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Abstract: Senescence is the final stage of leaf development and is critical for plants’ fitness as nutrient
relocation from leaves to reproductive organs takes place. Although senescence is key in nutrient
relocation and yield determination in cereal grain production, there is limited understanding of the
genetic and molecular mechanisms that control it in major staple crops such as wheat. Senescence is a
highly orchestrated continuum of interacting pathways throughout the lifecycle of a plant. Levels of
gene expression, morphogenesis, and phenotypic development all play key roles. Yet, most studies
focus on a short window immediately after anthesis. This approach clearly leaves out key components
controlling the activation, development, and modulation of the senescence pathway before anthesis,
as well as during the later developmental stages, during which grain development continues. Here, a
computational multiscale modelling approach integrates multi-omics developmental data to attempt
to simulate senescence at the molecular and plant level. To recreate the senescence process in
wheat, core principles were borrowed from Arabidopsis Thaliana, a more widely researched plant
model. The resulted model describes temporal gene regulatory networks and their effect on plant
morphology leading to senescence. Digital phenotypes generated from images using a phenomics
platform were used to capture the dynamics of plant development. This work provides the basis
for the application of computational modelling to advance understanding of the complex biological
trait senescence. This supports the development of a predictive framework enabling its prediction in
changing or extreme environmental conditions, with a view to targeted selection for optimal lifecycle
duration for improving resilience to climate change.
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1. Introduction

Senescence, the final, degenerative stage in plant development, occurs in a temporally
coordinated manner [1]. The process is triggered by the collective and coordinated assess-
ment of multiple internal and external signals through intricate regulatory pathways [2]
and entails many morphological, cytological, physiological, and molecular changes. The
first visible sign of leaf senescence is leaf colour degradation, typically from green to pale
green to yellow and brown. These changes are caused by rapid chlorophyll degradation
during chloroplast degeneration [3] as photosynthesis declines and mesophyll cells lose
their ability to produce carbohydrates. Nuclei and mitochondria remain intact until later
stages, allowing expression of senescence-associated genes (SAGs) and continued energy
production while chloroplasts and their content are already being degraded [4]. These
processes are activated to enable the realisation of one of the most important purposes of
senescence, namely, nutrient remobilisation, which functions to withdraw and translocate
nutrients such as carbon, nitrogen, and other minerals from senescing tissues to other
parts of the plant [5]. In annual crops, these prioritised structures are typically fruits and
seeds, i.e., those that make up harvestable crop yield. As leaf senescence is accompanied by
genome-wide changes in gene expression, the dynamic activation of transcription factors is
thought to be a key mechanism that controls the age-dependent expression of the thousands
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of SAGs. Two transcription factor families, NAC and WRKY, are the major transcription
factors that regulate leaf senescence [6]. These transcription factors are also induced by
various stress responses, which is consistent with the notion that senescence is an integrated
response of plants to both endogenous developmental as well as environmental signals.

Other transcription factors families have been reported to be involved in the regu-
lation of leaf senescence in Arabidopsis thaliana. For example, the related to ABI3/VP1
(RAV) transcription factor family member RAV1 [7] and the R-type MYB-like transcription
factor MYBL [8] have both been shown to be positive regulators of leaf senescence. The
C-repeat/dehydration responsive element binding factor 2 (CBF2) appears to be a negative
regulator of leaf senescence, as its overexpression delays leaf senescence [9]. Several tran-
scription factors that are associated with hormone signalling have also been reported to
regulate leaf senescence. For example, Auxin response factor 2 (ARF2) has an important
role in modulating auxin-mediated leaf senescence [10], and Signal responsive 1 (SR1), a
calmodulin-binding transcription factor, regulates ethylene-induced senescence by directly
binding to the EIN3 promoter, a positive transcription factor in the ethylene signalling
pathway [11].

As senescence is a key decision point in a plant’s life cycle, delaying leaf senescence
(denoted stay green) provides an opportunity to prolong photosynthetic capacity, poten-
tially increasing crop yield [12]. In contrast, premature leaf senescence results in limitations
to assimilate production and corresponding yield loss. Premature leaf senescence is trig-
gered by various external factors such as drought [13], salt stress [14], and shading [15],
as well as physiological factors such as sugar accumulation content [16] or plant hormone
levels [17,18]. Therefore, the onset of senescence is an important adaptive feature with
individual plants integrating factors in the environment with internal signals to trigger
senescence via regulatory networks. On the evolutionary level, these mechanisms them-
selves are subject to selection.

