as amyoplasia. The recessive MYLPF pathogenic variant in this individual
was hypothesized to be hypomorphic. Therefore, to further model hypomorphic alleles of
MYLPF, a zebrafish mylpfa mutant was characterized. Because zebrafish have 2 MYLPF
genes, mylpfa and mylpfb, the more prominently expressed gene (mlfpfa) was chosen to
model hypomorphic MYLPF alleles [23]. Of note, zebrafish had an evolutionary genome
duplication event that has resulted in many human genes being represented twice in
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the zebrafish genome. Some of these genes have subsequently evolved to occupy addi-
tional temporal or spatial expression patterns and/or adopted new developmental roles.
While this duplication event may complicate identification of the relevant human gene,
gene duplications can also be an advantage, allowing genes to be studied whose knockout
is early embryonic lethal in other species.

Mylpfa zebrafish null mutants were found to have paralyzed pectoral fins, an impaired
escape response, and consistently lower trunk muscle force compared to wildtype [23].
In in vitro studies, myosin extracted from mylpfa mutant larvae propelled significantly more
slowly than their wild type protein. Skeletal muscle fibers were also found to degenerate
in mutant larvae, collapsing and losing structure, developing membrane abnormalities,
indicating that mylpf is necessary to maintain cellular integrity in muscle cells [23]. Thus,
MYLPF may be unique among the DA genes in also causing amyoplasia, which may have
important implications for personalized therapeutic strategies.

3. Neural-Related Distal Arthrogryposis
3.1. PIEZO2

DA is not only associated with muscle proteins. Whole genome sequencing was
performed on individuals with DA5, in which arthrogryposis occurs in combination with
ptosis, ophthalmoplegia, and facial dysmorphism, and gain of function variants (I802F
and E2727del) were discovered in PIEZO2 [24], a mechanosensitive cation channel re-
sponsible for mediating cation currents in primary sensory neurons [24,40,55]. Because of
their mechanosensitivity, these channels are also termed “stretch-activated ion channels”.
PIEZO2 was found to affect the skeleton non-autonomously in mice. Loss of PIEZO2 specif-
ically in skeletal tissue did not affect bone development; however, loss of gene function in
proprioceptive neurons caused spine malalignment [67]. This suggests both that the neural
system is necessary in maintaining normal skeletal development, and that PIEZO2 is a
critical gene in this process.

To test the mechanistic effects of these pathogenic variants, one group recently trans-
fected human embryonic kidney cells with wild type PIEZO2, or PIEZO2 with missense
variants encoding I802F, or E2727del [24]. Both of these disease-associated variants caused
the channel to recover more quickly from inactivation and resulted in increased channel
activity following a mechanical stimulus. This supports the hypothesis that DA5 is caused
by gain of function mutations that alter mechanosensory nerves. Although additional
studies are needed, overstimulation may directly affect the neuromuscular pathway that
controls muscle tone in developing fetuses, perhaps causing near-constitutive contractions
that constrain the developing joint.

3.2. ECEL1

Variants in ECEL1, which encodes the endothelin-converting enzyme like-1, were iden-
tified in the recessive state in several families with DA5D, a rare form of arthrogryposis
in which affected individuals have contractures as well as distinctive facial features and
ptosis [41]. ECEL1, which is expressed in brain and nerve, is required for post-natal devel-
opment in mice. Loss of Ecel1 in mice results in abnormal terminal branching of motor
neurons at the skeletal muscle endplate [68]. The mechanism by which ECEL1 directs
motor neuron branching is currently unknown; however, the resulting contractures in
patients with ECEL1 variants were proposed to be caused by a similar mechanism to those
caused by genes such as CHRNG that causes multiple pterygium syndrome that impairs
neurotransmission at the neuromuscular junction [69].

4. Lethal Congenital Contracture Syndrome

In contrast with DA, which are more common and often autosomal dominant, Lethal
Congenital Contracture Syndromes (LCCSs) are a group of rare autosomal recessive forms
of arthrogryposis. LCCS are characterized by lack of fetal movement (akinesia), microg-
nathia, incomplete lung development, polyhydramnios, characteristic contractures of the
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limbs (clubfoot, hyperextended knees, elbow and wrist flexion contractures) and motoneu-
ron degeneration. Eleven subtypes of LCCS have been characterized. However, there are
likely to be many more genes that result in these conditions as more genetic studies are
performed on products of conception due to spontaneous abortion or stillbirth. LCCS
is more common in communities with high rates of consanguinity consistent with the
recessive inheritance pattern. Variable expression of LCCS phenotypes may be due to
residual gene function in patients with missense variants or modifier genes. The recessive
phenotypes of LCCS have made them more amenable to study by complete knockdown of
gene expression.

4.1. Nuclear mRNA Export (GLE1, ERBB3, and PIP5K1C)

The first three LCCS subtypes may all act through a similar pathway by supporting
nuclear mRNA export. LCCS type 1 (LCCS1) is caused by mutations in GLE1 RNA Ex-
port Mediator (GLE1), a regulator of post-transcriptional gene expression [70]. GLE1 acts
as an mRNA export factor, as well as by mediating translation initiation and termina-
tion [15]. In mice, in situ hybridization showed marked expression in the neural tube of
11 dpf embryos, specifically in the ventral portion from which motoneurons generate [70].
In zebrafish, the gene is expressed prominently in the central nervous system during
development [33].

