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Abstract: Immunotherapies specific for B-cell precursor acute lymphoblastic leukemia (BCP-ALL),
such as anti-CD19 chimeric antigen receptor (CAR) T-cells and blinatumomab, have dramatically
improved the therapeutic outcome in refractory cases. In the anti-leukemic activity of those im-
munotherapies, TNF-related apoptosis-inducing ligand (TRAIL) on cytotoxic T-cells plays an essential
role by inducing apoptosis of the target leukemia cells through its death receptors (DR4 and DR5).
Since there are CpG islands in the promoter regions, hypermethylation of the DR4 and DR5 genes
may be involved in resistance of leukemia cells to immunotherapies due to TRAIL-resistance. We ana-
lyzed the DR4 and DR5 methylation status in 32 BCP-ALL cell lines by sequencing their bisulfite PCR
products with a next-generation sequencer. The DR4 and DR5 methylation status was significantly
associated with the gene and cell-surface expression levels and the TRAIL-sensitivities. In the clinical
samples at diagnosis (459 cases in the NOPHO study), both DR4 and DR5 genes were unmethylated
in the majority of cases, whereas methylated in several cases with dic(9;20), MLL-rearrangement, and
hypodiploidy, suggesting that evaluation of methylation status of the DR4 and DR5 genes might be
clinically informative to predict efficacy of immunotherapy in certain cases with such unfavorable
karyotypes. These observations provide an epigenetic rational for clinical efficacy of immunotherapy
in the vast majority of BCP-ALL cases.

Keywords: TNF-related apoptosis-inducing ligand; death receptors; epigenetics; B-cell precursor
acute lymphoblastic leukemia

1. Introduction

Two recently established immunotherapies specific for B-cell precursor acute lym-
phoblastic leukemia (BCP-ALL) have dramatically improved the therapeutic outcome in
poor prognostic BCP-ALL patients. One is chimeric antigen receptor (CAR) T-cell therapy
targeting at CD19 [1], and the other is a CD3/CD19-engaging antibody, blinatumomab [2].
Both therapies are mediated by anti-leukemic activity of activated T-cells targeting at CD19
molecules expressed on BCP-ALL cells. In addition to these immunotherapies, cytotoxic
T-cells (CTLs), which are critically involved in graft-versus leukemia (GVL), are affected
after allogeneic stem cell transplantation (allo-SCT) for the patients with poor prognostic
leukemia [3–5]. CTLs induce apoptotic cell death into residual leukemia cells through
cytotoxic factors. Among cytotoxic factors, TNF-related apoptosis-inducing ligand (TRAIL)
plays a role in the GVL effect [6,7]. TRAIL is expressed on the surface of natural killer
cells and CTLs and binds to its death receptors expressing on the surface of leukemia
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cells [8,9]. There are two types of death receptors for TRAIL: DR4 (TNFRSF10A, TRAIL-R1,
CD261) [10] and DR5 (TNFRSF10B, TRAIL-R2, CD262) [11]. In bone marrow transplanta-
tion models using TRAIL-deficient mice, TRAIL is essential for optimal graft-versus-tumor
activity by donor T cells, while it plays little or no role in the development of graft-versus-
host disease [6,7]. We previously demonstrated that BCR-ABL1-positive leukemia cells,
which are clinically sensitive to the GVL effect [12] frequently express DR4 and/or DR5,
and, subsequently, are sensitive to anti-leukemic activity of recombinant human soluble
TRAIL (rhsTRAIL) [13]. In contrast, MLL (KMT2A)-rearranged (MLLr) acute lymphoblastic
leukemia (ALL) cells, which are clinically resistant to the GVL effect [14], generally ex-
press very low or undetectable levels of DR4 and DR5, and, subsequently, are resistant to
rhsTRAIL [15]. We also confirmed that cell-surface expression of TRAIL on CAR T-cells is
upregulated in the co-culture with targeted BCP-ALL cells [16]. Moreover, recent CRISPR
screens identified TRAIL receptor as a key mediator of anti-CD19 CAR T-cell cytotoxicity
against BCP-ALL [17]. Accordingly, expression of DR4 and/or DR5 is a critical factor in
the susceptibility of leukemia cells to the anti-leukemic activity of TRAIL and consequently
to immunotherapies using the CAR T-cells and blinatumomab as well as the GVL effect
after allo-SCT (Figure 1A).
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Figure 1. Methylation status of the DR4 and DR5 genes in BCP-ALL cell lines. (A) Schematic repre-
sentation of TRAIL/death receptor (DR4 and DR5) system in anti-leukemic activity (left panel) in-
duced by CAR T-cell (left), Blinatumomab (middle), and GVL effect (right) after allogeneic stem cell 
transplantation and two independent apoptotic pathways (right panel) induced by TRAIL/death 
receptor system. Abbreviations; CAR, chimeric antigen receptor; GVL, graft versus leukemia; TCR, 
T-cell receptor; MHC, major histocompatibility complex. (B,C) Schematic representation of the CpG 
islands in human DR4 (B) and DR5 (C) genes. Bisulfite PCR of the 136-bp region (containing 6 CG 
dinucleotides) of the DR4 gene (B) and 212-bp region (containing 13 CG dinucleotides) of the DR5 
gene (C) was performed, and the methylation status of each CG dinucleotide was evaluated. In the 
top panels, sequences analyzed by bisulfite PCR are indicated. Boxes indicate primers for PCR. In 
the middle panels, location of each CG dinucleotide in the methylation database analyzed by the 
NOPHO study is indicated. (D,E) Heat map of the methylation status in each CG dinucleotide of 
bisulfite PCR products of the DR4 (D) and DR5 (E) genes in representative BCP-ALL cell lines. In 
the bottom, the methylation status in the peripheral lymphocytes from a healthy volunteer is indi-
cated. (F), Correlation between the methylation status of the DR4 and that of the DR5 in 32 BCP-
ALL cell lines. Horizontal and vertical axes indicate a log10 percent methylation of the DR4 and that 
of the DR5, respectively. R2 and p-value in Spearman’s rank correlation coefficient are indicated at 
the top of the panel. (G,H) Association of the methylation status of the DR4 (G) and DR5 (H) genes 
with representative karyotypes in 32 BCP-ALL cell lines. 