Therefore, an in-depth understanding of the molecular mechanism of senescence is
important in delaying leaf senescence and increasing cereal crop production. The genetic
information encoded in an organism’s DNA is transferred into a functional gene product
via the process of gene expression, which leads to the formation of a phenotype [19].
The formation of such phenotypes is usually governed by multiple temporal and spatial
factors [20], and their variation can be attributed to the collective response of multiple small
effects associated with the phenotype. These changes can be due to phenotype-associated
genes that turn on or off at various times. In other words, phenotype formation is, in
part, governed by genes whose effects change with time and is commonly the result of the
interaction of multiple genes that together make up gene regulatory networks (GRN).

Studying the dynamics of gene–gene interaction over time is crucial to understanding
the properties and functions of genes, which helps reveal the genetic architecture of complex
traits and other biological functions. GRN’s inference can be done via in vitro genetic
experiments, such as comparative screening of mutants vs. wild types for a trait or gene
of interest. As mutations can interrupt cellular processes, specific genetic or phenotypic
mutants are often used to understand gene function and interaction. This approach can
be costly and time-consuming and is difficult to scale for complex traits, as it would
require reverse engineering of single and combined mutants from the target organism.
An alternative is to infer GRNs based on measurement of gene expression to reveal gene
expression patterns affected by single or multiple factors such as time or environment.
Many methods have been proposed to infer GRNs from gene expression data, including
Bayesian networks [21], which are graph-based models of joint multivariate probability
distributions that capture properties of conditional independence between a set of genes;
Boolean networks [22], where a set of Boolean variables and Boolean functions are used
to describe gene–gene interactions; ordinary differential equations [23], which use a set
of differential equations to directly describe dynamic changes of the mRNA content in a
precise manner; random forest [24], which builds multiple decision trees to infer the gene–
gene interaction; and regression type methods [25], which use standard regression and
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model shrinkage techniques to select parsimonious, predictive models for the expression
of a gene or cluster of genes as a function of gene expression, environmental influences,
and time.

Expression regulation is dynamic, and time-course data can be used to infer causality,
but available gene expression datasets tend to be short or sparsely sampled. In addition,
temporal methods typically assume that the expression of a gene at a time point depends
on the expression of other genes at only the immediately preceding time point, while
other methods include additional time points without any constraints to account for their
temporal distance. These limitations can contribute to inaccurate networks with many
missing and anomalous links.

The molecular processes involved in leaf senescence are known to involve time-
dependent interactions with both internal (developmental) and external (environmental)
signals [25]. This requires a highly integrative process towards cell death with nutrient
recycling and storage [26]. In this study, we use a multiscale modelling approach to inte-
grate transcriptomic and digital time series phenotypic data to simulate the senescence
process in wheat. While multiscale modelling is far from popular and multiscale modelling
of senescence has never been developed, other biological processes have been attempted,
mainly in the Arabidopsis Thaliana plant model, using this strategy. For example, root
gravitropism [27] was simulated by integrating phenotypic data from a DII-VENUS essay
in conjunction with a mathematical model to quantify auxin redistribution following a
gravity stimulus. Another study used a mathematical model of a small GRN to demonstrate
how two nested feed-forward loops precisely control asymmetric cell divisions within
the root stem cell niche [28]. One of the most complete multiscale plant models to date
is a family of Arabidopsis framework models [29,30], which link genetic regulation and
biochemical dynamics to organ and plant growth. The model showed that increasing
leaf production rate in developmentally misregulated transgenic Arabidopsis sufficiently
explained the smaller leaf size phenotype of this transgenic. The model was also used to
predict phenotypic responses due to altered circadian timing in clock-mutant plants [30].
More advanced multiscale models have been used to explore the impacts of genetic modi-
fications to soybean photosynthesis in ambient and elevated carbon dioxide [31] and to
explore potential gene engineering strategies for producing trees with improved bioenergy
traits while mitigating negative impacts on tree growth [32].

Wheat is a major cereal crop, and the ability to predict and/or manipulate senescence
offers the opportunity to delay leaf senescence to increase harvestable grain yield [33].
The developed model describes temporal gene regulatory networks and their effect on
plant morphology leading to senescence. The use of digital plant development data
extracted from images captured using a phenomics platform adds important resolution to
the description of plant development. The modelling assessment approach described here
is designed to facilitate the integration of a broad range of phenomics and transcriptomics
data and facilitates future expansion to include environmental measurements (such as
temperature and light conditions). This study demonstrates the potential of applying
computational modelling to predict a complex, dynamic phenotype based on a novel
approach to integrate transcriptomic and phenomics data.