A mutation in GLE1, FinMajor, has been linked to LCCS1 by causing a splice-site muta-
tion that results in a 3 amino acid insertion in the coiled-coil domain [70]. The coiled-coil
domain is required for the protein to self-associates to form oligomers, and one group
examined the effect of the FinMajor mutation on polypeptide self-association in vitro and
in vivo [29]. Both in vitro and in living cells, the GLE1 protein self-aggregated, and FinMajor
mutant oligomers were malformed. In human cell culture and in the yeast model, these mal-
formed oligomers were found to perturb mRNA export from the nucleus [29].

Because the FinMajor mutation reduced function of the GLE1 protein in mRNA trans-
port, gle1 knockdown and knockouts were studied in zebrafish to understand its effects
on development. Knockouts developed with small eyes and underdeveloped jaws and
pectoral fins [33]. Cell death was also observed in the head and spinal cord, and there
were fewer motoneurons than in wild type fish. Motoneurons also exhibit aberrant branch-
ing that worsened with age. Maternal gle1 mRNA is loaded into the yolk sac of oocytes,
where it contributes to zebrafish embryogenesis; therefore, morpholino oligonucleotides
were also used to knock down expression of the mRNA in embryos. This exacerbated
the phenotype, with CNS cell death becoming apparent earlier in development, at 1 dpf,
which suggests an important role for gle1 for early development. Notably, this phenotype
is rescued in morphants injected with human wild type GLE1, but not when injected with
the FinMajor allele [33]. Thus, this zebrafish model may be a viable tool for screening and
determining the pathogenicity of human alleles.

LCCS2 is due to loss-of-function mutations in Erb-B2 Receptor Tyrosine Kinase 3
(ERBB3), which encodes HER3, a known modulator of the phosphatidylinositol path-
way [44]. Interestingly, variants in LCCS3 were found to be due to variants in Phosphatidylin-
ositol-4-Phosphate 5-Kinase Type 1 (PIP5K1C), which encodes the enzyme PIPK-gamma
of the phosphatidylinositol pathway [43]. Nouslainen et al. realized that both ERBB3 and
PIP5K1C are involved in the synthesis of inositol hexakisphosphate, which binds directly
to yeast Gle1, activating Dbp5 for mRNA transport [70]. Because Gle1 is expressed in the
neural tube during development, pathogenic variants in this gene can be devastating to
development of the nervous system, as Gle1 is integral to mRNA transport [70].

4.2. Peripheral Nerve (CNTNAP1, ADGRG6, GLDN)

The genes responsible for LCCS7, LCCS9, and LCCS11 are all highly expressed in
peripheral nerves and required for proper peripheral nerve function. Contactin Associated
Protein 1 (CNTNAP1), which causes LCCS7, is a contactin-associated protein that is required
for localization of the paranodal junction proteins contactin and neurofascin. CNTNAP1 is
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also required for the normal spatial expression patterns of neuronal sodium and potassium
channels [19]. Likewise, the causative gene for LCCS11, gliomedin (GLDN), is a ligand for
neurofascin and Nrcam, which are axonal immunoglobulin cell adhesion molecules critical
for association with sodium channels at the nodes of Ranvier [71]. Adhesion G Protein
Coupled Receptor G6 (ADGRG6), which is also known as GPR126, is required for normal
Schwann cell development. Thus, defects in all three genes likely result in similar peripheral
nerve dysfunction at very early stages in development that leads to the LCCS phenotype.

5. Conclusions

Many techniques and organisms have been used for modeling arthrogryposis, each of
which provides complementary information that is essential for understanding basic
mechanisms and will yield translational benefits to human patients. There is an expanding
list of genes that are associated with limb contractures, as one of many clinical features,
beyond those discussed in this review article. Other genes are yet to be discovered,
and disease models are often needed to provide evidence of causality. Furthermore,
as exome sequencing becomes standard care, disease models may be helpful to facilitate
variant interpretation. However, it will be essential to develop more efficient methods for
introducing and studying large numbers of individual variants.

Although most genes responsible for distal arthrogryposis and LCCS are skeletal
muscle sarcomeric genes or genes critical for neuronal function and neuromuscular trans-
mission, crucial aspects remain to be established using disease models. It is important to
determine whether common pathways and mechanisms supported by the genetic data
will predict a unifying approach to therapy. Furthermore, now that gene therapies are
becoming viable treatment mechanisms, where and when the defect needs to be corrected
to prevent development of the DA or LCCS phenotype needs to be elucidated. Disease
models will be essential to improve treatment for these challenging disorders.

Author Contributions: J.W. and C.A.G. wrote the first draft of the manuscript. J.W., A.J., M.B.D. and
C.A.G. wrote or critically reviewed the manuscript, and reviewed and approved the final version.
All authors have read and agreed to the published version of the manuscript.