Figure 1. Methylation status of the DR4 and DR5 genes in BCP-ALL cell lines. (A) Schematic
representation of TRAIL/death receptor (DR4 and DR5) system in anti-leukemic activity (left panel)
induced by CAR T-cell (left), Blinatumomab (middle), and GVL effect (right) after allogeneic stem
cell transplantation and two independent apoptotic pathways (right panel) induced by TRAIL/death
receptor system. Abbreviations; CAR, chimeric antigen receptor; GVL, graft versus leukemia; TCR,
T-cell receptor; MHC, major histocompatibility complex. (B,C) Schematic representation of the CpG
islands in human DR4 (B) and DR5 (C) genes. Bisulfite PCR of the 136-bp region (containing 6 CG
dinucleotides) of the DR4 gene (B) and 212-bp region (containing 13 CG dinucleotides) of the DR5
gene (C) was performed, and the methylation status of each CG dinucleotide was evaluated. In the
top panels, sequences analyzed by bisulfite PCR are indicated. Boxes indicate primers for PCR. In
the middle panels, location of each CG dinucleotide in the methylation database analyzed by the
NOPHO study is indicated. (D,E) Heat map of the methylation status in each CG dinucleotide of
bisulfite PCR products of the DR4 (D) and DR5 (E) genes in representative BCP-ALL cell lines. In the
bottom, the methylation status in the peripheral lymphocytes from a healthy volunteer is indicated.
(F), Correlation between the methylation status of the DR4 and that of the DR5 in 32 BCP-ALL cell
lines. Horizontal and vertical axes indicate a log10 percent methylation of the DR4 and that of the
DR5, respectively. R2 and p-value in Spearman’s rank correlation coefficient are indicated at the top
of the panel. (G,H) Association of the methylation status of the DR4 (G) and DR5 (H) genes with
representative karyotypes in 32 BCP-ALL cell lines.
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Hypermethylation of the CpG island in the gene promoter is an epigenetic modifica-
tion of gene expression. We previously reported that cell lines and patients’ samples of
T-cell ALL (T-ALL) showed a TRAIL resistance in association with low cell-surface expres-
sion levels of DR4 and DR5 [18]. Semi-quantitative analysis using methylation-specific PCR
revealed that the methylation status of the gene promoter in T-ALL cell lines was associated
with the gene expression level, at least for DR4 [18]. These observations suggest that the
methylation status of the DR4 and/or DR5 genes may be associated with the DR4 and DR5
expression and consequently with the TRAIL sensitivity in BCP-ALL cells. However, to
date, little is known about the relevance of the epigenetic modification of the DR4 and DR5
genes in BCP-ALL.

In the present study, we quantified the methylation status of the CpG islands of the
DR4 and DR5 gene promoter in BCP-ALL cell lines by sequencing their bisulfite PCR
products with a next-generation sequencer (NGS). We found that hypermethylation of the
DR4 and DR5 CpG islands is highly associated with a lack of cell-surface expression of
DR4 and DR5, and TRAIL resistance in BCP-ALL cell lines. We further investigated the
significance of the methylation status of the DR4 and DR5 genes in clinical samples of
BCP-ALL patients.

