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Abstract: Millets are important cereal crops cultivated in arid and semiarid regions of the world,
particularly Africa and southeast Asia. Climate change has triggered multiple abiotic stresses in
plants that are the main causes of crop loss worldwide, reducing average yield for most crops by
more than 50%. Although millets are tolerant to most abiotic stresses including drought and high
temperatures, further improvement is needed to make them more resilient to unprecedented effects
of climate change and associated environmental stresses. Incorporation of stress tolerance traits in
millets will improve their productivity in marginal environments and will help in overcoming future
food shortage due to climate change. Recentlly, approaches such as application of plant growth-
promoting rhizobacteria (PGPRs) have been used to improve growth and development, as well as
stress tolerance of crops. Moreover, with the advance of next-generation sequencing technology,
genome editing, using the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9)
system are increasingly used to develop stress tolerant varieties in different crops. In this paper,
the innate ability of millets to tolerate abiotic stresses and alternative approaches to boost stress
resistance were thoroughly reviewed. Moreover, several stress-resistant genes were identified in
related monocots such as rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), and
other related species for which orthologs in millets could be manipulated by CRISPR/Cas9 and
related genome-editing techniques to improve stress resilience and productivity. These cutting-edge
alternative strategies are expected to bring this group of orphan crops at the forefront of scientific
research for their potential contribution to global food security.

Keywords: millets; abiotic stress; genome editing; rhizobacteria; CRISPR/Cas9

1. Introduction

Millets are considered as major cereal crops in the developing world. In the semiarid
tropical areas of Asia and Africa, they are especially important because of their use as
human food, as well as feed for livestock [1–3]. Millets are cultivated in marginal en-
vironments and represents small grain crops [4–6]. Finger millet (Eleusine coracana (L.)
Gaertn), pearl millet (Pennisetum glaucum (L.) R. Br), kodo millet (Paspalum scrobiculatum L.),
Japanese barnyard millet (Echinochloa esculneta), proso millet (Panicum miliaceum L.), foxtail
millet (Setaria italica (L.) P. Beauvois), little millet (Panicum sumatrense Roth ex Roem. &
Schult.), tef (Eragrostis tef (Zucc.) Trotter), and Indian barnyard millet (Echinochloa frumen-
tacea Link) are traditionally considered as millets [7–9]. Pearl millet is an exception to small
grain crops due to its morphological features [10,11].

One of the major attributes of millets is their high nutritional value as compared to
other cereal crops [12–14]. The protein profile of millets shows that they contain higher
amounts of methionine and other essential amino acids [15,16]. Few studies also reported
that millets are rich in micronutrients and phytochemicals [17–19] that have health benefits.
For example, antioxidant enzymes, insoluble and soluble dietary fibers, and resistant
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starch are abundantly found in pearl millet [15,17–19]. Biochemical profiling revealed that
pearl millet contains 63% starch, 13% protein, 7% fats, 2% crude fibers, and about 92%
dry matter [7,15,16]. Foxtail millet is used as a supplementary source of protein for other
cereals because of the presence of the essential amino acid lysine [15,17–19]. Finger millet
is rich in polyphenols and other essential phytochemicals [15,17–20], and it has a high
amount of calcium, methionine, tryptophan, fiber, and sulfur-containing amino acids [21].
Finger millet contains minerals (2%), crude fibers (4%), protein (9%), and carbohydrate
(81%) [22,23]. The mineral and fiber contents of finger millet are higher than those of wheat
and rice. Finger millet also contains more valine, threonine, and lysine than other millet
species [15,17–19,22]. The presence of essential nutrients and phytochemicals with health
benefits make millets great resources for utilization in food industries [7,15,17–19,22].

Despite the great benefits of millets for humans, their yield is limited by multi-
environmental stresses and the looming climate change [24,25]. Combined heat and drought
stress has posed a serious threat to the productivity of these crops [26,27]. Drought stress at
the seedling stage [28] and terminal drought during the reproductive stage have been shown
to incur up to 60% and 40% of yield loss in pearl millet and tef, respectively [28–30]. In Africa,
particularly in the sub-Saharan countries, about 40% of the population lives in a drier
environment; however, this number is increasing and is expected to double by 2050 [31].
Drought accompanied by heat stress has a considerable effect on the physiological, cellular,
and molecular functions of plants. Photosynthesis and respiration are among the major
processes affected by these stresses, which determine crop yield and productivity [26,27,32].
Studies suggested that a temperature above the threshold level (28 ◦C to 32 ◦C) has very
harmful effects, for example, by limiting the adaptation potential of a crop [26,27,32,33].
An increase in temperature of about 3–4 ◦C can reduce crop yields by up to 35% [32,34].
Reports on global warming have suggested that south Asia and Africa are regions most
affected by climate change, primarily global warming [35,36]. It was reported that the
average annual increase in temperature since 1980 has been 0.17 ◦C (0.31 ◦F) [32,34,37]. A
direct link between decreased crops yields and combined drought and heat stress has also
been reported [26,27,32,38].