Funding: Research reported in this publication was supported by National Institute of Arthritis and
Musculoskeletal and Skin Diseases under Award Numbers R01AR067715 and R01AR070299, Eunice
Kennedy Shriver National Institutes of Child Health and Human Development of the National Insti-
tutes of Health under the Award Numbers R03 HD104065 an P01 HD084387, Washington University
Institute of Clinical and Translational Sciences grant UL1 TR002345 from the National Center for
Advancing Translational Sciences of the National Institutes of Health, Washington University Mus-
culoskeletal Research Center (NIH/NIAMS P30 AR057235) (NIH/NIAMS P30 AR074992), and the
Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National
Institutes of Health under Award Number P50 HD103525 to the Intellectual and Developmental
Disabilities Research Center at Washington University. This study was funded with support from
Shriners Hospital for Children, and the Children’s Discovery Institute of Washington University and
St Louis Children’s Hospital.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hall, J.G. Arthrogryposis (multiple congenital contractures): Diagnostic approach to etiology, classification, genetics, and general

principles. Eur. J. Med. Genet. 2014, 57, 464–472. [CrossRef]
2. Hall, J.G. Arthrogryposis multiplex congenita: Etiology, genetics, classification, diagnostic approach, and general aspects.

J. Pediatric Orthop. 1997, 6, 159–166. [CrossRef]
3. Ravenscroft, G.; Clayton, J.S.; Faiz, F.; Sivadorai, P.; Milnes, D.; Cincotta, R.; Moon, P.; Kamien, B.; Edwards, M.; Delatycki, M. Neu-

rogenetic fetal akinesia and arthrogryposis: Genetics, expanding genotype-phenotypes and functional genomics. J. Med. Genet.
2020. [CrossRef] [PubMed]

4. Felsenthal, N.; Zelzer, E. Mechanical regulation of musculoskeletal system development. Development 2017, 144, 4271–4283.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.ejmg.2014.03.008
http://doi.org/10.1097/01202412-199707000-00002
http://doi.org/10.1136/jmedgenet-2020-106901
http://www.ncbi.nlm.nih.gov/pubmed/33060286
http://doi.org/10.1242/dev.151266
http://www.ncbi.nlm.nih.gov/pubmed/29183940


Genes 2021, 12, 943 12 of 14

5. Kiefer, J.; Hall, J.G. Gene ontology analysis of arthrogryposis (multiple congenital contractures). In American Journal of Medical
Genetics Part C: Seminars in Medical Genetics; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 310–326.

6. Bamshad, M.; Van Heest, A.E.; Pleasure, D. Arthrogryposis: A review and update. J. Bone. Jt. Surgery. Am. Vol. 2009, 91, 40.
[CrossRef] [PubMed]

7. Beck, A.E.; McMillin, M.J.; Gildersleeve, H.I.; Shively, K.; Tang, A.; Bamshad, M.J. Genotype-phenotype relationships in
Freeman–Sheldon syndrome. Am. J. Med. Genet. Part A 2014, 164, 2808–2813. [CrossRef]

8. Scala, M.; Accogli, A.; De Grandis, E.; Allegri, A.; Bagowski, C.P.; Shoukier, M.; Maghnie, M.; Capra, V. A novel pathogenic MYH3
mutation in a child with Sheldon–Hall syndrome and vertebral fusions. Am. J. Med. Genet. Part A 2018, 176, 663–667. [CrossRef]
[PubMed]

9. Toydemir, R.M.; Rutherford, A.; Whitby, F.G.; Jorde, L.B.; Carey, J.C.; Bamshad, M.J. Mutations in embryonic myosin heavy chain
(MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome. Nat. Genet. 2006, 38, 561–566. [CrossRef]

10. Desai, D.; Stiene, D.; Song, T.; Sadayappan, S. Distal Arthrogryposis and Lethal Congenital Contracture Syndrome—An Overview.
Front. Physiol. 2020, 11, 689. [CrossRef]

11. Markus, B.; Narkis, G.; Landau, D.; Birk, R.Z.; Cohen, I.; Birk, O.S. Autosomal recessive lethal congenital contractural syndrome
type 4 (LCCS4) caused by a mutation in MYBPC1. Hum. Mutat. 2012, 33, 1435–1438. [CrossRef]

12. Racca, A.W.; Beck, A.E.; McMillin, M.J.; Korte, F.S.; Bamshad, M.J.; Regnier, M. The embryonic myosin R672C mutation that
underlies Freeman-Sheldon syndrome impairs cross-bridge detachment and cycling in adult skeletal muscle. Hum. Mol. Genet.
2015, 24, 3348–3358. [CrossRef]

13. Dieterich, K.; Le Tanno, P.; Kimber, E.; Jouk, P.S.; Hall, J.; Giampietro, P. The diagnostic workup in a patient with AMC: Overview
of the clinical evaluation and paraclinical analyses with review of the literature. In American Journal of Medical Genetics Part C:
Seminars in Medical Genetics; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 337–344.