2. Materials and Methods
2.1. Leukemia Cell Lines and Patients’ Samples

Nine MLLr-ALL cell lines (KOPN1, KOPB26, KOCL33, KOCL44, KOCL45, KOCL50,
KOCL51, KOCL58, and KOCL69) [15]; six BCR-ABL1-positive ALL cell lines (KOPN30bi,
KOPN57bi, KOPN 66bi, KOPN 72bi, YAMN73, and YAMN91) [13]; seven TCF3-PBX1-
positive ALL cell lines (697, KOPN34, KOPN36, KOPN60, KOPN63, YAMN90, and
YAMN92); four TCF3-HLF-positive ALL cell lines (YCUB2, Endo-kun, UOC-B1, and
HAL-O1) [18]; and two ETV6-RUNX1-positive ALL cell lines (KOPN79 and Reh); two
MEF2Dr-ALL cell lines (KOPN61 and KOPN70); and two DUX4r-ALL cell lines (KOPN84
and Nalm6) were used in this study (Supplementary Table S1). All cell lines were main-
tained in RPMI1640 medium supplemented with 10% fetal calf serum (FCS) in a hu-
midified atmosphere of 5% CO2 at 37 ◦C. Forty-nine cryopreserved samples of child-
hood BCP-ALL (35 samples at diagnosis and 14 samples at relapse after chemotherapy)
(Supplementary Table S2) were analyzed after approval by the ethics committee at the
University of Yamanashi.

2.2. 3H-Thymidine Uptake Assay

Sensitivities to TRAIL were determined as previously reported [13,15,18,19] using
rhsTRAIL (Killer TRAIL, San Diego, CA, USA). In brief, cells (5 × 104 cells/well) were
cultured in the absence or presence of 100 ng/mL of rhsTRAIL in triplicate in 200µL of
RPMI1640 medium supplemented with 10% FCS in a flat-bottomed 96-well plate. The
plates were incubated for 42 h, pulsed for the last 6 hours of the incubation with 3H-
thymidine (1µCi/well) and harvested onto glass-fiber filters. The level of radioactivity
incorporated into DNA was measured by liquid scintillation counting. The percent inhi-
bition by rhsTRAIL was calculated as the ratio of the radioactivity to that in the absence
of rhsTRAIL.

2.3. Cell-Surface Expression of DR4 and DR5

Cell-surface expression of DR4 and DR5 was determined as previously reported us-
ing the monoclonal antibodies (mAbs) specific to DR4 and DR5 [13,15,18,19]. Leukemia
cell lines were incubated with 1µg of biotinylated control mouse IgG1 or mAb on ice for
30 min. After washing, the cells were incubated with phycoerythrin-conjugated strep-
tavidin (Biomeda, Foster City, CA, USA) on ice for 30 min, and then analyzed by flow
cytometry. The relative florescence intensity (RFI) was calculated as the ratio of the mean
fluorescence intensity of specific staining to that of control staining.
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2.4. Real-Time Polymerase Chain Reaction Analysis

Gene expression levels of DR4 and DR5 were quantified as previously reported by
real-time reverse transcription polymerase chain reaction (RT-PCR) analysis [18,19]. Total
RNA was extracted using the Trizol reagent (Invitrogen, Carlsbad, CA, USA) following
the manufacturer’s directions. Reverse transcription was performed with 3µg of total
RNA, random hexamer (Amersham Bioscience, Buckinghamshire, UK) and Superscript II
reverse transcriptase (Invitrogen) at conditions recommended by the manufacturer, and
then incubated with 1µL of RNase (Invitrogen) at 37 ◦C for 20 min. For quantitative
real-time RT-PCR of DR4 and DR5 transcripts, triplicated samples containing 9µL of
cDNA with 10µL of Taqman Universal PCR Master Mix (Applied Biosystems, Foster
City, CA, USA) and 1µL of 20 × Assays-on-demand Gene Expression Product (DR4; Hs
00269492_m1, DR5; Hs 00366272_m1, Applied Biosystems) were pre-incubated at 50 ◦C
for 2 min and subsequently at 95 ◦C for 10 min. Amplification was obtained by 40 cycles
of reaction at 95 ◦C for 15 sec and 60 ◦C for 1 min. Fluorescence data were quantitatively
analyzed on ABI Prism 7500 Sequence Detection System (Applied Biosystems). Nalm1, a
TRAIL sensitive chronic myelogenous leukemia blast crisis -derived cell line that expresses
DR4 and DR5 [13], was used for control. As internal control, quantitative real-time RT-
PCR for glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Hs 99999905_m1, Applied
Biosystems) was performed.