In order to overcome the effects of climate change-associated stresses and to improve
the yield of millets, there is a need to develop stress-tolerant and high-yielding varieties.
There are several possible approaches to increase the stress tolerance and productivity of
millets. For example, application of PGPRs has been used to improve yield and stress
tolerance in wheat [39–41] and rice [42–44], but it remains to be tested in millets. Another
approach for trait improvement is via genome editing, which has recently gained tremen-
dous attentions due to its specific allele manipulation potential. The CRISPR/Cas9 system
has emerged as a promising technique to edit plant genome/genes for stress tolerance
and higher productivity. CRISPRs, along with their related proteins known as Cas, are
widespread among the phyla of archaea and bacteria where they function as an adaptive
immune system against phages [45]. The CRISPR loci acquire short sequences of their
DNA as spacers and, thus, carry information regarding previous plasmid infections or
bacteriophages upon recognition of invading DNA [46].

Conventional breeding approaches such as selection from landraces, hybridization to
create new variability followed by pedigree selection, mutation breeding, and exploitation
of hybrid vigor have resulted in significant improvement and release of new cultivars in
different millets [47–49]. However, the yields of millets remain much lower than major
cereals even under optimum growth conditions. Following the advent of next-generation
sequencing, markers and genomics-assisted breeding approaches have been implemented
to improve these group of crops. The genome sequences of foxtail millet [50], tef [51,52],
pearl millet [53], finger millet [21], and proso millet (broomcorn) [54] have become available
and are very useful resources for genetic improvement of these crops.

Although millets have recently gained attention for their various food and health
benefits, as well adaptation to adverse environmental conditions, their productivity has
remained low, and which needs to be boosted to enhance their utilization as a food crop



Genes 2021, 12, 739 3 of 21

globally. This review article highlights the combined effects of drought and heat on millets
concurrent with looming climate change, as well as their inherent genetic potential as
climate smart crops, and proposes potential alternative strategies for the improvement of
stress tolerance and yield of these important group of crops.

2. Effects of Climate Change on Millets and Their Tolerance Strategies

Climate change and its impact on agriculture crops has been widely reviewed [55–60].
The climate is changing at an alarming rate, triggering various abiotic stresses which are
affecting food crops in one way or another, which directly affects the global food supply.
The major effects of climate change on millet crops include drought stress, heat stress,
flooding or waterlogging stress, and lodging.

2.1. Effects of Drought Stress

The arid and semiarid lands of most developing countries are facing a problem of
water scarcity, which affects the type and performance of crops grown in those areas. A
study performed on wild millet (Setaria glauca), foxtail millet (Setaria italica), little millet
(Panicum sumatrense), and proso millet (Panicum miliaceum) reported a significant reduction
in yield when subjected to drought prior to flowering [61]. Likewise, complete yield
loss was reported in two finger millet landraces subjected to drought after 4 weeks of
sowing [61,62]. About 60% yield loss was recorded due to terminal drought that occurred
during flowering through maturity [63]. The estimated yield loss due to drought in pearl
millet was about 51% [64,65], and, in tef, it was estimated to be 40% [66,67], as shown in
Table 1. Millets including tef can generally survive at very low soil moisture content. For
example, it was reported that, in the Sahel region where the moisture level is extremely low,
the biomass of millet and sorghum was comparable [68]. Undesirable effects of drought
have been reported not only on the productivity of crops but also on their nutritional
quality including grain mineral and protein content [12,61,69,70].

Plants employ various abiotic stress tolerance mechanisms [71,72] to thrive in drought-
prone regions. Four major adaptation mechanisms of millets to drought-inflicted regions of
the world were recently reviewed [73]. These mechanisms include (i) drought avoidance,
which is the capability of plant to sustain the balance of water during stress to avoid
water deficiency in tissues, (ii) drought tolerance, referring to plants’ ability to produce
biomass by withstanding reduced water potential, (iii) drought escape, a state in which
plants mature prior to drought stress, and (iv) drought recovery, a condition in which
plants provide some yield by recovering from intermittent drought effects after moisture
becomes available.