14. Guo, Y.; Kronert, W.A.; Hsu, K.H.; Huang, A.; Sarsoza, F.; Bell, K.M.; Suggs, J.A.; Swank, D.M.; Bernstein, S.I. Drosophila
myosin mutants model the disparate severity of type 1 and type 2B distal arthrogryposis and indicate an enhanced actin affinity
mechanism. Skelet. Muscle 2020, 10, 1–18. [CrossRef]

15. Folkmann, A.W.; Dawson, T.R.; Wente, S.R. Insights into mRNA export-linked molecular mechanisms of human disease through
a Gle1 structure–function analysis. Adv. Biol. Regul. 2014, 54, 74–91. [CrossRef] [PubMed]

16. Whittle, J.; Antunes, L.; Harris, M.; Upshaw, Z.; Sepich, D.S.; Johnson, A.N.; Mokalled, M.; Solnica-Krezel, L.; Dobbs, M.B.; Gurnett,
C.A. MYH 3-associated distal arthrogryposis zebrafish model is normalized with para-aminoblebbistatin. EMBO Mol. Med. 2020,
12, e12356. [CrossRef] [PubMed]

17. Zhu, X.; Wang, F.; Zhao, Y.; Yang, P.; Chen, J.; Sun, H.; Liu, L.; Li, W.; Pan, L.; Guo, Y. A gain-of-function mutation in Tnni2
impeded bone development through increasing Hif3a expression in DA2B mice. PLoS Genet. 2014, 10, e1004589. [CrossRef]
[PubMed]

18. Bayram, Y.; Karaca, E.; Akdemir, Z.C.; Yilmaz, E.O.; Tayfun, G.A.; Aydin, H.; Torun, D.; Bozdogan, S.T.; Gezdirici, A.; Isikay, S.
Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J. Clin. Investig. 2016, 126, 762–778. [CrossRef]
[PubMed]

19. Bhat, M.A.; Rios, J.C.; Lu, Y.; Garcia-Fresco, G.P.; Ching, W.; Martin, M.S.; Li, J.; Einheber, S.; Chesler, M.; Rosenbluth, J. Axon-glia
interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 2001, 30, 369–383.
[CrossRef]

20. Borovikov, Y.S.; Simonyan, A.O.; Karpicheva, O.E.; Avrova, S.V.; Rysev, N.A.; Sirenko, V.V.; Piers, A.; Redwood, C.S.J.B. The reason
for a high Ca2+-sensitivity associated with Arg91Gly substitution in TPM2 gene is the abnormal behavior and high flexibility of
tropomyosin during the ATPase cycle. Biochem. Biophys. Res. Commun. 2017, 494, 681–686. [CrossRef]

21. Cameron-Christie, S.R.; Wells, C.F.; Simon, M.; Wessels, M.; Tang, C.Z.; Wei, W.; Takei, R.; Aarts-Tesselaar, C.; Sandaradura, S.;
Sillence, D.O. Recessive Spondylocarpotarsal synostosis syndrome due to compound heterozygosity for variants in MYH3. Am. J.
Hum. Genet. 2018, 102, 1115–1125. [CrossRef]

22. Casey, J.P.; Brennan, K.; Scheidel, N.; McGettigan, P.; Lavin, P.T.; Carter, S.; Ennis, S.; Dorkins, H.; Ghali, N.; Blacque, O.E.; et al.
Recessive NEK9 mutation causes a lethal skeletal dysplasia with evidence of cell cycle and ciliary defects. Hum. Mol. Genet. 2016,
25, 1824–1835. [CrossRef]

23. Chong, J.X.; Talbot, J.C.; Teets, E.M.; Previs, S.; Martin, B.L.; Shively, K.M.; Marvin, C.T.; Aylsworth, A.S.; Saadeh-Haddad, R.;
Schatz, U.A. Mutations in MYLPF cause a novel segmental amyoplasia that manifests as distal arthrogryposis. Am. J. Hum. Genet.
2020, 107, 293–310. [CrossRef]

24. Coste, B.; Houge, G.; Murray, M.F.; Stitziel, N.; Bandell, M.; Giovanni, M.A.; Philippakis, A.; Hoischen, A.; Riemer, G.; Steen,
U. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis.
Proc. Natl. Acad. Sci. USA 2013, 110, 4667–4672. [CrossRef]

25. Das, S.; Kumar, P.; Verma, A.; Maiti, T.K.; Mathew, S.J. Myosin heavy chain mutations that cause Freeman-Sheldon syndrome lead
to muscle structural and functional defects in Drosophila. Dev. Biol. 2019, 449, 90–98. [CrossRef]

26. Di Paolo, G.; Moskowitz, H.S.; Gipson, K.; Wenk, M.R.; Voronov, S.; Obayashi, M.; Flavell, R.; Fitzsimonds, R.M.; Ryan, T.A.;
De Camilli, P.J.N. Impaired PtdIns (4, 5) P 2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature
2004, 431, 415–422. [CrossRef]

http://doi.org/10.2106/JBJS.I.00281
http://www.ncbi.nlm.nih.gov/pubmed/19571066
http://doi.org/10.1002/ajmg.a.36762
http://doi.org/10.1002/ajmg.a.38593
http://www.ncbi.nlm.nih.gov/pubmed/29314551
http://doi.org/10.1038/ng1775
http://doi.org/10.3389/fphys.2020.00689
http://doi.org/10.1002/humu.22122
http://doi.org/10.1093/hmg/ddv084
http://doi.org/10.1186/s13395-020-00241-6
http://doi.org/10.1016/j.jbior.2013.10.002
http://www.ncbi.nlm.nih.gov/pubmed/24275432
http://doi.org/10.15252/emmm.202012356
http://www.ncbi.nlm.nih.gov/pubmed/33016623
http://doi.org/10.1371/journal.pgen.1004589
http://www.ncbi.nlm.nih.gov/pubmed/25340332
http://doi.org/10.1172/JCI84457
http://www.ncbi.nlm.nih.gov/pubmed/26752647
http://doi.org/10.1016/S0896-6273(01)00294-X
http://doi.org/10.1016/j.bbrc.2017.10.161
http://doi.org/10.1016/j.ajhg.2018.04.008
http://doi.org/10.1093/hmg/ddw054
http://doi.org/10.1016/j.ajhg.2020.06.014
http://doi.org/10.1073/pnas.1221400110
http://doi.org/10.1016/j.ydbio.2019.02.017
http://doi.org/10.1038/nature02896