2.5. Bisulfite Sequencing

Bisulfite PCR was performed as previously reported [20]. Genomic DNA was sub-
jected to sodium bisulfite modification with an EZ DNA Methylation-Lightning kit (Zymo
Research, Irvine, CA, USA). Bisulfite modified DNA was amplified by PCR for DR4
gene with forward primer (5′-GGAAGGAAGTTTAGGGTTAGTTAATAG-3′) and reverse
primer (5′-TACCAAATCAATCCAAAAAACAAC-3′) and DR5 gene with forward primer
(5′-AAGTGTTTTTTTTAATTTATTTTTTTTAAG-3′) and reverse primer
(5′-CAACTACAAATTCCACCACAAATTA-3′) using one cycle of 95 ◦C for 4 min, 40 cycles
of 95 ◦C for 30 sec, 55 ◦C for 30 sec, 72 ◦C for 1 min, with a final cycle of 72 ◦C for
7 min. For conventional Sanger sequencing, PCR products were cloned into a pTAC-2
vector using a TA PCR Cloning Kit (BioDynamics, Tokyo, Japan) and sequenced. For
next-generation sequencing, amplicon libraries were generated by Ion Plus Fragment Li-
brary Kit (MAN0006846, Thermo Fisher Scientific, Waltham, MA, USA) and Ion Xpress
Barcode Adaptors Kit (Thermo Fisher Scientific). Briefly, 50 ng amplicon was end-repaired,
nick-repaired, and Ion Torrent adapters P1 and Barcode were ligated with DNA ligase.
Following Agencourt AMPure XP purification (Beckman Coulter, Brea, CA, USA), the
individual libraries were quantified by quantitative real-time PCR then diluted, and fi-
nally pooled in equimolar ratios. The libraries were processed with the Ion OneTouch™
2 System using Ion PGM™ Template OT2 400 Kit (Thermo Fisher Scientific) to produce
400 base-read libraries. Sequencing was performed by an Ion PGM™ Hi-Q Sequencing
Kit (Thermo Fisher Scientific) using 850 flows on the Ion 318 Chip Kit v2 (Thermo Fisher
Scientific) according to the manufacturer’s protocol. After sequencing, single process-
ing and base-calling were performed using Torrent Suite 5.0.2 (Thermo Fisher Scientific).
Methylation analysis was performed using MethylationAnalysis_Amplicon plug-in v1.3
(Thermo Fisher Scientific).

2.6. Gene Methylation and Gene Expression Analyses in Childhood BCP-ALL Cohort

Gene methylation of childhood BCP-ALL clinical samples were investigated using
450 k DNA methylation array database of Nordic Pediatric Hematology and Oncology
(NOPHO) (Gene Expression Omnibus with accession number; GSE49031) [21]. Among 764
ALL samples at diagnosis, the data of 459 BCP-ALL cases with following representative
chromosomal aberrations were analyzed; high-hyperdiploid (51–67 chromosomes [22]),
ETV6-RUNX1, TCF3-PBX1, iAMP21, dic(9;20), BCR-ABL1, MLLr, hypodiploid (<45 chro-
mosomes), and polyploid (>67 chromosomes). The data of the paired samples at diagnosis
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and at relapse were also analyzed in 24 relapsed BCP-ALL cases. Percent methylation of
DR4 and DR5 was evaluated by mean methylation level of CG dinucleotides that were
annotated as both 0–200 bases upstream of the transcriptional start site (TSS200) and CpG
island using Illumina HumanMethylation450 BeadChip (GPL13534; Illumina Inc., San
Diego, CA, USA) [21].

2.7. Statistics

Mann–Whitney U test, Fisher’s exact test, Chi-square test, and Spearman’s correlation
analysis were performed using R software version 3.5.2 (R Core Team 2018).

3. Results
3.1. Methylation Status of CpG Islands in the DR4 and DR5 Genes in BCP-ALL Cell Lines

There are typical CpG islands in boundary regions between the promoter and exon 1
of the DR4 (Figure 1B) and DR5 (Figure 1C) genes. To investigate their methylation status,
we performed bisulfite PCR of a 136-bp region (containing 6 CG dinucleotides) of the DR4
gene (Figure 1B) and a 212-bp region (containing 13 CG dinucleotides) of the DR5 gene
(Figure 1C) using specific primers that contain no CG dinucleotide. We quantified the
methylation level of each CG dinucleotide by sequencing bisulfite PCR products of 32 BCP-
ALL cell lines using NGS. In the CpG island of the DR4 (Figure 1D) and DR5 (Figure 1E)
genes, the methylation level of each of the 6 CG dinucleotides and the 13 CG dinucleotides,
respectively, was almost similar in each cell line. Mean percent methylation of 6 CG
dinucleotides of the DR4 gene and 13 CG dinucleotides of the DR5 gene varied from 0% to
94% among 32 cell lines. As a whole, a weak but a significant positive correlation (R2 = 0.22,
p = 0.0071) was observed between the mean percent methylation of the DR4 gene and
that of the DR5 gene in 32 cell lines (Figure 1F). In normal lymphocytes from a healthy
volunteer, both the DR4 and DR5 genes were unmethylated analyzed using bisulfite NGS
method revealed 0.27% and 0.36%, respectively (Figure 1D,E).