In sub-Saharan African, millets are adapted to low water potential, and grown for
sustenance. These crops are presumed to guarantee food security in the future as they can be
used as model for stress tolerance in crop improvement or as an alternative crop in drought-
inflicted areas [74]. Drought tolerance strategies in millets also involve physiological
modifications including stomatal conductance, osmotic adjustment, and cell membrane
stability [75]. Among these, osmotic adjustment enables the plant leaves to maintain leaf
turgor pressure (LTP) [76], even under extreme drought conditions, by retrieving and
absorbing water even from dry soils [76,77]. Increased root elongation is another drought
stress tolerance mechanism [78,79]. For example, the increase in root length of legumes
such as cowpea (Vigna unguiculata), peanut (Arachis hypogaea), and soybean (Glycine max),
when exposed to drought enables them to absorb water at greater soil depth [79]. Similarly,
Ayele, et al. [80] and Debieu, et al. [81] reported that a deeper, more extensive, and broader
root system in tef was shown to provide drought stress tolerance.

2.2. Effects of Heat Stress

Although most millet species are resistant to heat stress, heat induces many physio-
logical and molecular alterations. Photosynthesis and respiration are the most sensitive
processes to heat stress, which has a dramatic effect on crop productivity [82]. Significant
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yield loss due to heat has already been reported in many crops [83], and the annual increase
in temperature due to climate change poses a threat to food security. Crop yield increases
with increasing temperatures up to a threshold level (cotton 32 ◦C, soybean 30 ◦C, and
maize 29 ◦C); however, above the threshold level, a slight increase in temperature has
severe negative effects on plant growth and ultimately yield [84]. Yield loss of up to 35%
has been reported due to a 3–4 ◦C increase in temperature (Table 1). As estimated by
statistical modeling, climate change and global warming are likely to severely affect cereal
production in Africa and Asia [85].

It has been established that high-temperature stress reduces transport of electrons,
disrupts the function of photosystem (PS) II, and enhances the amount of ROS accumu-
lation [86]. It also desiccates the reproductive parts and can result in plant sterility, seed
abortion, reduced seed number, and shortened grain filling period [87]. Over time, through
evolution, plants have developed various acclimation, avoidance, and adaptive strategies to
deal with heat stress. Mechanisms of tolerance involve upregulation of the antioxidant sys-
tem, transcription factors, heat-shock proteins, signaling molecules, ion transporters, and
accumulation of osmoprotectants [88]. Plant membranes are prone to lipid peroxidation,
and, in wheat, membrane thermal stability has been used as a selection criterion for heat
tolerance [89]. Under normal conditions, cell metabolism produces ROS as a byproduct,
which at high concentration can induce oxidative stress. Most plants use pathways con-
taining antioxidants to combat ROS as protective gear against various abiotic stresses [90].
Acquired heat tolerance has been observed in cowpea [91], chickpea (Cicer arietinum) [92],
and pearl millet [93]. In chickpea, identification of 18 single-nucleotide polymorphisms
(SNPs) from five stress-responsive genes has been reported, which include dehydration
responsive element binding (DREB), abscisic acid-, stress-, and ripening-induced (ASR), NAD+-
dependent aminoaldehyde dehydrogenase (AMDH), ERECTA (ER), and cyclase-associated proteins
(CAP2) promoter. These genes were highly associated with different adaptive traits under
drought and heat stress [92].

2.3. The Effect of Waterlogging Stress on Millets

Waterlogging stress is the main cause of low productivity in high-precipitation ar-
eas [94]. Under waterlogging stress, the soil pores are filled with water that leads to the
accumulation of toxic compounds, and inhibition of gas diffusion. This eventually affects
roots, stomatal conductance, and photosynthesis [95]. Crops like wheat and maize are
mostly affected by waterlogging in black clay soil (Vertisols), which has high water-holding
capacity. Grain yield losses of about 18% in wild millet and 16% in proso millet were
reported with waterlogging treatment that lasted from two weeks after planting through
crop maturity [95], as shown in Table 1.

Plants have various mechanisms to cope with waterlogging stress [96], which are
induced by hypoxia (reduced oxygen level) or anoxia (complete absence of oxygen). Plants
respond to diminished oxygen by carrying out anaerobic respiration, which has also been
reported in finger millet (Eleusine coracana) [97]. Anaerobic metabolism is not as efficient
as aerobic metabolism, but ATP produced through fermentation supports the cell for a
short period. This mechanism requires more sugar than aerobic metabolism; thus, alter-
ations in carbohydrate metabolism are observed in waterlogging tolerant species such
as finger millet and rice [98]. During waterlogging stress, spongy tissue containing air
gaps, i.e., aerenchyma, which allow gases to move to roots from stems, are formed in
tolerant plants [99]. These spaces are developed without (schizogenous) or with (lysige-
nous) cell death [100]. Studies showed that, in stressed sunflower (Helianthus annuus),
aerenchyma (lysigenous) are developed within 2 days of the onset of stress [101]. Another
strategy employed by waterlogging-tolerant species includes the formation of adventitious
roots [96]. Development of adventitious roots has been observed in finger millet [102] and
sorghum (Sorghum bicolor) [103]. Other crops such as mung beans (Vigna radiata) are known
to escape logging through fast growth [104]. Additionally, waterlogging-tolerant plant
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possess abundant solubilized sugar [105], while plants such as tef respond to waterlogging
stress by enhancing the activity of nitrogen reductase in the shoots [106].

