
Table S1. Summary and comparison of findings for CNTs. 

 CNT  

Common Uses Positive Findings  Negative Findings  

cancer therapy 
Structure of CNT appealing for drug 

delivery [1]. 

Microarray shows differentially ex-

pressed genes related to cancer 

when treated with MWCNT [2]. 

bone cell proliferation 

anti-bacterial treatment by altered 

protein and ribosome expression, 

down regulated genes associated 

with glucose metabolism, DNA 

damage and oxidative stress [3]. 

Lung cancer biomarker upregulated 

when treated with MWCNT [4]. 

 

Lung disease related to SWCNT [5]. 

novel battery technologies 

alternative microbial agent for food 

borne pathogens by differential gene 

expression related to membrane pro-

teins and increased ROS production 

[6]. 

biomarker for human lung diseases: 

LC7A1 and SLC22A5 were downreg-

ulated in all mice and human tissue, 

blood and cell analyses. Affects: hu-

man primary hypertension, cardio-

vascular diseases, encephalopathy, 

cardiomyopathy, cardiomegaly, met-

abolic derangement, hypoglycemia, 

and muscle weakness [1, 7] 

photovoltaics  

Increased expression of ddit3 genes 

result in inflammatory response and 

increased ER stress when treated 

with MWCNT [8]. 

nano based transitioners  

Increase in spindle disruption, ab-

normal mitotic spindles,  and aneu-

ploid chromosome number with the 

increased doses of MWCNTs [9]. 

Table S2. Summary and comparison of findings for QDs. 

 QD  

Common Uses Positive Findings  Negative Findings  

therapeutic targeting 

QD-treated bacteria became more 

sensitive to polymyxin B which 

make them great candidates for ad-

juvant therapies for bacterial infec-

tions [10]. 

QDs negatively impact functions in-

cluding transport, biosynthesis, and 

metabolism in E. coli [10]. 

treatment of cancer  

Can efficiently deliver drugs to spe-

cific molecular targets, including 

cancer cells, at subcellular levels [11]. 

Pharmacokinetic of QD toxicity is 

not fully understood and could have 

potentially negative impacts to our 

health [11]. 



biological imaging 

CdSe/ZnS QDs could be an effective 

alternative anticancer drug. With 

RNA-seq, they found HeLa cells up-

regulated anti-tumorigenic functions 

[12].   

Hazards encountered with QDs are 

much more complex than limitations 

created by common probes [11]. 

drug delivery system 

InP/ZnS QDs could be a potential 

anticancer drug. With RNA-seq, they 

observed pro-apoptotic processes 

and control over motility in HeLa 

cells [13].  

Hazards encountered with QDs are 

much more complex than limitations 

created by traditional delivery sys-

tems [11]. 

 

QDs linked to some ligands  have 

shown to emit brighter and be more 

photostable than organic dyes [11]. 

 

 

QDs have the potential to treat/diag-

nosis cancer with site-directed deliv-

ery because of their tunable fluores-

cence and modifiable surfaces for 

targeting [11]. 

 

Table S3. Summary and comparison of findings for AgNPs. 

 AgNP  

Common Uses Positive Findings  Negative Findings  

Antibacterial treatment [14, 15] 
Green synthesis for eco-friendly pro-

duction [14, 16-19]. 

Essential genes linked to AgNP in-

duced toxicity in yeast (met9, sfh1, 

and peg1) [20]. 

Water disinfection [21] 

Anti-bacterial treatment by down-

regulating TCA cycle genes (aceF, 

gadB) [22]. 

Upregulation of target genes MT and 

GST for understanding AgNP tox-

icity in yeast as it relates to chemoge-

netic screening [23]. 

Biofouling control [24] 

Downregulation of biofilm for-

mation genes in S. epidermidis (icaA 

and icaR) and S. aureus (fnbA and 

fnbB) [25]. 

Decreased viability in S. cerevisiae as 

a result of disrupted ribosome func-

tion and cell wall organization [26]. 

Agriculture and livestock treatments 

(Lee et al, Siddiqi et al, Kalinska et 

al) 

Regulation of Hfq function in S. au-

reus as antibacterial mechanism [27]. 

Repression of cell survival genes in 

mouse fibroblast resulting in in-

creased apoptosis [28].  

Medical diagnostics (Lee et al) 

Aflatoxin biosynthesis genes AFB1 

and omt-A inhibited in A. flavus af-

ter AgNP treatment [29]. 

Increased expression of genes rele-

vant to Alzheimers (GSS, CYCL12, 

MARCO) after AgNP exposure in 

mice neural cells [30]. 

 

Inhibition of pathogenic melanin 

production in fungi by downregula-

tion of PKS1 and SCD1 [31]. 

Altered genetic expression leading to 

increased susceptibility to carcino-

gens [32]. 



 

Increased expression of proapoptotic 

genes (p53, p21, Cyt C, Bid, Bax, 

Bak) in cervical cancer cells as poten-

tial anti-cancer treatment [33]. 
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