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Abstract: Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline
environments with versatile nutritional requirements, whose study represents an excellent basis
in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic
basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular
mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The
genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional
factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene
(HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To
study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed
and purified under native conditions by two chromatographic steps, namely nickel affinity and
gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately
67 kDa. Its promoter region has been characterized under different growth conditions using bgaH
as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different
nitrogen sources and under various stress conditions. To sum up, regarding its involvement in
the nitrogen cycle, it has been shown that its expression profile does not change in response to the
nitrogen sources tested. Differences in its expression pattern have been observed under different
stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these
results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line
transcriptional regulator.

Keywords: homologous overexpression; his-tag; Archaea; Haloferax mediterranei; Lrp; β-galactosidase
assay; western blot; stress

1. Introduction

Haloarchaea are microorganisms belonging to the Archaea domain characterized by
high salt requirements, around 10–35% (w/v) for optimal growth [1,2]. In recent decades,
these microorganisms attracted scientific attention due to the potential applications of their
proteins, enzymes, and different secondary metabolites for biotechnological and industrial
purposes [3]. Previous research has pointed out that Hfx. mediterranei is one of the most
known Haloarchaea and is considered a model organism to study nitrogen metabolism due
to its knowledge in terms of molecular biology and biochemistry [4]. Although enzymes
from nitrogen metabolism pathways have been previously studied in this haloarchaeon,
little is known about the genetic regulation of these pathways compared with Bacteria.

Genes 2021, 12, 802. https://doi.org/10.3390/genes12060802 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-0556-5727
https://orcid.org/0000-0002-8832-4338
https://orcid.org/0000-0003-4409-4400
https://orcid.org/0000-0003-0714-3998
https://www.mdpi.com/article/10.3390/genes12060802?type=check_update&version=1
https://doi.org/10.3390/genes12060802
https://doi.org/10.3390/genes12060802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12060802
https://www.mdpi.com/journal/genes


Genes 2021, 12, 802 2 of 17

Therefore, more research is needed to elucidate the molecular mechanism of transcriptional
regulator in Hfx. mediterranei.

There is little information about the molecular mechanisms of gene expression regula-
tion in members of the Archaea domain. The genetic manipulation is still limited compared
to the Bacteria domain, particularly in halophilic microorganisms. Few researchers have
been focused on figuring out the function of transcriptional regulators. The transcriptional
machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation
mechanisms. One group of archaeal transcriptional regulators is the leucine-responsive
regulatory protein/asparagine synthase C family (Lrp/AsnC), also known as feast/famine
regulatory proteins (FFRPs) [5]. Members of this family influence the metabolism glob-
ally (Lrp) or specifically (AsnC). The Lrp/AsnC family is the most abundant in archaeal
genomes, being represented in almost sequenced genomes to date [6,7]. Apart from Ar-
chaea, these proteins have also been identified in members from Bacteria [8]. Members
of the family Lrp/AsnC are small DNA-binding proteins containing two domains: the
DNA-binding domain and the ligand-binding domain. The DNA-binding domain is also
known as helix-turn-helix (HTH) domain. It is located in the N-terminal part of the protein,
and it is responsible for the specific DNA interaction. The C-terminal region contains a
ligand-binding domain known as the regulation of amino acid metabolism domain (RAM),
facilitating the effector binding and/or its oligomerization [8,9]. The most extensively stud-
ied protein from this family is an Lrp from E. coli which acts as a global regulatory protein
controlling a regulon encompassing more than 400 genes [10]. This family is considered
one of the best-studied families. Indeed, there are previous investigations about proteins
from archaeal model organisms such as Sulfolobus, Pyrococcus, Methanocaldococcus, and
Halobacterium [11–15].

Although the information of Lrp/AsnC in Haloarchaea is limited in comparison
with bacteria, there is a previous work focused on Lrp-like regulators, LrpA1 and Lrp, in
Hbt. salinarum R1. This work demonstrates that Lrp activates the gene expression of the
glnA gene, influences the peptide and phosphate transport, and participates in the central
intermediary metabolism acting as a global transcriptional factor [12]. Lrp acts as a global
regulator affecting amino acid metabolism regulation, while LrpA1 has a specific regulatory
function targeting an aspartate transaminase gene [12]. Indeed, Hfx. mediterranei has several
genes that encode Lrp/AsnC transcriptional factors, and one of them, lrp (HFX_RS01210),
is homologous to that of Hbt. salinarum. This gene is also located next to the glutamine
synthetase gene, glnA (HFX_RS01205), an enzyme involved in ammonium assimilation and
amino acid metabolism [16,17]. Therefore, this study focuses on expanding the Lrp/AsnC
family’s knowledge in Archaea and analyzing the lrp gene involvement in the nitrogen cycle
and under stress conditions. The Lrp has been homologously overexpressed to reach these
aims, and its quaternary structure has been determined. Its expression in the presence
of different nitrogen sources and stress conditions has been studied using two different
approaches: promoter region characterization using bgaH as a reporter gene and protein
amount using Western blotting.