Genes 2021, 12, 943 13 of 14

27. Durieux, A.-C.; Vignaud, A.; Prudhon, B.; Viou, M.T.; Beuvin, M.; Vassilopoulos, S.; Fraysse, B.; Ferry, A.; Lainé, J.; Romero,
N.B.J.H.m.g. A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice.
Hum. Mol. Genet. 2010, 19, 4820–4836. [CrossRef]

28. Ekhilevitch, N.; Kurolap, A.; Oz-Levi, D.; Mory, A.; Hershkovitz, T.; Ast, G.; Mandel, H.; Baris, H. Expanding the MYBPC1
phenotypic spectrum: A novel homozygous mutation causes arthrogryposis multiplex congenita. Clin. Genet. 2016, 90, 84–89.
[CrossRef]

29. Folkmann, A.W.; Collier, S.E.; Zhan, X.; Ohi, M.D.; Wente, S.R. Gle1 functions during mRNA export in an oligomeric complex
that is altered in human disease. Cell 2013, 155, 582–593. [CrossRef] [PubMed]

30. Gurnett, C.A.; Desruisseau, D.M.; McCall, K.; Choi, R.; Meyer, Z.I.; Talerico, M.; Miller, S.E.; Ju, J.-S.; Pestronk, A.; Connolly,
A.M. Myosin binding protein C1: A novel gene for autosomal dominant distal arthrogryposis type 1. Hum. Mol. Genet. 2010, 19,
1165–1173. [CrossRef] [PubMed]

31. Ha, K.; Buchan, J.G.; Alvarado, D.M.; Mccall, K.; Vydyanath, A.; Luther, P.K.; Goldsmith, M.I.; Dobbs, M.B.; Gurnett, C.A.
MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Hum. Mol. Genet. 2013, 22, 4967–4977.
[CrossRef]

32. Agarwal, M.; Sharma, A.; Kumar, P.; Kumar, A.; Bharadwaj, A.; Saini, M.; Kardon, G.; Mathew, S.J. Myosin heavy chain-embryonic
regulates skeletal muscle differentiation during mammalian development. Development 2020, 147, dev184507. [CrossRef]
[PubMed]

33. Jao, L.-E.; Appel, B.; Wente, S.R. A zebrafish model of lethal congenital contracture syndrome 1 reveals Gle1 function in spinal
neural precursor survival and motor axon arborization. Development 2012, 139, 1316–1326. [CrossRef] [PubMed]

34. Ju, Y.; Li, J.; Xie, C.; Ritchlin, C.T.; Xing, L.; Hilton, M.J.; Schwarz, E.M. Troponin T3 expression in skeletal and smooth muscle
is required for growth and postnatal survival: Characterization of Tnnt3tm2a (KOMP) Wtsi mice. Genesis 2013, 51, 667–675.
[CrossRef] [PubMed]

35. Koutsopoulos, O.S.; Kretz, C.; Weller, C.M.; Roux, A.; Mojzisova, H.; Böhm, J.; Koch, C.; Toussaint, A.; Heckel, E.;
Stemkens, D.; et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur. J. Hum. Genet. 2013, 21,
637–642. [CrossRef] [PubMed]

36. Laquérriere, A.; Maluenda, J.; Camus, A.; Fontenas, L.; Dieterich, K.; Nolent, F.; Zhou, J.; Monnier, N.; Latour, P.; Gentil, D.; et al.
Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects.
Hum. Mol. Genet. 2014, 23, 2279–2289. [CrossRef] [PubMed]

37. Li, M.; Andersson-Lendahl, M.; Sejersen, T.; Arner, A. Knockdown of fast skeletal myosin-binding protein C in zebrafish results
in a severe skeletal myopathy. J. Gen. Physiol. 2016, 147, 309–322. [CrossRef] [PubMed]

38. Maluenda, J.; Manso, C.; Quevarec, L.; Vivanti, A.; Marguet, F.; Gonzales, M.; Guimiot, F.; Petit, F.; Toutain, A.; Whalen, S.; et al.
Mutations in GLDN, encoding gliomedin, a critical component of the nodes of ranvier, are responsible for lethal arthrogryposis.
Am. J. Hum. Genet. 2016, 99, 928–933. [CrossRef] [PubMed]

39. Matyushenko, A.; Levitsky, D. Molecular mechanisms of pathologies of skeletal and cardiac muscles caused by point mutations
in the tropomyosin genes. Biochemistry 2020, 85, 20–33. [CrossRef]