We next analyzed an association of the methylation status of the DR4 and DR5 genes
with karyotypes in BCP-ALL cell lines. The DR4 gene was methylated (>10%) in all of
nine MLLr-ALL and two MEF2Dr-ALL cell lines, while it was unmethylated (<1%) in all of
four TCF3-HLF-positive ALL cell lines (Figure 1G). A similar trend was observed in the
methylation status of the DR5 gene (Figure 1H). The DR5 gene was methylated (>10%)
in six of nine MLLr-ALL cell lines and all of two MEF2Dr-ALL cell lines, while it was
unmethylated in all of four TCF3-HLF-positive ALL and two ETV6-RUNX1-positive ALL
cell lines. Despite being limited to a small number of cell lines, these observations suggest
that methylation status of the DR4 and DR5 genes may be associated with karyotypes of
BCP-ALL cell lines.

3.2. Association of the Methylation Status of the DR4 and the DR5 with Their Gene and
Cell-Surface Expressions and rhsTRAIL Sensitivity in BCP-ALL Cell Lines

We previously reported that cell-surface expression levels of DR4 and DR5 are signifi-
cantly correlated with their gene expression levels in BCP-ALL cell lines [13,15,19]. Thus,
we investigated an association between the methylation status of the DR4 and DR5 genes
and the gene and cell-surface expression levels of DR4 and DR5 in 32 BCP-ALL cell lines.
Mean percent methylation of DR4 gene showed a significant negative correlation, both
with the gene expression level of DR4 (R2 = 0.37) and with the cell-surface expression
level of DR4 (R2 = 0.39) (Figure 2A). Similarly, mean percent methylation of the DR5 gene
showed a significant negative correlation, both with the gene expression level of the DR5
gene (R2 = 0.34) and the cell-surface expression level of DR5 (R2 = 0.38) (Figure 2B).
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Figure 2. Association of the methylation status with gene and cell-surface expression
of the DR4 and DR5 and TRAIL sensitivity in BCP-ALL cell lines. (A,B) Correlation of
methylation status with gene and cell-surface expression of the DR4 (A) and DR5 (B)
in 32 BCP-ALL cell lines. Horizontal axes indicate a log10 percent methylation of the
DR4 and DR5 genes. Vertical axes indicate gene (left panels) and cell-surface (right
panels) expression levels of the DR4 (A) and DR5 (B). R2 and p-value in Spearman’s
rank correlation coefficient are indicated at the top of the panel. (C) Correlation of the
methylation status of the DR4 and DR5 genes with rhsTRAIL sensitivity in 32 BCP-ALL cell
lines. Horizontal axes indicate a log10 percent methylation of the DR4 (left panel) and the
DR5 (right panel). Vertical axes indicate a percent inhibition by rhsTRAIL (100 ng/mL). R2