2. Materials and Methods
2.1. Bioinformatic Analysis

Bioinformatic analysis was performed to study in-depth the Lrp/AsnC family of
transcriptional regulators in Haloarchaea. The number of these proteins annotated as
Lrp/AsnC, and their domain structures were analyzed using the UniProt database
(https://www.uniprot.org/, accessed on 20 March 2021). Furthermore, 14 Lrp sequences
from Hfx. mediterranei obtained from the protein database of NCBI (National Center
for Biotechnology Information) (https://www.ncbi.nlm.nih.gov/protein/, accessed on
20 March 2021) were used to construct the phylogenetic tree. Alignments were performed
using the software Clustal Omega (ClustalO) as a multiple sequence alignment program
(https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 20 March 2021) based on the
HH algorithm described by Söding [18,19]. Then, a phylogenetic tree was built using
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the neighbour-joining method from Clustal Omega. The display, manipulation and an-
notation of the phylogenetic tree were done using the online tool known as Interactive
Tree Of Life (iTol) v4 (https://itol.embl.de/, accessed on 20 March 2021) [20]. Further-
more, another sequence alignment was performed using the previous software, the Clustal
Omega, with HTH-domain sequences from Hfx. mediterranei Lrps. Then, the Mview tool
(https://www.ebi.ac.uk/Tools/msa/mview/, accessed on 20 March 2021) was used to
find consensus sequences.

2.2. Strains, Plasmids and Culture Conditions

Escherichia coli strains DH5α for cloning and JM110 for preparing unmethylated DNA
for efficient transformation of Hfx. mediterranei were grown overnight in Luria-Bertani
medium with ampicillin (100 µg/mL) at 37 ◦C.

Hfx. mediterranei R4 (ATCC 33500T) and Hfx. mediterranei HM26 (R4-∆pyrE2) [21]
were grown at 42 ◦C in complex medium (Hm-CM) containing 20% (w/v) seawater (20%
SW) [22] and 0.5% (w/v) yeast extract (pH 7.3).

The plasmid used for protein overexpression was pTA1992, kindly provided by
Dr Thorsten Allers (University of Nottingham, UK). This vector contains pHV2 origin,
pyrE2 and hdrB markers to allow the selection on media lacking uracil and thymidine,
and strong p.syn synthetic promoter for constitutive overexpression of halophilic proteins
with a N-terminal His-tag and/or a C-terminal StrepII-tag [23,24]. The plasmid used for
characterizing the promoter region was pVA315 (12359 bp), kindly provided by Dr Mike
Dyall-Smith (University of Melbourne, Australia). This vector contains E. coli pBR322
plasmid ori region, ampicillin resistance (AmpR) gene, the Haloferax pHK2 replicon region
and novobiocin-resistance (NovoR) gene, enabling maintenance and selection in both hosts.
It also contains the β-galactosidase (bgaH) gene from Haloferax lucentense as a reporter
gene [25,26].

Hfx. mediterranei minimal medium (Hm-MM) contained a concentration of 20% (w/v)
seawater, 10 mM NH4Cl and 0.25% (w/v) casamino acids (pH 7.3). After autoclaving and
cooling, it was supplemented with 50 mM MOPS (3-(N-morpholino) propane sulfonic
acid) pH 7.3, 0.03 mM FeCl3, 1 mM KH2PO4 and 7.5 mM CaCl2 per litre. For solid media,
agar (Conda, Torrejón de Ardoz, Madrid, Spain) was added to a final concentration of
18 g per litter. Hfx. mediterranei defined medium (Hm-DM) was prepared as Hm-MM,
but casamino acids were replaced by 20 mM NH4Cl or KNO3 as the nitrogen source. It
was supplemented as Hm-MM, and 28 mM of glucose was added as the carbon source
after autoclaving. To study the effect of nitrogen starvation, Hfx. mediterranei nitrogen
starvation medium (Hm-NS) was performed by growing Hm-DM cultures with NH4Cl
as the nitrogen source until the mid-exponential growth phase. To induce the nitrogen
starvation, cells were harvested by centrifugation during 20 min at 13,000 rpm, washed
with 20% seawater, and then transferred to a medium without a nitrogen source. Hfx.
mediterranei carbon starvation medium (Hm-CS) was performed following the same steps
as in nitrogen starvation medium but transferring the cells to a medium without carbon
source. Cells were subjected to nitrogen or carbon starvation for 96 h. All the culture media
were incubated aerobically at 42 ◦C with shaking (220 rpm).