2. Results
2.1. Gene Expression Profiles Vary across Genes and Time Points

Expression of senescence-associated genes in Chen’s model [34] show varying pro-
files post-anthesis (from 3 to 26 days after anthesis (GS60)) depending on gene type
(Figure 1a). vrn-B3 expression is highest overall, showing consistent patterns of expression
post-anthesis. Across the lifecycle, vrn-B3 expression increases rapidly at GS30 to a peak at
GS60, which corresponds with flowering time, indicating that leaf senescence in wheat is
partially dependent on phenology, as demonstrated in Arabidopsis and barley [16] reaching
maximum expression at anthesis.



Genes 2021, 12, 909 4 of 15

Genes 2021, 12, x FOR PEER REVIEW 4 of 15 
 

 

2. Results 
2.1. Gene Expression Profiles Vary across Genes and Time Points 

Expression of senescence-associated genes in Chen’s model [34] show varying 
profiles post-anthesis (from 3 to 26 days after anthesis (GS60)) depending on gene type 
(Figure 1a). vrn-B3 expression is highest overall, showing consistent patterns of 
expression post-anthesis. Across the lifecycle, vrn-B3 expression increases rapidly at GS30 
to a peak at GS60, which corresponds with flowering time, indicating that leaf senescence 
in wheat is partially dependent on phenology, as demonstrated in Arabidopsis and barley 
[16] reaching maximum expression at anthesis.  

Previous studies have suggested that NAM-B1, B2, A1, D1, and D2 might be 
redundant [35], and we found high correlation (>0.9) between NAM gene expression 
profiles. The NAM genes start with low gene expression (<0.5 log2), increasing at around 
GS50. Expression patterns across time from the seedling to ripening stage also showed 
significant variation depending on gene type (Figure 1b). This shows a rapid increase in 
the NAM gene post-anthesis, which reaches a plateau at around 15 dpa, consistent with 
the results presented in Figure 1a. 

 
Figure 1. Moving beyond the limits of current senescence research: an integrative approach towards 
dissecting senescence. Gene expression profiles, from leaf tissues, corresponding to members of the 
NAM gene family (light blue) and VRN-B3 (amber) at (a) a narrow developmental window around 
anthesis (the traditional approach), contrasted with (b) our analysis across the wheat lifecycle, from 

Figure 1. Moving beyond the limits of current senescence research: an integrative approach towards dissecting senescence.
Gene expression profiles, from leaf tissues, corresponding to members of the NAM gene family (light blue) and VRN-B3
(amber) at (a) a narrow developmental window around anthesis (the traditional approach), contrasted with (b) our analysis
across the wheat lifecycle, from seedling emergency to grain ripening (see Table 1 for growth stages), using public data.
(c) Colour plot describing average colour changes of MAGIC lines over the lifecycle. Green and senesced areas in the plant
are represented by green and yellow, respectively (see Table 1 for growth stages). (d) Lines and parents of the wheat MAGIC
population imaged across their lifecycle. (e) Topological senescence gene networks from GS40 to GS90 inferred from (b).
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Table 1. Wheat developmental stages.

Stage Name

GS10 Seedling growth
GS20 Tilling
GS30 Stem elongation
GS40 Booting
GS50 Inflorescence emergence
GS60 Anthesis
GS70 Milk development
GS80 Dough development
GS90 Ripening

Previous studies have suggested that NAM-B1, B2, A1, D1, and D2 might be redun-
dant [35], and we found high correlation (>0.9) between NAM gene expression profiles.
The NAM genes start with low gene expression (<0.5 log2), increasing at around GS50.
Expression patterns across time from the seedling to ripening stage also showed significant
variation depending on gene type (Figure 1b). This shows a rapid increase in the NAM
gene post-anthesis, which reaches a plateau at around 15 dpa, consistent with the results
presented in Figure 1a.