40. McMillin, M.J.; Beck, A.E.; Chong, J.X.; Shively, K.M.; Buckingham, K.J.; Gildersleeve, H.I.; Aracena, M.I.; Aylsworth, A.S.; Bitoun,
P.; Carey, J.C. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am. J.
Hum. Genet. 2014, 94, 734–744. [CrossRef]

41. McMillin, M.J.; Below, J.E.; Shively, K.M.; Beck, A.E.; Gildersleeve, H.I.; Pinner, J.; Gogola, G.R.; Hecht, J.T.; Grange, D.K.; Harris,
D.J. Mutations in ECEL1 cause distal arthrogryposis type 5D. Am. J. Hum. Genet. 2013, 92, 150–156. [CrossRef]

42. Monk, K.R.; Naylor, S.G.; Glenn, T.D.; Mercurio, S.; Perlin, J.R.; Dominguez, C.; Moens, C.B.; Talbot, W.S. AG protein–coupled
receptor is essential for Schwann cells to initiate myelination. Science 2009, 325, 1402–1405. [CrossRef]

43. Narkis, G.; Ofir, R.; Landau, D.; Manor, E.; Volokita, M.; Hershkowitz, R.; Elbedour, K.; Birk, O.S. Lethal contractural syndrome
type 3 (LCCS3) is caused by a mutation in PIP5K1C, which encodes PIPKIγ of the phophatidylinsitol pathway. Am. J. Hum. Genet.
2007, 81, 530–539. [CrossRef]

44. Narkis, G.; Ofir, R.; Manor, E.; Landau, D.; Elbedour, K.; Birk, O.S. Lethal congenital contractural syndrome type 2 (LCCS2) is
caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol-3-kinase/Akt pathway. Am. J. Hum. Genet. 2007,
81, 589–595. [CrossRef]

45. Patel, N.; Smith, L.L.; Faqeih, E.; Mohamed, J.; Gupta, V.A.; Alkuraya, F.S. ZBTB42 mutation defines a novel lethal congenital
contracture syndrome (LCCS6). Hum. Mol. Genet. 2014, 23, 6584–6593. [CrossRef]

46. Ravenscroft, G.; Nolent, F.; Rajagopalan, S.; Meireles, A.M.; Paavola, K.J.; Gaillard, D.; Alanio, E.; Buckland, M.; Arbuckle, S.;
Krivanek, M.; et al. Mutations of GPR126 are responsible for severe arthrogryposis multiplex congenita. Am. J. Hum. Genet. 2015,
96, 955–961. [CrossRef] [PubMed]

47. Riethmacher, D.; Sonnenberg-Riethmacher, E.; Brinkmann, V.; Yamaai, T.; Lewin, G.R.; Birchmeier, C. Severe neuropathies in mice
with targeted mutations in the ErbB3 receptor. Nature 1997, 389, 725–730. [CrossRef] [PubMed]

48. Sandaradura, S.A.; Bournazos, A.; Mallawaarachchi, A.; Cummings, B.B.; Waddell, L.B.; Jones, K.J.; Troedson, C.; Sudarsanam, A.;
Nash, B.M.; Peters, G.B.; et al. Nemaline myopathy and distal arthrogryposis associated with an autosomal recessive TNNT3
splice variant. Hum. Mutat. 2018, 39, 383–388. [CrossRef] [PubMed]

http://doi.org/10.1093/hmg/ddq413
http://doi.org/10.1111/cge.12707
http://doi.org/10.1016/j.cell.2013.09.023
http://www.ncbi.nlm.nih.gov/pubmed/24243016
http://doi.org/10.1093/hmg/ddp587
http://www.ncbi.nlm.nih.gov/pubmed/20045868
http://doi.org/10.1093/hmg/ddt344
http://doi.org/10.1242/dev.184507
http://www.ncbi.nlm.nih.gov/pubmed/32094117
http://doi.org/10.1242/dev.074344
http://www.ncbi.nlm.nih.gov/pubmed/22357925
http://doi.org/10.1002/dvg.22407
http://www.ncbi.nlm.nih.gov/pubmed/23775847
http://doi.org/10.1038/ejhg.2012.226
http://www.ncbi.nlm.nih.gov/pubmed/23092955
http://doi.org/10.1093/hmg/ddt618
http://www.ncbi.nlm.nih.gov/pubmed/24319099
http://doi.org/10.1085/jgp.201511452
http://www.ncbi.nlm.nih.gov/pubmed/27022191
http://doi.org/10.1016/j.ajhg.2016.07.021
http://www.ncbi.nlm.nih.gov/pubmed/27616481
http://doi.org/10.1134/S0006297920140023
http://doi.org/10.1016/j.ajhg.2014.03.015
http://doi.org/10.1016/j.ajhg.2012.11.014
http://doi.org/10.1126/science.1173474
http://doi.org/10.1086/520771
http://doi.org/10.1086/520770
http://doi.org/10.1093/hmg/ddu384
http://doi.org/10.1016/j.ajhg.2015.04.014
http://www.ncbi.nlm.nih.gov/pubmed/26004201
http://doi.org/10.1038/39593
http://www.ncbi.nlm.nih.gov/pubmed/9338783
http://doi.org/10.1002/humu.23385
http://www.ncbi.nlm.nih.gov/pubmed/29266598