2.3. Homologous Overexpression of pTA1992.lrp in Hfx. mediterranei HM26

The lrp gene was amplified from Hfx. mediterranei R4 genomic DNA using the forward
primer 5′-CACCACCACCACATGACGTACGAAAACCTCGATGCG-3′ and the reverse
primer 5′-CGGGCTGCAGGAATTCATTCGTCGACGTCGAGCGC-3′, including restriction
sites for EcoRI and BamHI (Thermo Fisher Scientific, Waltham, MA, USA), respectively. The
plasmid construction and the insert were generated under the manufacturer’s instructions
described in the In-Fusion HD cloning kit (Clontech, Torrejón de Ardoz, Madrid, Spain),
retaining the vector’s N-terminal His6 tag. The resulting ligation was introduced into E. coli
DH5α and then into E. coli JM110 using a standard transformation protocol [27]. Following
this, Hfx. mediterranei HM26 cells were transformed with the construction pTA1992.lrp
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using a revised version of the protocol mediated by using polyethylene glycol 600 [28]
and plated on Hm-MM agar plates. Plates were incubated at 42 ◦C for 5–7 days until pink
colonies were visible. The transformant selection was based on the pyrE2 marker. Selected
colonies with pTA1992.lrp were cultured in Hm-MM and grown until the stationary phase.
The culture was harvested by centrifugation at 13,000 rpm for 30 min and resuspended
in ice-cold binding buffer (20 mM Tris-HCl, 1.5 M NaCl, 50 mM imidazole, pH 7.4). Cells
were lysed by sonication until the suspension was no longer turbid. The cell lysate was
centrifuged, and the supernatant was collected to purify the protein.

2.4. Protein Purification and Determination of Molecular Mass

A two steps purification was performed on an ÄKTA chromatography system (GE
Healthcare Life Sciences, Cornella de Llobregat, Spain). First, the overexpressed protein was
purified by nickel affinity chromatography using a prepacked HisTrap HP 5 mL column
following the manufacturer’s indications. Bound protein was eluted in elution buffer
containing 500 mM imidazole in the binding buffer. The elution fraction containing the Lrp
protein was concentrated using a Vivaspin-20 with a cut off 5 kDa and loaded in Superose6
Increase 10/300 GL column previously equilibrated with 50 mM Tris-HCl buffer (pH 8.0)
containing 150 mM NaCl. Standard proteins for gel filtration chromatography ranging
from 6.5 to 660 kDa were used as markers to estimate the protein molecular mass (Gel
Filtration Calibration Kit LMW and HMW, Cytiva Europe GMBH) using the same buffer
than for Lrp protein.

All fractions were analyzed on 14% SDS-PAGE using PageRuler Plus Prestained
Protein Ladder (Thermo Fisher Scientific, Waltham, MA, USA) as molecular weight markers.
Proteins were detected using Coomassie Brilliant Blue staining.

2.5. Characterization of lrp Promoter Region Using bgaH as a Reporter Gene

The lrp promoter region (p.lrp) was amplified from Hfx. mediterranei R4 genomic DNA
using the forward primer 5′-TTGTCTTCCGTCATTTTCCTGAACAT-3′ and the reverse
primer 5′-CGCATCCATGGTTTCGTACGTCAT-3′ including restriction sites for HindIII and
NcoI (Thermo Fisher Scientific, Waltham, MA, USA), respectively. This promoter region
was cloned in pGEM-T Easy Vector Systems (Promega, Barcelona, Spain) and subsequently
into the pVA513 expression vector. Hfx. mediterranei R4 cells were transformed with
pVA513.p.lrp as was described previously, and the transformants were selected on agar
plates containing 0.3 µg/mL of novobiocin. The promoter region of lrp was characterized
in different culture media (Table 1) by measuring β-galactosidase activity at the mid-
exponential phase (OD600 1.5). The β-galactosidase activity was determined by using o-
nitrophenyl-β-D-galactospyranoside (ONPG) and the bgaH buffer (50 mM Tris-HCl pH 7.2,
2.5 M NaCl, 10 µM MnCl2, 0.1% β-mercaptoethanol) [25]. Cells pellets were resuspended
to 20% (w/v) in bgaH buffer and incubated for 3 min at 40 ◦C with ONPG. The increase
in absorbance at 405 nm was recorded for 5 min to measure β-galactosidase activity. The
activity measurements were performed in triplicates, and the protein concentration of
extracts was determined by the Bradford assay [29]. The results of β-galactosidase activity
at the mid-exponential phase were represented in graphs using GraphPad Prism (Version 8).
All values in figures are expressed as the mean of three replicates ± the standard deviation.



Genes 2021, 12, 802 5 of 17

Table 1. Culture media used in the β-galactosidase assay.

Description Culture Media

Complex medium Hm-CM

Nitrogen and carbon conditions

Different nitrogen source and concentrations

Hm-DM in the presence of 5–40 mM (5, 20 and
40 mM) ammonium or nitrate as the nitrogen
source and 0.5% (w/v) glucose as the carbon

source.

Different carbon source and concentrations

Hm-DM in the presence of 20 mM ammonium
or nitrate as the nitrogen source and 0.05–1%
(w/v) (0.05, 0.5 and 1%) glucose as the carbon

source.

Starvation of nitrogen Hm-NS

Starvation of carbon Hm-CS

Stress conditions *

Oxidative stress

Hm-DM cultures were grown to OD600 of 0.8
(mid-exponential phase) before adding H2O2
ranging from 2 to 14 mM (2, 4, 6, 8, 10, 12 and

14 mM).

Metal stress

Hm-DM cultures containing 0.4 and 1.6 mM
nickel (Ni2+); 2 and 12 mM arsenic (As5+); 0.2
and 1.2 mM cobalt (Co2+); and 1.2 and 12 mM

lithium (Li+).
* The addition of hydrogen peroxide and heavy metals were performed as [30]. All the media were inoculated at
OD600 0.02 with pre-adapted cells. Three independent biological replicates of each condition were performed,
and all the cultures contained 0.3 µg/mL novobiocin.