and p-value in Spearman’s rank correlation coefficient are indicated at the top of the panel.
(D) Three-dimensional representation of rhsTRAIL inhibition and the methylation status
of DR4/DR5 genes. Horizontal axis and vertical axis indicate log10 percent methylation of
the DR4 and DR5 genes, respectively. (E) TRAIL sensitivity of BCP-ALL cell lines with
different methylation status of the DR4 and DR5 genes. Vertical axis represents a percent
inhibition by rhsTRAIL (100 ng/mL). p-values in Mann–Whitney U test are indicated
at the top of the panel. In (C–E) TRAIL-sensitivity in each cell line is also indicated
with color-scale.
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Next, we examined an association of the methylation status of the DR4 and DR5 genes
with the sensitivity to anti-leukemic activity of rhsTRAIL [13,15,19]. Mean percent methy-
lation of the DR4 gene showed a significant negative correlation with the percent inhibition
by rhsTRAIL (R2 = 0.58) (Figure 2C). To compare with the DR4 gene, the association of the
DR5 gene methylation status with the rhsTRAIL sensitivity was less significant; correlation
coefficient (R2) between mean percent methylation of the DR5 gene and percent inhibition
by rhsTRAIL was 0.23 (Figure 2C). Since both DR4 and DR5 have a death domain, either
DR4 or DR5 cell-surface expression may be sufficient for TRAIL sensitivity. Thus, we
performed a three-dimensional analysis of the DR4 and DR5 methylation status and the
rhsTRAIL sensitivity (Figure 2D). Of note, three DR4-preferentially unmethylated cell lines
(mean percent methylation; DR4 <1%, DR5 ≥1%) (697, KOPN84, and KOPN66bi) as well
as six unmethylated cell lines (DR4 and DR5 <1%) (Reh, YAMN91, Endo-kun, HAL-O1,
UOC-B1, and YCUB2) were highly sensitive to rhsTRAIL (percent inhibition ≥80%). In
contrast, three of five DR5-preferentially unmethylated cell lines (DR4 ≥1%, DR5 <1%)
as well as 13 of 18 methylated cell lines (DR4 and DR5 ≥1%) were resistant to rhsTRAIL
(percent inhibition <25%). Among them, all of the 11 highly methylated cell lines (DR4
and DR5 ≥10%) were resistant to rhsTRAIL (percent inhibition <25%). These observations
indicate that the methylation status of DR4 and DR5 (particularly DR4) is tightly associated
with rhsTRAIL sensitivity in BCP-ALL cell lines (Figure 2E).

3.3. Low Methylation Status of CpG Islands in the DR4 and DR5 Genes in ALL Samples

We next examined the methylation status of the DR4 and DR5 genes in 49 childhood
BCP-ALL samples by sequencing bisulfite PCR-product using the NGS. In contrast to cell
lines, mean percent methylation levels of the DR4 and DR5 genes were less than 1% in the
majority of the samples (Figure 3A). Only one (2%) and four (8%) samples were weakly
methylated (1–10%) in the DR4 and DR5 genes, respectively. Although the relevance
of correlation is limited due to largely unmethylated status, a weak positive correlation
(R2 = 0.32, p < 0.001) was observed between the mean percent methylation of the DR4 gene
and that of the DR5 gene in 49 samples (Figure 3B). In the 49 clinical samples, 35 samples
were obtained at diagnosis whereas 14 samples were at relapse after chemotherapy (Supple-
mentary Table S2). Among 35 samples at diagnosis, 24 and 11 samples were classified into
standard and high-risk groups of the National Cancer Institute (NCI) criteria, respectively.
The percent methylation of the DR4 and DR5 genes was not upregulated in the samples
in high-risk group at diagnosis (Supplementary Figure S1A) and the samples at relapse
(Supplementary Figure S1B). Next, we extensively evaluated mean percent methylation
of six and five CG dinucleotides annotated to the promoter of the DR4 and DR5 genes
and located in the TSS200 region, respectively, using the genome wide DNA methylation
data in a large childhood BCP-ALL cohort study of NOPHO (GSE49031) [21]. A significant
positive correlation (R2 = 0.35, p < 0.001) was observed between the percent methylation of
the DR4 gene and that of the DR5 gene in 459 BCP-ALL samples (Figure 3C). In comparison
with the above results in the NGS analysis, baseline levels of methylation were relatively
higher in methylation array database of the NOPHO study. In the majority of the samples,
mean percent methylation of both the DR4 and the DR5 genes was less than 10%. Only
five (1.1%; 1 of 23 TCF3-PBX1-positive; 1 of 20 dic(9;20)-positive; 2 of 28 MLLr-positive;
1 of 5 hypodiploid) ALL samples (Figure 3D) and 16 (3.5%; 5 of 20 dic(9;20)-positive; 10
of 28 MLLr-positive; and 1 of 5 hypodiploid) ALL samples (Figure 3E) showed a rela-
tively higher methylation level (≥10%) in the DR4 and the DR5 genes, respectively. Both
the DR4 and DR5 genes were unmethylated (<10%) in all of 187 high hyperdiploid ALL,
164 ETV6-RUNX1-positive ALL, 10 iAMP21-positive ALL, and 19 BCR-ABL1-positive ALL
samples. In the bone marrow samples in complete remission and normal T-cells and B-cells,
% methylation of the DR4 and DR5 genes were approximately 2–3%. In the majority of
samples from patient at relapse, the percent methylation of DR4 and DR5 genes was almost
unchanged compared to that of diagnosis. However, in the paired samples at diagnosis
and at relapse, methylation levels of DR4 and DR5 genes were upregulated in several cases
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at relapse (Figure 3F). These observations suggest that the DR4 and DR5 genes are largely
unmethylated in BCP-ALL clinical samples, particularly in the samples with the favorable
karyotypes such as hyperdiploidy and ETV6-RUNX1 fusion and those with certain high
risk/poor prognostic karyotypes such as BCR-ABL1 and iAMP21.
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methylation status of the DR4 and DR5 genes between the cell lines and the clinical samples. Vertical axes indicate a log10