Phytohormones Gibberellins (GA) have been reported to promote senescence via com-
plex interconnecting pathways and cytokinins and auxin with senescence inhibition [34].
GA serves as an important endogenous signal to regulate age-dependent leaf senescence.
GA’s expression is downregulated during and after anthesis in Figure 1a, and variable in
Figure 1b. The expression profiles for GID1, DELLA, and WRK45 follow similar patterns
post-anthesis (Figure 1a) and throughout the lifecycle (Figure 1b), suggesting involvement
in similar pathways. Previous work has shown that WRKY45 may positively regulate
age-dependent leaf senescence via the GA pathway [34].

2.2. Colour Distribution

Average changes in plant colour across time and their relation with wheat develop-
ment are shown in Figure 1c. The plot shows that leaf senescence, represented by yellow,
increases at a faster rate after GS39 when the flag leaf has fully emerged. At GS65, plant
vegetative areas are senescing at a much faster rate. Both Figure 1a,b show significant
changes between GS40 and GS50 growth stages.

When comparing Figure 1a,b NAMs and Vrn-B3 genes show an increase in expression
at the same time as plant greenness starts a rapid decline towards senescence (indicated by
the decrease in green pixels in the graph). However, while NAMs remain up-regulated
after anthesis, Vrn-B3′s expression seems to show a declining pattern after the same
developmental stage.

2.3. GRN Reconstruction Reveals Interactions across Developmental Time Points

Filtering for significantly differential expression (SDE) resulted in 12944 genes of
which only two NAM genes (NAM_A1 and NAM_D1) and the Vrn-B3 gene were SDE.
The remainder of the genes present in Chen’s model were not SDE and were therefore
filtered out.

In order to focus on senescence-related genes, all the genes in the same clusters of
NAM-A1 and NAM-D1 were used in the GRN de novo reconstruction, across 10 wheat
developmental stages (GS10 to GS90). When running the simulation, network reconstruc-
tion was not possible before GS30, as there were fewer recurrent interactions up to that
time point. Therefore, GRN reconstruction goes from GS40 to GS90 (Figure 1e). Briefly,
at GS40 (A) the network has a single hub (node size dictated by number of interactions),
TraesCS6D02G082300.1, and the rest of the genes are not connected. At GS50, the network
has two main hubs (TraesCS3A02G092000.1 and TraesCS3D02G024700.1), and the remain-
ing genes are unconnected. At GS60, the network has two super-hubs (link hubs), one is
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TraesCS4A02G485000.2 and the other is TraesCS7B02G013100.1 (Vrn-B3), and the latter
interacts with the genes NAM-A1 and NAM-D1. From GS70 to GS90, the network has
more super-hubs with vrn-B3 remaining, but no connecting edges between vrn-B3 and
NAM-A1 and NAM-D1.

2.4. In Silico Reconstruction of GRN Modelling Senescence

As genes Vrn-B3, NAM-A1, and NAM-D1 showed a possible interaction at anthesis
(GS60), all the NAM genes (NAM-A2, NAM-B2, NAM-D2, NAM-A1, and NAM-D1) to-
gether with Vrn-B3 were used to in silico test the hypothesis of the Vrn-B3 and NAMs inter-
action towards the onset of senescence. The transsys representation of a possible interaction
between these genes is shown in Figure 2a. To identify the most likely gene-interaction
model that could reproduce the empirical data, networks with six nodes (i.e., genes) and
1, 2, 3, 4, 5, 10, 15, and 20 edges E (E = 1, 2, 3, 4, 5, 10, 15, and 20) were generated. For
each E topology, 20 samples were generated, each representing the random rewiring of a
given E number of edges. A null model (Figure 2b), with no edges between nodes, was
added to the search set. The numeric values in the transsys programs were initialised with
random numbers drawn for a uniform distribution and subsequently optimised (20 runs)
in order to achieve a close fit to the empirical data. Results of optimisation shown in
Figure 2c suggest that an interaction between the NAMs and Vrn-B3 was not likely, as
the null model scored similarly to the other models where at least one interaction was
modelled. In addition, fitness (e.g., correlation metric between empirical and synthetic
data) between empirical and synthetic data was worse when more edges were added to
the model.
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2.5. Modelling the Senescence Phenotype