2.6. Western Blot Analysis

Western blot assays were performed to analyze the abundance of Lrp in cell extracts of
Hfx. mediterranei R4 strain in the same growing conditions described in Table 1. Pellets were
resuspended to 30% (w/v) in 138 mM NaCl, 54 mM Na2HPO4·2H2O, 1.5 mM NaH2PO4,
3 mM KCl (pH 7.5). Protein concentrations were determined by Bradford assay. 20 µg of
protein was separated in 14% SDS-PAGE, transferred onto PVDF membrane (GE Healthcare
Life Sciences, Cornella de Llobregat, Spain) and probed with a primary polyclonal rabbit
antibody anti-Lrp (0.3 µg/mL) (GenScript, NJ, USA). The protein of interest was detected
with an anti-rabbit HRP-conjugated antibody (1:50,000) (Thermo Scientific, Waltham, MA,
USA) and visualized with Amersham ECL Prime Western blotting Detection Reagent (GE
Healthcare Life Sciences, Cornella de Llobregat, Spain). The overexpressed protein was
used as the positive control.

3. Results and Discussion
3.1. Lrp/AsnC Transcriptional Factor in Haloarchaea

Genome analysis was performed to obtain information about the distribution and
domain structure of lrp/asnC genes in halophilic archaea. The analysis of all halophilic
archaeal families’ genomes is summarized in Table 2. In general, halophilic microorganisms
encode many Lrp/AsnC proteins in their genomes; consequently, it is reasonable to think
that these transcriptional factors play crucial roles in cells. The analysis of amino acid
sequences revealed that most of the halophilic archaeal Lrp/AsnC proteins contain the
DNA-binding domain (HTH) as well as the ligand-binding domain (RAM). That is also
the typical domain structure found in the Lrp/AsnC proteins in E. coli. The DNA-binding
domain represents the most conserved part of the amino acid sequence. These results
reveal that haloarchaeal transcriptional factors comprise a significant proportion of double
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domain Lrp/AsnC proteins, although some proteins only contain a single domain, the
HTH or RAM domain.

Table 2. Proteins annotated as Lrp/AsnC in halophilic archaeal families and their protein domain structures.

Domain

Families * Number of Lrp HTH + Ligand-Binding HTH Ligand - Binding HTH + TRASH HTH + TrkA_C

Haloarculaceae 426 63.7% 15% 19.7% 1.4% 0.2%

Halobacteriaceae 344 62.8% 10.8% 19.8% 3.5% 3.1%

Halococcaceae 48 91.9% 5.4% 2.7% - -

Haloferacaceae 818 62.9% 15.7% 17.2% 1.9% 2.3%

Halorubraceae 594 88.3% 4.5% 4.8% 0.7% 0.7%

Natrialbaceae 731 60.2% 16.2% 21.4% 1.4% 0.2%

* Genus studied in each family and number of Lrp/AsnC proteins are shown in Table S1.

Furthermore, some species of these families present another catalytic motif: the
TrkA_C or the TRASH domain. Both domains were not previously identified in prokaryotic
proteins, and they are present in all the Haloarchaea families except in the Halococcaceae
family. This family has the highest percentage of Lrps with the HTH and the ligand-binding
domain comparing to other halophilic archaeal families. The Halobacteriaceae family has the
highest number of Lrps containing the TRASH and TrkA_C domain with 3.5% and 3.1%,
respectively. Besides, comparing the percentages of the domain structure among families, it
has been found that it is more frequent to find Lrps containing the ligand-binding domain
than the DNA-binding domain.

Intriguingly, it seems that the number of lrp genes and nutritional requirements are
directly related in Archaea. Organisms such as methanogens, mostly autotrophically living
in habitats with specific nutritional requirements, exhibit a limited number of regulators
belonging to the Lrp/AsnC family. Nevertheless, archaea with a high metabolic diversity
usually contain many of these transcriptional regulators [9]. Hfx. mediterranei is metabol-
ically very versatile, growing using a wide range of carbon and nitrogen sources and,
even, in the presence of heavy metals [30,31]. The high number of Lrp/AsnC proteins,
compared with other haloarchaeal species, may allow Hfx. mediterranei using a wide range
of nutrients.

It is necessary to determine the function of Lrp protein in regulating gene expression
and discover their level of involvement in physiological and biochemical cell processes to
unlock new biotechnological and industrial applications of these microorganisms.

3.2. Phylogeny and Lrp/AsnC Proteins Domains in Hfx. mediterranei R4

Hfx. mediterranei has 14 homologs of Lrp/AsnC proteins whose phylogeny, length
and domain identification of each one of them are shown in Figure 1. The average number
of amino acid residues in this family is around 160. However, Hfx. mediterranei contains
some Lrp/AsnC proteins that differ in the length expected, having longer chains (up to
247–253 amino acid residues) or shorter chains (up to 77–78 amino acid residues).