Genes 2021, 12, 943 14 of 14

49. Shashi, V.; Geist, J.; Lee, Y.; Yoo, Y.; Shin, U.; Schoch, K.; Sullivan, J.; Stong, N.; Smith, E.; Jasien, J. Heterozygous variants in
MYBPC1 are associated with an expanded neuromuscular phenotype beyond arthrogryposis. Hum. Mutat. 2019, 40, 1115–1126.
[CrossRef] [PubMed]

50. Sung, S.S.; Brassington, A.-M.E.; Grannatt, K.; Rutherford, A.; Whitby, F.G.; Krakowiak, P.A.; Jorde, L.B.; Carey, J.C.; Bamshad, M.
Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am. J. Hum. Genetics 2003,
72, 681–690. [CrossRef] [PubMed]

51. Toydemir, R.M.; Chen, H.; Proud, V.K.; Martin, R.; van Bokhoven, H.; Hamel, B.C.; Tuerlings, J.H.; Stratakis, C.A.; Jorde, L.B.;
Bamshad, M.J. Trismus-pseudocamptodactyly syndrome is caused by recurrent mutation of MYH8. Am. J. Med Genet. Part A
2006, 140, 2387–2393. [CrossRef] [PubMed]

52. Veugelers, M.; Bressan, M.; McDermott, D.A.; Weremowicz, S.; Morton, C.C.; Mabry, C.C.; Lefaivre, J.-F.; Zunamon, A.; Destree,
A.; Chaudron, J.-M.; et al. Mutation of perinatal myosin heavy chain associated with a Carney complex variant. N. Engl. J. Med.
2004, 351, 460–469. [CrossRef]

53. Vigoreaux, J.O. Genetics of the Drosophila flight muscle myofibril: A window into the biology of complex systems. Bioessays
2001, 23, 1047–1063. [CrossRef] [PubMed]

54. Walklate, J.; Vera, C.; Bloemink, M.J.; Geeves, M.A.; Leinwand, L. The most prevalent Freeman-Sheldon Syndrome mutations in
the embryonic myosin motor share functional defects. J. Biol. Chem. 2016, 291, 10318–10331. [CrossRef] [PubMed]

55. Wang, L.; Zhou, H.; Zhang, M.; Liu, W.; Deng, T.; Zhao, Q.; Li, Y.; Lei, J.; Li, X.; Xiao, B. Structure and mechanogating of the
mammalian tactile channel PIEZO2. Nature 2019, 573, 225–229. [CrossRef]

56. Williams, J.; Boin, N.G.; Valera, J.M.; Johnson, A.N. Noncanonical roles for Tropomyosin during myogenesis. Development 2015,
142, 3440–3452. [PubMed]

57. Chong, J.X.; Burrage, L.C.; Beck, A.E.; Marvin, C.T.; McMillin, M.J.; Shively, K.M.; Harrell, T.M.; Buckingham, K.J.; Bacino, C.A.;
Jain, M.; et al. Autosomal-dominant multiple pterygium syndrome is caused by mutations in MYH3. Am. J. Hum. Genet. 2015, 96,
841–849. [CrossRef]

58. Li, X.; Zhong, B.; Han, W.; Zhao, N.; Liu, W.; Sui, Y.; Wang, Y.; Lu, Y.; Wang, H.; Li, J. Two novel mutations in myosin binding
protein C slow causing distal arthrogryposis type 2 in two large Han Chinese families may suggest important functional role of
immunoglobulin domain C2. PLoS ONE 2015, 10, e0117158. [CrossRef]

59. Alvarado, D.M.; Buchan, J.G.; Gurnett, C.A.; Dobbs, M.B. Exome sequencing identifies an MYH3 mutation in a family with distal
arthrogryposis type 1. J. Bone Jt. Surg. Am. Vol. 2011, 93, 1045. [CrossRef] [PubMed]

60. Beck, A.E.; McMillin, M.J.; Gildersleeve, H.I.; Kezele, P.R.; Shively, K.M.; Carey, J.C.; Regnier, M.; Bamshad, M.J. Spectrum of
mutations that cause distal arthrogryposis types 1 and 2B. Am. J. Med. Genet. Part A 2013, 161, 550–555. [CrossRef] [PubMed]

61. Zieba, J.; Zhang, W.; Chong, J.X.; Forlenza, K.N.; Martin, J.H.; Heard, K.; Grange, D.K.; Butler, M.G.; Kleefstra, T.; Lachman, R.S.
A postnatal role for embryonic myosin revealed by MYH3 mutations that alter TGFβ signaling and cause autosomal dominant
spondylocarpotarsal synostosis. Sci. Rep. 2017, 7, 1–9. [CrossRef]

62. Gil-Gálvez, A.; Carbonell-Corvillo, P.; Paradas, C.; Miranda-Vizuete, A. Cautionary note on the use of Caenorhabditis elegans to
study muscle phenotypes caused by mutations in the human MYH7 gene. BioTechniques 2020, 68, 296–299. [CrossRef]

63. Repetti, G.G.; Toepfer, C.N.; Seidman, J.G.; Seidman, C.E. Novel therapies for prevention and early treatment of cardiomyopathies:
Now and in the future. Circ. Res. 2019, 124, 1536–1550. [CrossRef]