The last task of this study was to simulate the senescence phenotype based on gene
regulation. Since no interactions between the NAMs and the Vrn-B3 genes were founded
at the in silico reconstructing the GRN modelling senescence step, an alternative strat-
egy was used to be able to simulate the senescence phenotype as a function of time. The
alternative strategy was based on the assumption that plant senescence and therefore
chlorophyll degradation is triggered by a cascade of signals that under ideal circumstances
are influenced by plant age. Figure 3a is a network with two genes (and products), one rep-
resenting signal cascades (NAM_gene) and the other representing chlorophyll degradation
(chlorophyll_gene). Figure 3b shows gene expression of these two genes across time, when
NAM_gene is upregulated, the hypothetic chlorophyll_gene becomes downregulated, and
therefore senescence is triggered, which is demonstrated graphically in Figure 3c. Time one
in the plot and in the plant model represents emergence, and time seven represents anthesis
(GS60). This simple model is able to describe in a very simple manner how senescence is
triggered at the molecular level and how that can be represented using an in silico model
of a plant.
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NAM gene is upregulated, the chlorophyll is downregulated, and therefore senescence is triggered, which is also graphically
modelled in (c), where the model plant starts to become yellow at step number 7 (or 6 beginning from emergence).

3. Discussion

In this study, a data-driven approach to understanding the biological process of senes-
cence in wheat is reported. Senescence is a highly synchronised process that involves the
cross-talk between genes, or groups of genes, at given time points during plant develop-
ment. The observed senescence phenotype is the combination of multiple pathways that
are constantly sensing internal and external cues to trigger the underlying processes.

The study of senescence in plants has mainly been explored in plant models such as
Arabidopsis. These studies have reported genes associated with the senescence phenotype,
predominantly based on gene function, and their expression patterns pre- and post-leaf
decolouration. Such senescence-associated genes (SAG) usually belong to the NAC, WRKY,
and MYB families. The rapid development of new omics technologies has made plant
screening at the molecular and organ level faster and cheaper, allowing extension of work
from models into crop species such as wheat [36]. The recently sequenced and annotated
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RefSeq v1.0 [37] wheat genome and the currently available wheat TILLING population [38]
now allow for detailed functional characterisation. Data generated from this study were
used to identify the NAM transcription factors NAM-A2, NAM-B2, NAM-D2, NAM-A1,
and NAM-D1 as likely involved in the triggering of senescence in wheat [12].

Pathway reconstruction in wheat is now also possible given the availability and
consolidation of high-quality gene expression data produced by more than 100 wheat ex-
periments [39]. These data, plus ongoing annotation of multiple wheat genomes [36], offer
new opportunities to use mechanistic and machine learning methods to understand the
senescence process in wheat and to develop in silico models to inform lab-based research.

This study collected and mined heterogeneous data from several publicly available
wheat experiments and linked them with currently available models of senescence. Data
from previous QTL mapping that were a [40] potential link between the Vrn-B3 flowering
time gene and the onset of senescence were also added to the analysis. Previous work
has shown a link between flowering time and senescence. Miryeganeh et al., (2018) [41]
observed a synchronisation of Arabidopsis flowering time and whole-plant senescence,
and Xie et al., (2016) [42] suggested that leaf senescence in wheat is partially dependent on
the genetics of the flowering system based on QTL analysis. However, the mechanisms
underlying this interaction are still unknown.

Gene expression analysis carried out in this study confirmed that genes NAM-A1 and
NAM-D1 were significantly expressed prior to anthesis, as reported by previous studies
on senescence in wheat [43]. NAM genes are also associated with increasing wheat grain
protein, zinc, and iron content and with the onset of senescence [43,44]. Silencing of NAM
genes resulted in decreases of 30%, 36%, and 38% for GPC, iron, and zinc, respectively [44].
Recently, NAM orthologous genes have been identified in Hordeum vulgare and Triticum
timopheevii Zhuk; these have been shown to have the same function [17].

The Vrn-B3 flowering was also significantly expressed prior to anthesis. Other can-
didate genes analysed in this study such as WRKY45, GID1, and the DELLA were not
significantly expressed but showed a similar expression pattern across time. We speculate
that perhaps the role of WRKY45 is not specific to senescence, but this can only be tested
using mutants.

Although clustering analysis of SGE genes placed Vrn-B3 and the NAM genes within
the same cluster, the genes were only linked at anthesis. This result was used to attempt to
reconstruct an in silico GRN describing senescence using the Vrn-B3 and the NAM genes
as nodes in the network. After testing multiple models, hypotheses were made on how
genes candidate interacted; none of the models produced synthetic data that were similar
(in correlation terms) to the empirical data. This result suggests that either there is not
an interaction between Vrn-B3 and the NAM genes or that key senescence genes that link
Vrn-B3 and the NAM are missing.