To explore the phylogenetic relationships among members of Hfx. mediterranei Lrp/AsnC
family, specifically the Lrp protein of interest in this study (WP_004058341.1), a phylo-
genetic tree was constructed (Figure 1), and a total of 14 available sequences coding for
Lrp/AsnC proteins were analyzed. This phylogenetic tree shows a clear and early di-
vergence of the branches. This matches what is expected because of the low sequence
conservation of this family of transcriptional regulators. The Lrp (WP_004058341.1) con-
tains the DNA-binding domain and the ligand-binding domain.
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structure. In bold the Lrp protein of interest in this study; in parenthesis the number of amino acids
residues; in purple the DNA-binding domain (HTH); in green the ligand-binding domain (RAM); in
yellow the TrkA_C domain; and in pink the TRASH domain. Asterisks indicate lower similarity with
the query RAM domain PF01037 from PFAM.

Furthermore, it has been reported that from Lrps identified in archaeal sequences,
many of them have around 160 amino acids, which are known as full length. A full-length
Lrp protein is composed of an N-terminal DNA-binding (HTH) domain and a C-terminal
ligand (RAM) domain. However, other archaeal Lrps have only around 80 amino acid
residues known as demi Lrps, which lack the HTH domain and cannot bind to DNA [32].
According to Figure 1, most of the Lrp proteins in Hfx. mediterranei have the DNA-binding
(HTH) domain as well as the ligand-binding (RAM) domain, but there are some exceptions:
(i) two proteins containing fewer amino acid residues presenting only the ligand-binding
domain (WP_004059678.1 and WP_004059676.1); (ii) two Lrp contain the DNA-binding
domain (WP_004060507.1 and WP_004060953.1); (iii) three proteins containing a higher
number of amino acid residues present an additional domain in the C-terminal part of
the protein. This additional domain can be a TrkA_C domain (WP_004056739.1 and
WP_004058688.1) or a TRASH domain (WP_004059113.1). The exact function of the TrkA_C
domain remains unknown. The exact function of this domain remains unknown. However,
it is predicted to bind unidentified ligands and to regulate sulfate, sodium, and other
transporters [33]. The presence of the TRASH domain in the Lrp (WP_004059113.1), apart
from the other two domains, suggests that it may be involved in metal coordination [34].

The results from Figure 1 can be compared with previous research about the evolution
of homologous transcriptional factors belonging to the Lrp/AsnC family in Hbt. salinarum
NRC-1, where the eight Lrps homologs are full-length, and there is another additional Lrp
that contains only the ligand-binding domain, missing the DNA-binding domain [35]. Both
haloarchaea have a high number of these transcriptional factors in common compared with
the average sequenced archaeal genomes with 5 ± 4 homologs suggesting that progenitors
from many of the Lrps were present in a common ancestor. Due to that fact, it can be
explained the functional and functional divergence between the homologs Lrps from Hfx.
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mediterranei. An example of this divergence is the appearance of new domains as the
TrkA_C and TRASH domain.

To deeply understand how the fourteen members of this family have diverged, it
would be helpful to know how these transcriptional regulators act and which function they
play. All the Lrps from Hfx. mediterranei will have different roles in the microorganism as
they have variations in the DNA-binding domain, in the ligand-binding domain, or the
effector molecule.

The most conserved part of the Lrp/AsnC proteins is the HTH domain, although their
sequence conservation is only 20–30%. The Lrps from Hfx. mediterranei containing this
DNA-binding domain were used to perform a sequences alignment using ClutalO and
Mview (Figure 2) to study the consensus sequences of the HTH domain. WP_004059678.1
and WP_004059676.1 were not included because they lack the HTH domain.
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3.3. Gene-Environment

As it has been described above, Hfx. mediterranei genome contains an lrp gene (object
of this study) located next to the glnA gene. This gene arrangement is also conserved in
Hbt. salinarum. Therefore, to find out if this arrangement has some influence on glnA gene
expression in Hfx. mediterranei, both the lrp gene-environment and amino acid sequences
were analyzed (Figure 3 and Supplementary Figure S1). In both species, the lrp gene is
located downstream of the glnA gene in the opposite direction, having separated promoters.
In other organisms, such as Haloarcula hipanica, Halohasta litchfieldiae, Haloquadratum walsbyi
or Halorhabdus tiamatea, the lrp gene is located upstream and in the opposite direction of
glnA (Figure 3). In these species, the Lrp also contains the HTH domain and the ligand-
binding as the Lrp from Hfx. mediterranei. Therefore, it is typical to find the glnA near
the Lrp transcriptional regulator in many halophiles species. Supplementary Figure S1
shows the alignment between the Lrp (HFX_RS01210) from Hfx. mediterranei with Lrp
(OE_RS08085) from Hbt. salinarum. This sequence alignment has shown that the DNA-
binding (HTH) domain is a conserved region, and both transcriptional regulators are
very similar, with 73.4% identity and 85.1% similarity (Supplementary Figure S1). The
Lrp/AsnC family is characterized by relatively low sequence conservation with a sequence
identity between 20–30% [9]. However, these results considering the HTH domain show
high sequence conservation. The highest identity is found in the N-terminal region, where
the HTH-DNA-binding domain is located. Indeed, the degree of identity increases by
analyzing only the N-terminal region of the proteins. Comparative sequence analysis of the
known proteins belonging to the Lrp/AsnC family was performed using protein BLAST.
The highest identity score (98.03%) among all Lrp/AsnC proteins from all organisms, and
the Lrp as transcriptional regulator object of this study by comparing all the amino acid
sequences, can be found in Haloferax mucosum (WP_008319874.1).
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Figure 3. Gene-environment of lrp genes in halophilic organisms. In Hfx. mediterranei and Hbt.
salinarum, lrp is located downstream of the glnA gene. In Har. hispanica, Hht. litchfieldiae, Hqr. walsbyi
or Hrd. tiamatea, the lrp is located upstream of the glnA. Both genes are orientated in opposite
directions. In green lrp gene and purple glnA.