64. Tajsharghi, H.; Ohlsson, M.; Palm, L.; Oldfors, A. Myopathies associated with β-tropomyosin mutations. Neuromuscul. Disord.
2012, 22, 923–933. [CrossRef]

65. Monnier, N.; Lunardi, J.; Marty, I.; Mezin, P.; Labarre-Vila, A.; Dieterich, K.; Jouk, P.S. Absence of β-tropomyosin is a new cause of
Escobar syndrome associated with nemaline myopathy. Neuromuscul. Disord. 2009, 19, 118–123. [CrossRef] [PubMed]

66. Wang, Y.; Szczesna-Cordary, D.; Craig, R.; Diaz-Perez, Z.; Guzman, G.; Miller, T.; Potter, J.D. Fast skeletal muscle regulatory light
chain is required for fast and slow skeletal muscle development. FASEB J. 2007, 21, 2205–2214. [CrossRef]

67. Assaraf, E.; Blecher, R.; Heinemann-Yerushalmi, L.; Krief, S.; Vinestock, R.C.; Biton, I.E.; Brumfeld, V.; Rotkopf, R.; Avisar, E.; Agar,
G.; et al. Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat. Commun. 2020, 11, 1–15. [CrossRef]
[PubMed]

68. Schweizer, A.; Valdenaire, O.; Köster, A.; Lang, Y.; Schmitt, G.; Lenz, B.; Bluethmann, H.; Rohrer, J. Neonatal lethality in mice
deficient in XCE, a novel member of the endothelin-converting enzyme and neutral endopeptidase family. J. Biol. Chem. 1999,
274, 20450–20456. [CrossRef] [PubMed]

69. Morgan, N.V.; Brueton, L.A.; Cox, P.; Greally, M.T.; Tolmie, J.; Pasha, S.; Aligianis, I.A.; van Bokhoven, H.; Marton, T.; Al-Gazali,
L. Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple
pterygium syndrome. Am. J. Hum. Genet. 2006, 79, 390–395. [CrossRef]

70. Nousiainen, H.O.; Kestilä, M.; Pakkasjärvi, N.; Honkala, H.; Kuure, S.; Tallila, J.; Vuopala, K.; Ignatius, J.; Herva, R.; Peltonen, L.
Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat. Genet. 2008, 40, 155–157. [CrossRef]

71. Eshed, Y.; Feinberg, K.; Poliak, S.; Sabanay, H.; Sarig-Nadir, O.; Spiegel, I.; Bermingham, J.R., Jr.; Peles, E. Gliomedin mediates
Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 2005, 47, 215–229. [CrossRef]

http://doi.org/10.1002/humu.23760
http://www.ncbi.nlm.nih.gov/pubmed/31264822
http://doi.org/10.1086/368294
http://www.ncbi.nlm.nih.gov/pubmed/12592607
http://doi.org/10.1002/ajmg.a.31495
http://www.ncbi.nlm.nih.gov/pubmed/17041932
http://doi.org/10.1056/NEJMoa040584
http://doi.org/10.1002/bies.1150
http://www.ncbi.nlm.nih.gov/pubmed/11746221
http://doi.org/10.1074/jbc.M115.707489
http://www.ncbi.nlm.nih.gov/pubmed/26945064
http://doi.org/10.1038/s41586-019-1505-8
http://www.ncbi.nlm.nih.gov/pubmed/26293307
http://doi.org/10.1016/j.ajhg.2015.04.004
http://doi.org/10.1371/journal.pone.0117158
http://doi.org/10.2106/JBJS.J.02004
http://www.ncbi.nlm.nih.gov/pubmed/21531865
http://doi.org/10.1002/ajmg.a.35809
http://www.ncbi.nlm.nih.gov/pubmed/23401156
http://doi.org/10.1038/srep41803
http://doi.org/10.2144/btn-2020-0012
http://doi.org/10.1161/CIRCRESAHA.119.313569
http://doi.org/10.1016/j.nmd.2012.05.018
http://doi.org/10.1016/j.nmd.2008.11.009
http://www.ncbi.nlm.nih.gov/pubmed/19155175
http://doi.org/10.1096/fj.06-7538com
http://doi.org/10.1038/s41467-020-16971-6
http://www.ncbi.nlm.nih.gov/pubmed/32576830
http://doi.org/10.1074/jbc.274.29.20450
http://www.ncbi.nlm.nih.gov/pubmed/10400672
http://doi.org/10.1086/506256
http://doi.org/10.1038/ng.2007.65
http://doi.org/10.1016/j.neuron.2005.06.026

	Introduction 
	Muscle-Related Distal Arthrogryposis 
	MYH3 
	Biochemical and Cell Models for MYH3-Associated Distal Arthrogryposis 
	Invertebrate Models for MYH3-Associated Distal Arthrogryposis 
	Vertebrate Models for MYH3-Associated Distal Arthrogryposis 

	MYBPC1 and MYBPC2 
	TPM2 
	TNNI2 
	TNNT3 
	MYLPF 

	Neural-Related Distal Arthrogryposis 
	PIEZO2 
	ECEL1 

	Lethal Congenital Contracture Syndrome 
	Nuclear mRNA Export (GLE1, ERBB3, and PIP5K1C) 
	Peripheral Nerve (CNTNAP1, ADGRG6, GLDN) 

	Conclusions 
	References