Since the ultimate task of this study was to model the senescence phenotype based
on the GRN reconstruction, but no strong evidence was found regarding the interaction
between Vrn-B3 and the NAM, an alternative strategy was used to still be able to model the
phenotype. The new strategy used what is widely known about senescence (i.e., a cascade
of signals induce chlorophyll degradation and therefore leaf yellowing) to reconstruct a
simple model of senescence. This simple model was used as the molecular base to model
the senescence phenotype. The resulted model was able to show the initiation of leaf
senescence at anthesis.

Future work is required to develop a full in silico model of senescence in wheat. Model
reconstruction can now draw on recently available omics resources and use a combination
of advanced machine learning methods. This will support the prediction of gene interaction-
based predictors such as time, phenotype, gene function, and current gene associations. An
accurate in silico model of senescence will inform and add value to functional validation
experiments including the screening of mutants under an array of treatment conditions.
This will support understanding of gene function and gene–gene interactions for this
agronomically important and genetically complex developmental process.
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4. Materials and Methods

Despite the role that senescence plays in grain filling, in wheat, there is not currently a
simple model that attempts to describe the senescence process. This study uses a number of
omics datasets as well as a combination of computational methods to attempt to reconstruct
a simple model of senescence in wheat. This model is by no means exhaustive, as the idea
of the study is to illustrate a data-driven strategy to model key biological processes. A such,
a small number of genes are selected as likely to be involved in senescence, and a GRN
reconstruction strategy is followed to identify gene–gene regulation.

The pipeline, depicted in Figure 4, starts from sourcing omics data, followed by
candidate identification, which goes from a large list to a trimmed down set, and finally,
modelling the senescence at the molecular and plant level.
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4.1. Plant Material and Imaging

A subset of the NIAB Elite eight-founder MAGIC wheat (Triticum aestivum L.) pop-
ulation described in [40,45,46] was used in this study to analyse trait development over
time. Full details of the population including complete pedigrees, genotypes, and existing
phenotyping data can be found at https://www.niab.com/research/agricultural-crop-
research/resources/niab-magic-population-resources, accessed on 1 May 2020.

As described in [40,45] MAGIC seeds were sown, and emerged seedlings vernalised
for nine weeks. Following vernalization, plants were placed on a Smart House conveyor
system to allow for regular automated imaging. Daily imaging was controlled by a
LemnaTec 3D Scanalyzer (LemnaTec, GmbH, Wuerselen, Germany) for image acquisition.
Four RGB pictures (2056 × 2454 pixels) were taken of each plant, one top view and three

https://www.niab.com/research/agricultural-crop-research/resources/niab-magic-population-resources
https://www.niab.com/research/agricultural-crop-research/resources/niab-magic-population-resources
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side views with a 45◦ horizontal rotation. Once the ears started to ripen, plants were
removed from the system and allowed to finish ripening naturally with reduced watering,
and manual photographs were taken at final maturity.

Plants were also manually scored for developmental stages according to the Zadoks
scale [47] three times per week to assess the number of days after sowing (DAS) to GS39
(flag leaf fully emerged), GS55 (ear 50% emerged), and GS65 (50% anthesis).

Digital images were processed using Matlab [48]. Briefly, RGB images were quantized
(compressing a range of colour frequencies to a single value) to reduce the number of
distinct colours down to 128. Second, frequencies were calculated per colour. A matrix
was produced where rows corresponded to images (per MAGIC line per time point), and
columns were the colour frequencies. Third, frequencies corresponding to background
elements such as tray, cage, background wall, carriage, and labels were filtered out.

4.2. Gene Expression Analysis and Gene Selection

We used the Wheat Expression Browser [39], a high-quality annotated reference
wheat expression database, to search for expression profiles of senescence-associated
(SA) genes. We selected samples extracted from leaves and shoots tissues, across nine
wheat developmental stages (Table 1) in the absence of a treatment. This query returned
209 samples and 77,533 transcripts.

expVIP uses standard normalization methods for different RNA-Seq platforms and
scaled between experiments to make the expression values of multiple arrays comparable.

We also looked at gene expression data screened by Borrill et al., (2019) [43] to identify
transcription factors associated with senescence. Data were produced from wheat leave
tissues collected at 3, 7, 10, 13, 15, 17, 19, 21, 23, and 26 days after anthesis (daa) and also
deposited in the Wheat Expression Browser [39].