3.4. Overexpression, Purification and Determination of the Molecular Mass of Hfx.
mediterranei Lrp

E. coli has been possibly the most used bacteria for heterologous gene expression in
prokaryotes and eukaryotes [32–34]. However, using E. coli as the host for the expression
of proteins from halophiles has several limitations due to the nature of these proteins,
which have a high content of acidic amino acid residues aspartate and glutamate on
the surface of the proteins, and high salt concentration requirements [35–37]. These low
ionic strength limitations can cause difficulties since halophilic proteins fail to fold into
their native state and aggregate into an insoluble fraction known as inclusion bodies.
Therefore, few proteins from Hfx. mediterranei have been successfully overexpressed in
E. coli [38–41]. The recombinant proteins are usually obtained as inclusion bodies, which are
solubilized in the presence of buffers containing urea and refolded in hypersaline solutions
to recover their native structure [42,43]. However, homologous overexpression using a
halophilic host avoid these disadvantages. Previous works have shown a system for the
homologous overexpression and purification of halophilic proteins under native conditions
in the haloarchaeon Hfx. volcanii [44–46]. There is a previous attempt of homologous
overexpression of Cu-NirK from Hfx. mediterranei using Hfx. volcanii as halophilic host and
an expression vector with a constitutive and strong promoter [47].

Nevertheless, this is the first report of a homologous overexpression and purification
of a Hfx. mediterranei protein in the same microorganism, using a native expression system
with His-tagged, which improves purification yield and enrichment [48]. Methods for
the production and purification of haloarchaeal proteins are essential for subsequent
biotechnological applications.

As previously explained, a native expression system was used to obtain the Lrp
protein [48]. The lrp gene was cloned into the pTA1992 plasmid containing an N-terminal
hexahistidine (6xHis) tag. The Lrp protein was homologously overexpressed in Hfx.
mediterranei HM26 and the purification procedure involved two chromatographic steps.
The Lrp protein band appeared highly pure in 16 kDa (Figure 4). The purification scheme
is summarized in Table 3.
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Figure 4. Homologous overexpression and purification of Lrp in Hfx. mediterranei HM26-∆lrp.
Proteins are shown on a 14.0% SDS-PAGE after Coomassie Brilliant Blue staining. M: PageRuler Plus
Prestained Protein Ladder (Thermo Fisher Scientific, Waltham, MA, USA); Line 1: Overexpression of
Lrp; Line 2: His-tagged fraction; Line 3: Superose6 Increase 10/300 GL fraction.

Table 3. Description of the purification steps for Lrp from Hfx. mediterranei.

Volume
(mL)

Protein
(mg/mL)

Yield
(%)

Overexpressed extract 25 13.89 100

His-tagged fraction 5 9.787 14.1

Superose6 Increase 10/300 GL 5 1.659 2.4

Members of the Lrp/AsnC family are small proteins that typically have a subunit
molecular mass between 15 and 17 kDa. In the case of the Lrp protein, the experimental
molecular mass in the Superose6 Increase 10/300 GL gel filtration chromatography showed
that the most biologically feasible structure of Lrp is a tetrameric protein of approximately
67 kDa. Standard proteins were used as markers (Supplementary Figures S2 and S3) to
estimate this result. The theoretical molecular mass of the native Lrp by electrophoresis
under denaturing conditions, for the tetramer of 16 kDa per subunit, is 64 kDa. The
size of the overexpressed protein was a bit higher than expected due to the SDS-PAGE
technique causes an overestimation of the molecular mass of halophilic proteins due to
the negative charges [49]. This tetrameric structure is an expected result since Lrp/AsnC
transcriptional regulators can form diverse multimers such as dimers, tetramers, octamers
and hexadecamers [15,50,51]. An Lrp from the archaeon Pyrococcus furious [52] has a
tetrameric conformation as the Lrp from this study.