percent methylation of the DR4 (left panel) and the DR5 (right panel) genes determined by sequencing of bisulfite PCR
products in 32 cell lines and 49 clinical samples from BCP-ALL. (B,C) Correlation between the methylation status of the DR4
and that of the DR5 in the 49 clinical samples (B) and in 459 clinical samples at diagnosis from childhood BCP-ALL with
representative karyotypes of in the NOPHO cohort (C). Horizontal and vertical axes indicate a log10 percent methylation of
the DR4 and that of the DR5, respectively. R2 and p-value in Spearman’s rank correlation coefficient are indicated at the
top of the panel. (D,E) Association of the DR4 (D) and DR5 (E) methylation status with karyotypes in the 459 BCP-ALL
samples at diagnosis in the NOPHO cohort study. Vertical axes represent a log10 percent methylation of the DR4 and DR5
genes, respectively. (F) Changes in the methylation levels of the DR4 and DR5 genes in 24 paired samples at diagnosis and
at relapse in the NOPHO cohort study. Vertical axes indicate a log10 percent methylation of the DR4 (left panel) and that of
the DR5 (right panel).
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4. Discussion

In the present study, we quantitatively evaluated the methylation status of the CpG
islands in the DR4 and DR5 genes by using a BCP-ALL cell line as a model system. In
BCP-ALL cell lines, the methylation status of the DR4 and DR5 genes was associated with
their mRNA and cell-surface expression levels and their rhsTRAIL sensitivities, indicating
that epigenetic modification of the DR4 and DR5 genes due to hypermethylation is a
mechanism for TRAIL resistance in BCP-ALL. However, we observed discrepancies in
the methylation status of the DR4 and DR5 genes between the cell lines and the clinical
samples. The DR4 and the DR5 genes were not methylated in the majority of clinical
samples. This difference in methylation status may be partly attributed to the different
distribution of karyotypes between the cell lines and clinical samples. In BCP-ALL cell
lines, the DR4 and DR5 genes were unmethylated in ETV6-RUNX1-positive ALL cell lines,
while being frequently methylated in MLLr-ALL cell lines. Similarly, in the genome-wide
DNA methylation data of BCP-ALL samples in the NOPHO cohort, the DR4 and DR5 genes
were exclusively unmethylated in the samples with ETV6-RUNX1 but relatively frequently
methylated in the samples with MLLr. In our series of BCP-ALL cell lines, only 6% (2/32) of
cell lines had ETV6-RUNX1, while 31% (10/32) of cell lines showed the MLLr karyotype. In
contrast, in the NOPHO cohort, over one-third (164/459) of the samples had ETV6-RUNX1,
while only 6% (28/459) of the samples showed the MLLr karyotype. We also observed
upregulation of the DR4/DR5 methylation status in several relapsed cases (Figure 3F). In
this context, it should be noted that 20 out of 32 cell lines (Supplementary Table S1) were
established from the samples at relapse. Thus, higher methylation levels of the DR4 and
DR5 genes in cell lines may be partly attributed to the fact that two thirds of our cell lines
were established from the samples at relapse. In case of patient samples, the samples may
contain certain numbers of normal hematopoietic cells. In this context, we confirmed that
the DR4 and DR5 genes were generally unmethylated in bone marrow samples in complete
remission and in normal peripheral lymphocytes (Supplementary Figure S2). Thus, the
methylation level in the clinical samples may be underestimated due to a contamination of
unmethylated normal cells. Finally, it has been previously reported that, although cancer
cell lines retained methylation status of their tumor of origin, CpG island hypermethylation
was more prominent in cell lines than in original cancer tissues [23]. Our observations
seem to be consistent with this previous finding.

As a new therapeutic modality, immunotherapy using anti-CD19 CAR T-cells and
blinatumomab is promising for refractory BCP-ALL cases. In a recent genome-wide
CRISPR-Cas9 screen of Nalm6, a BCP-ALL cell line, DR5, was identified as one of key
mediators of anti-CD19 CAR T-cell cytotoxicity [17]. In our analysis, Nalm6 is one of
DR5-preferentially unmethylated (mean percent methylation; DR4 30%, DR5 0.5%) cell
lines and is moderately sensitive to rhsTRAIL (percent inhibition; 68%), suggesting that
the DR5 gene, but not the DR4 gene, plays an essential role in CAR T-cell cytotoxicity
against Nalm6 due to unmethylated status of the DR5 gene. Meanwhile, we previously
reported that cell-surface expression of TRAIL on anti-CD19 CAR T-cells is upregulated
by the co-culture with targeted BCP-ALL cells [16]. These observations indicated that the
TRAIL/death receptor system mediates anti-leukemic activity of anti-CD19 CAR T-cells
against BCP-ALL.