To analyse genes known to be associated with senescence across time, we searched for
senescence models already reported in the literature and selected the model with most genes
presented in the expression data set. The model chosen, reported in Chens et al., (2017) [34],
contained genes from the families DELLA, GA, GID1, WRKY45, and SAGs. Since Chens’
model did not name particular SA genes, we looked for specific SA genes such as the NAM
transcription factors NAM-A2, NAM-B2, NAM-D2, NAM-A1, and NAM-D1, because they
have been previously shown to contribute to the triggering of senescence in wheat [43,44].

In addition to the genes in Chen’s model, we also included the Vrn-B3 gene because
of its likely association with senescence. Xie et al., (2016) [42] screened a wheat mapping
population to understand the physiological and genetic relationships among anthesis time,
leaf senescence, grain filling processes, and individual grain weight. They identified a
QTL for anthesis dates on chromosome 7B, which coincided with the duration and rate
of rapid senescence [42]. Camargo et al., (2018) [40] screened a wheat MAGIC population
to identify QTL marker association with senescence. They also found a QTL on the same
region of the Vrn-B3 gene.

4.3. Selection of Senescence Clusters

Gene expression and clustering analysis were performed to identify a subset of po-
tential senescence-associated genes. First, transcripts were filtered if their total number
of counts was less than or equal to 10 (≤10). Second, differential expression analysis was
performed using the DESeq2 package [49], which uses Negative Binomial distribution
to identify gene differential expression. Gene expression was calculated over the time
series. Third, candidate transcripts were selected when Padj ≤ 0.05 and log2FoldChange
(≥2 and ≤−2). Fourth, Robust Sparse K-means (RSKC) [50] was applied over the set of
candidate genes. Robust sparse K-means is a clustering method that extends the sparse
K-means clustering method to make it resistant to outliers by trimming a fixed proportion
of observations in each iteration. The arguments to run the RSKC function were ncl = 30
(the number of clusters to be identified), which was chosen with the idea to decrease the
number of genes per cluster and thus test smaller networks at the GRN reconstruction
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phase. GRN reconstruction requires testing all possible combinations of genes within a
set; testing becomes expensive and sometimes purposeless. α = 0.1 (the proportion of
observations to be trimmed). L1 = 5 (the upper bound for the L1 constraint for the vector
of weights w). nstart = 300 (the number of random initial sets of cluster centres in every
step (a), which performs K-means or trimmed K-means).

These outliers are flagged both in terms of their weighted and unweighted distances
to eliminate the effects of outliers in the selection of feature weights and the selection of a
partition. Fifth, genes within the same cluster of NAM genes were selected. Sixth, gene
expression profiles of candidate genes were used as the empirical data set.

4.4. Gene Regulatory Network Inference

In order to avoid the limitations of short or sparsely distributed temporal gene ex-
pression data, we used the time-lagged ordered lasso, a regularized regression method
with temporal monotonicity constraints, for de novo reconstruction of GRNs [51,52]. The
time-lagged ordered lasso is based on the ordinary lasso [53], which performs feature
selection and regularization for model fitting and uses an order constraint, in this case,
to reflect the relative importance of the features. Specifically, the time-lagged ordered
lasso makes the following assumptions for the de novo reconstruction of GRNs: (a) The
expression of a gene is linearly dependent on the expression of its regulators at multiple
preceding time points. (b) The temporal distance between a target gene variable and a
lagged variable of a predictor gene increases whilst the regulatory influence of the lagged
variable on the target decreases.

The time-lagged ordered lasso reconstructs a GRN as follows: for each gene i in
a time-course expression dataset, an expression model is fitted with maximum lag lmax
allowed by the data and lasso regularization [53]. Model fitting is performed by solving
the following problem using the time-lagged ordered lasso:

min
{wji,k}

1
2

T

∑
t=1

(
xi(t)−

p

∑
j=1

lmax

∑
k=1

wji,kxj(t− k∆t)

)2

+ λ
p

∑
j=1

lmax

∑
k=1

∣∣∣wji,k

∣∣∣ (1)

subject ∣∣∣wji,k

∣∣∣ ≥ ∣∣∣wji,k

∣∣∣ ≥ . . . ≥
∣∣∣wji,k, lmax

∣∣∣,
where xi(t) is the expression of gene i at time t, and the monotonicity constrain

∣∣∣wji,k

∣∣∣ ≥
· · · ≥

∣∣∣wji,k, lmax

∣∣∣ encodes the time-lagged order assumption of the expression model. Thus,
an edge from gene j to gene I is predicted if any of the coefficients wji,1, . . . , wji, lmax of j’s
lagged variables are not zero.