3.5. Characterization of lrp Promoter Region Using β-Galactosidase as a Reporter Gene

The characterization of the promoter region of the lrp gene (Figure 5) [53] was carried
out using the bgaH gene from Hfx. lucentense as a reporter gene by measuring its specific
activity using different culture media at the mid-exponential phase. The results are sum-
marized in Figure 5. Remarkably, there are no studies reported comparing the activity of
a lrp promoter in different media in Haloarchaea. In Hm-CM, the promoter activity was
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0.1 U/mg. The specific activity was measured in Hm-DM containing different ammonium
or nitrate and glucose concentrations as the nitrogen and carbon sources, respectively
(Figure 6A). The best values of specific activity were obtained when cells grew in 40 mM
of ammonium or nitrate and 1% glucose. In contrast, the lowest activity was reached
with cells grown with 20 mM of ammonium or nitrate and 0.05% of glucose. However,
no significant differences in the promoter activity have been identified between cultures
shifted to nitrogen or carbon starvation conditions (Figure 6B). Under carbon and nitrogen
starvation, there is a low lrp expression (around 0.01 U/mg). Therefore, it seems that the
lrp showed a basal expression at the transcriptional level.
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Figure 6. β-galactosidase specific activity of p.lrp in cellular extracts from Hfx. mediterranei R4 from different culture media.
(a) Hm-DM containing different concentrations of ammonium or nitrate as the nitrogen source and different concentrations
of glucose as the carbon source; (b) Hm-NS and Hm-CS at different times of starvation (24, 48, 72 and 96 h); (c) Hm-DM
with hydrogen peroxide from 0 to 14 mM; (d) Hm-DM with Ni2+ (0.4 and 1.6 mM), Co2+ (0.2 and 1.2 mM), As5+ (2 and
12 mM) and Li+ (1.2 and 12 mM). n.d. (non detected).

Lrp transcriptional regulators seem to play an essential role in the energy, central
metabolism, and coordinating the metabolism in response to environmental alterations.
Therefore, culture media adding different external stressors were tested to find a medium
where this transcriptional regulator presents changes in its expression to elucidate its function.
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On the one hand, there are some evidences about transcriptional factors involved
in gene expression regulation under oxidative stress conditions; for example, the MsvR
transcriptional factor from Methanothermobacter thermautotrophicus regulates the expression
of an oxidative stress operon [54]. The ArsR family of transcriptional regulators is usually
linked to oxidative conditions because of the existence in their structure of a redox-sensing
domain. Moreover, previous investigations in the haloarchaeon Hbt. salinarum showed
that transcriptional factors Lrp/AsnC were down-regulated in response to oxidative stress
conditions after adding 25 mM of hydrogen peroxide (H2O2) [55]. Therefore, the promoter
activity was measured in cell cultures after adding different concentrations of hydrogen
peroxide. However, Hfx. mediterranei tolerates concentrations lower than Hbt. salinarum,
cells could not grow above 16 mM H2O2. For this reason, the tested concentrations were not
higher [30]. At low concentrations, between 2 and 8 mM H2O2, the promoter activity is not
detected, while the activity of β-galactosidase slightly increases at higher concentrations
(14 mM) of hydrogen peroxide (Figure 6C).

On the other hand, as some transcriptional factors can interact with metal ions, four
different heavy metals were added to the culture media to show how the promoter’s activity
is affected (Figure 6D). At low concentrations of both, Ni2+ and Li+, the β-galactosidase
specific activity reported was higher than at high concentrations. In contrast to these results,
at low concentrations of Co2+, the specific activity was detected. However, no activity was
reported at higher concentrations. Curiously, in the case of As5+, no specific activity was
detected at any concentration. The promoter expression is inhibited. With all these results,
it could be said that metals may have some effect on the molecular mechanism involved in
the expression of lrp gene.

In bacteria, the Lrp/AsnC transcriptional regulators only recognize amino acids
as ligand molecules, while archaeal Lrp/AsnC proteins may interact with other small
molecules as ligands [9]. Although amino acids are the most typical ligands of most
characterized Lrp/AsnC transcriptional factors, maybe heavy metals can also act as ligands
for this Lrp, being recognized in the ligand-binding domain. This domain is responsible
for sensing environmental changes, often interacting with small molecules such as metal
ions. The four metals (Li+, Co2+, As5+, and Ni2+) tested in this assay are tolerated by Hfx.
mediterranei and incorporated into its cellular interior [30]. There is a previous assay about a
bacterial heavy-metal resistance system controlled by an Lrp-type transcriptional regulator
in Bacillus subtilis [56]. For this reason, why not think that these metals may be acting as
ligands binding to the Lrp, inducing conformational changes in the structure that may
affect the DNA binding by changing the DNA binding affinity? Maybe, the presence of the
metal controls the expression of the Lrp.