Blinatumomab is a bispecific T-cell engager antibody simultaneously binding CTLs
and CD19-positive BCP-ALL cells [24], suggesting that TRAIL/death receptor system
may also be involved in anti-leukemic activities of blinatumomab. In the present study,
it was clearly demonstrated that gene silencing due to hypermethylation of the DR4 and
DR5 genes is associated with rhsTRAIL resistance of BCP-ALL cell lines. However, gene
silencing of the DR4 and DR5 genes due to hypermethylation was uncommon in the
majority of BCP-ALL cases at diagnosis. Accordingly, resistance to immunotherapy due to
TRAIL resistance as a result of hypermethylation of the DR4 and DR5 genes is unlikely in
the majority of BCP-ALL cases, at least at disease onset. In several relapsed cases of the
NOPHO cohort study, upregulation was observed in the methylation status of the DR4 and
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DR5 genes. Although the precise treatment in these cases was unknown, this observation
suggests the possibility that acquired hypermethylation of the DR4 and/or DR5 genes may
be one of mechanisms for relapse particularly after immunotherapy.

Of importance, in the analysis of clinical samples, hypermethylation of the DR4 and/or
DR5 genes was observed in certain karyotypes such as dic(9;20), MLLr, and hypodiploidy.
Thus, when the BCP-ALL patients with these karyotypes are treated by immunotherapy,
methylation status and/or gene/cell-surface expression levels of the DR4 and DR5 genes
might be useful biomarkers to predict therapeutic responses. In this context, we previously
reported that TCF3-HLF-positive ALL cells are highly sensitive to TRAIL, since TCF3-HLF
fusion transcription factor effectively transactivates the DR4 and DR5 gene expression [19].
Indeed, in the present study, the DR4 and DR5 genes are unmethylated in all of four
TCF3-HLF-positive ALL cell lines. TCF3-HLF-positive ALL is the most unfavorable type
of childhood BCP-ALL due to resistance to conventional chemotherapy [25,26]. Of note,
recent combination therapy of blinatumomab with allo-SCT successfully induces a durable
remission in the majority of TCF3-HLF-positive ALL patients resistant to a conventional
chemotherapy [27]. Our findings provide an additional epigenetic rationale for blinatu-
momab in TCF3-HLF-positive ALL patients.

5. Conclusions

The present study revealed that TRAIL-resistance due to hypermethylation of the
DR4 and DR5 genes is unlikely in the majority of BCP-ALL cases, particularly in the cases
with favorable karyotypes such as hyperdiploidy and ETV6-RUNX1. Since TRAIL/death
receptor system plays an essential role in the anti-leukemic activities of immunotherapy
using anti-CD19 CAR T-cells, our findings provide an epigenetic rationale for clinical
efficacy of immunotherapy in BCP-ALL patients. Moreover, in certain BCP-ALL cases
with unfavorable karyotypes such as dic (9;20), MLLr, and hypodiploidy, evaluation of
methylation status of the DR4 and DR5 genes might be clinically informative to predict the
efficacy of immunotherapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12060864/s1. Figure S1: (A), Comparison of the methylation status of the DR4 and DR5
genes between the BCP-ALL samples at diagnosis in NCI standard risk group (n = 24) and those in
high risk group (n = 11). Vertical axes indicate a log10 percent methylation of the DR4 (left panel) and
the DR5 (right panel) genes. P-values in Mann-Whitney’s U test are indicated at the top of the panel.
(B), Comparison of the methylation status of the DR4 and DR5 genes between the BCP-ALL samples
at diagnosis (n = 35) and those at relapse (n = 11). Vertical axes indicate a log10 percent methylation
of the DR4 (left panel) and the DR5 (right panel) genes. Lines indicate the changes in the four paired
samples. P-values in Mann-Whitney’s U test are indicated at the top of the panel. Figure S2: The DR4
and DR5 methylation status in BCP-ALL samples at diagnosis (n = 459), bone marrow (BM) samples
in complete remission (CR) (n = 86), and normal peripheral T-cells (n = 25) and B-cells (n = 25) in the
NOPHO database. Vertical axes indicate a log10 percent methylation of the DR4 (left panel) and that
of the DR5 (right panel). Table S1: Characteristics of BCP-ALL cell lines; Table S2: Characteristics of
BCP-ALL clinical samples.
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