Results from the time-lagged ordered lasso de novo reconstruction are binary adja-
cency matrices. The elements of the matrix (i.e., 0, 1) indicate whether pairs of vertices are
adjacent (1) or not (0) in the graph. Adjacency matrices were plotted using the R package
igraph [54].

4.5. GRN Simulation Transsys

Transsys [55] is a framework for computational RGN modelling that formally repre-
sents RGNs as transsys programs (Figure 5).
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A transsys program has two types of components, genes and factors. Factors can be
used to model transcription factors as well as any other effector molecules that impinge
on gene expression. Each component is specified by an individual declaration. Factor
declarations contain the gene product’s decay rate. Gene declarations contain a promoter
block and a product block. The promoter block represents the cis-regulatory information of
a gene and is composed of promoter elements. It determines the gene’s rate of expression
as a function of the expression levels of the regulators of the gene. Each promoter element
specifies a rate of expression. Constitutive promoter elements specify a fixed expression
rate. Activate and repress elements state a trans-acting factor that activates or represses the
gene, respectively. The strength of activation or repression is determined by a Michaelis–
Menten function, which is parametrized by vmax, the maximal regulatory effect, and
KM, the concentration of the trans-acting factor at which it exerts half its maximal effect.
Transsys simulates temporal dynamics of gene expression. Given a transsys program and
the current expression levels of factors, a single update is the computation of the expression
levels in the next time step. Repeated updates computed in this way generate synthetic
expression profiles of the factors. Here, synthetic expression profiles were compared against
empirical measurements in order to evaluate transsys programs for their ability to explain
empirical data.

4.6. Network Parameter Optimization and Dissection of GRN Topology

The parameters of the target genes and their products, as well as the identification
of the best target topology, among a series of candidate models, were inferred using the
DoGeNetS (discrimination of gene network structures) method [56], which addresses the
research challenge of quantitatively and objectively comparing candidate structural models
where most numerical parameters are not determined. DoGeNetS aims to discriminate
computational models of GRN structure according to their ability to reproduce a set of
gene expression measurements (synthetically or empirically generated data). DoGeNetS
requires a target matrix of gene expression data and a set of candidate networks as input.
The empirical data set filtered at the selection of senescence clusters was used as the target
matrix of gene expression data. The transsys framework was used to represent candidate
networks and to compute synthetic gene expression matrices by numerical simulation.
Thus, random transsys programs generated using a scale graphs strategy, characterised by
a power-law distribution of both incoming and outgoing degrees, were used to generate
the topologies. Power-law networks are regarded as a ‘universal’ model, because they
possess a number of important properties, such as the presence of hubs and large numbers
of nodes with few connections as well as a typical small-world behaviour [57]. This model
is characteristic of GRNs. The networks here had N number of nodes (i.e., gene and gene’s
products) and E number of edges (i.e., interaction between genes). For each E topology,
50 samples were generated. The numeric values in the transsys programs were initialised

http://www.transsys.net
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with random numbers drawn for a uniform distribution and subsequently optimised in
order to achieve a close fit to the empirical data. The SimGenex [58] component of transsys
was used to guide the simulation of gene expression time series. Fitness between empir-
ical and synthetic data was measured using Pearson correlation. DoGeNetS scores the
divergence of the synthetic matrices from the target matrix, and it optimises the numerical
parameters in each candidate network to minimise the difference. These optimised diver-
gence scores are the basis for identifying the candidate topology that is most consistent
with the target gene expression matrix. In this simulation, a fitness score equal to six meant
that there was no similarity between the empirical and the synthetic data. A score greater
than six suggested a negative correlation between empirical and synthetic data. A fitness
score equal to zero meant high similarity between the empirical and the synthetic data.

Target networks were integrated into an L-transsys Lindenmayer system. The de-
velopment of this system was simulated for a fixed time interval, after which expression
data on all genes of the target network were collected from the grown structure. For each
gene in the target network, a knockout mutant was generated, and gene expression values
were collected. The resulting data set was used as input for regulatory network recon-
struction. Reconstruction was evaluated by comparing the reconstructed network to the
target network.
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