3.6. Western Blot

Western blot was performed to analyze in more detail the expression conditions
of Lrp in Hfx. mediterranei R4, according to the culture media composition. The cell
extracts were prepared as previously detailed in Materials and Methods. Results obtained
show that Lrp protein is expressed in almost all conditions analyzed (Figure 7). On
the one hand, to validate if the glucose concentration influences the expression of this
regulator, the samples were collected maintaining the concentration of ammonium or
nitrate at 20 mM, but changing the glucose concentration (1%, 0.5%, 0.25%, 0.1%, 0.05%,
and 0.005%) (Figure 7A,B). The expression detected adding 20 mM of ammonium as the
nitrogen source and different concentrations of glucose as the carbon source was almost
identical, indicating that in the presence of ammonium as the nitrogen source, the glucose
concentration does not induce any difference in the expression of this transcriptional
regulator (Figure 7A). However, maintaining the nitrate concentration at 20 mM and
changing the glucose concentration, a decrease in the protein expression was obtained
according to the increase of glucose concentration (Figure 7B).
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Figure 7. Western blot analysis of the presence of Lrp in cellular extracts from different culture media from Hfx. mediterranei
R4. (A) Hm-DM containing 20 mM of ammonium as the nitrogen source and different concentrations of glucose from 1% to
0.005% as the carbon source.; (B) Hm-DM containing 20 mM of nitrate as the nitrogen source and different concentrations of
glucose from 1% to 0.005% as the carbon source; (C) Hm-DM containing different concentrations of ammonium from 5 to
40 mM as the nitrogen source and 0.5% of glucose as the carbon source; (D) Hm-DM containing different concentrations of
nitrate from 5 to 40 mM as the nitrogen source and 0.5% of glucose as the carbon source; (E) Hm-NS at different times of
starvation (24, 48, 72 and 96 h); (F) Hm-CS at different times of starvation (24, 48, 72 and 96 h); (G) Hm-DM with hydrogen
peroxide from 0 to 22 mM; (H) Hm-DM with Ni (0.4 and 1.6 mM), Co (0.2 and 1.2 mM), As (2 and 12 mM) and Li (1.2 and
12 mM). 40 µg of the extract was loaded in each condition, and the control has 15 µg of the recombinant homologous protein.

On the other hand, to validate if the amount of nitrogen source influences the ex-
pression of the Lrp, culture media with 0.5% glucose as the carbon source and different
concentrations of nitrate or ammonium as the nitrogen source were tested (5, 10, 20, 30
and 40 mM). As shown in Figure 7C,D, Western blotting revealed that there is no different
amount of Lrp protein in the different samples tested. Furthermore, under carbon or
nitrogen deficiency conditions, the detected protein signal is lower (Figure 7E,F). However,
these differences may be due to the increase in the number of dead cells. All these results
may indicate that the expression of the Lrp is not significantly influenced by the carbon or
nitrogen source.

Otherwise, the same stress conditions tested in the β-galactosidase assay were ana-
lyzed by Western blot. The amount of the Lrp protein was detected after adding different
concentrations of hydrogen peroxide. When the cultures contained low concentrations
of H2O2 (2–8 mM), the Lrp protein was not detected, while above 10 mM the expres-
sion appeared (Figure 7G). The addition of heavy metals (Ni2+, Li+, As5+, Co2+) was also
studied (Figure 7H). At low and high concentrations of both Ni2+ and Li+, the Lrp was
detected. However, at high Co2+ concentrations, the protein was not detected, while at
low concentrations, the protein was detected. No protein was detected using As5+. All
these data obtained by Western blot agree with the characterization of its promoter in
the previous section. Therefore, it can be considered that this transcriptional regulator
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has a basal expression due to its implication in different procedures, acting as a global
regulator in the transcription. No difference has been found between the level of expression
depending on the nitrogen source. Even though this transcriptional regulator recognizes
the nasABC promoter, an enzyme involved in nitrogen metabolism [57], the Lrp expression
may vary depending on the ligands changing their regulation mechanism and having
different functions.

4. Conclusions

The Hfx. mediterranei Lrp transcriptional factor (HFX_RS01210) has been studied
in-depth using different approaches to determine its biochemical characteristics and elu-
cidate its expression under different conditions. First, the Lrp has been homologously
overexpressed in Hfx. mediterranei HM26, employing an expression plasmid developed for
halophilic archaea. It is the first overexpression followed by purification of a recombinant
protein using Hfx. mediterranei as host. The Lrp protein has been purified in its native form
by two chromatographic steps, appearing highly pure in SDS-PAGE (16 kDa) and showing
that Lrp is a tetrameric protein of approximately 67 kDa, a characteristic structure for most
Lrp/AsnC proteins.

It can be deduced that the lrp expression is not directly dependent on the nitrogen
source, taking into account the data obtained on the characterization of the lrp promoter
region and the protein expression profile. Although the level of expression does not change,
maybe the binding of unknown ligands modulates the activity or the function of the Lrp.
Therefore, future assays to elucidate its regulation mechanism will be needed. Interestingly,
more relevant results have been obtained by stressing Hfx. mediterranei, showing differential
expression of Lrp at the transcriptional and translational level. Lrp is expressed in the
presence of high concentrations of hydrogen peroxide and the presence of some metals.
There was no expression at a high concentration of cobalt and arsenic. Therefore, it can be
hypothesized that the binding of ligands is modulating the function of Lrp under these
conditions, stabilizing or destabilizing particular types of assemblies. On the basis of these
results, it appears that the Lrp could be acting in vivo as a stress regulator of metabolism.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12060802/s1, Figure S1: EMBOSS Needle alignment of Lrp (Hfx. mediterranei) with Lrp
(Hbt. salinarum), Figure S2: Chromatogram of standard proteins (dotted line) and Lrp (red line) using
Superose6 Increase 10/300GL column., Figure S3: Size-exclusion chromatography calibration curve
for Superose6 increase 10/300GL column, Table S1: Genus studied in each family and number of
annotated Lrp/AsnC proteins.
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