2.4. Lodging Effects on Millet Yield

Lodging is the permanent bending of the stem from an upright position that is a
common problem in millet crops. Forces such as irrigation water, rain, wind, or their
combination can induce lodging. For example, lubrication of soil by rain water in com-
bination with wind can push the plants toward the soil [107]. The stems and roots are
two main targets of lodging stress, which are described in the literature as stem lodging
and root lodging, respectively [108,109]. In stem lodging, the stems tilt toward the soil
or break, whereas root lodging is associated with a change in the angle between the stem
and soil due to the wind force on the stem or crown bending/root disanchoring [110].
Pinthus [107] reported that, before the stem breaking, more force is exerted to the plant
part interacting with the soil. Contrarily, stem flexibility enhances the swing time of the
stem, which increases the damage due to minor wind force, thus leading to lodging stress
in most crops.

Several studies have reported the negative impacts of lodging stress on yields of tef
and foxtail millet crops (Table 1). In tef, the leaf and stem architecture are very delicate,
and the plant is susceptive to root lodging [111]. Lodging stress can also reduce yield in
foxtail millet Tian, et al. [112]). Another study performed by Opole [113] showed excess
fertilizer to cause lodging stress in finger millet, which ultimately reduces yield. Pearl
millet is resistant to lodging, as well as various other biotic and abiotic stresses [114].

Generally, most millet crops are resistant to abiotic stresses including lodging under
low-input conditions as compared to other cereal crops. However, new strategies need to
be developed, or existing techniques need to be improved to enhance lodging tolerance in
millet crops to benefit from fertilizer application to increase yields. Reducing plant height
by genetic manipulation or exogenous application of chemicals is a common strategy to
overcome lodging stress in cereals. For example, during the green revolution, the genes
(Rht dwarfing genes) responsible for reducing plant height were introduced into wheat to
enhance input responsiveness, e.g., to nitrogen fertilizer [115]. Other crop management
practices that can reduce lodging are changing the seed sowing date, tilling practices, and
increasing the intra-row space or reducing the number of plants in a row [107,109,110].
Moreover, application of silicon amendments has been shown to increase the yield of millets
and other crops such as rice and sugar cane [116–120]. In rice, Si treatment was reported to
strengthen the stem by increasing silica deposition in the shoot, increasing the thickness or
strength of the culm wall and vascular bundle, and enhancing stem stability [121].

Another potential strategy to reduce plant height and improve lodging tolerance is the
inhibition of plant growth regulators (PGRs) such as gibberellic acid (GA). GA inhibitors
play a crucial role in the development of dwarf, semi-dwarf, and sturdier plants that
can withstand lodging stress [110,122]. Semi-dwarfism and a reduction in plant height
are caused by shorter internodes [123]. During the green revolution era, altered GA
deficiency was considered the key in producing semi-dwarf rice and wheat cultivars with
high yielding potential that boosted productivity of the two cereals [124]. Some major
inhibitors of GA that have been utilized for the regulation of plant architecture include
daminozide, mepiquat-Cl, chlormequat-Cl, and paclobutrazol (PBZ). PBZ (α-tert-Butyl-β-
(4-chlorobenzyl)-1H-1,2,4-triazole-1-ethanol) inhibits GA precursor ent-kaurene conversion
to ent-kaurenoic acid [125]. Some effects of PBZ include plant height reduction, enhanced
nutrient uptake, and increased seed yield [126].

In millet crops, different approaches have been employed to mitigate or reduce lodging
stress and improve yield. For example, in tef and finger millet, application of PBZ has
been shown to reduce plant height and lodging stress [127]. Jency, et al. [128] reported that
mutation in the kodo millet CO3 variety by gamma radiation or ethyl methane sulfonate
(EMS) could produce nonlodging mutants. They also developed mutants (named second
mutants or M2) which showed higher lodging tolerance due to photosynthetic efficiency
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(PhE) and culm thickness. Mutation of the alpha-tubulin-1 gene in tef by EMS produced
the lodging-tolerant cultivar ‘Kegne’ [129].

Table 1. Effect of different abiotic stresses such as drought, heat, waterlogging, and lodging stresses on the yield of millet
crops. Data represent percent yield loss in kg·ha−1 in response to a particular abiotic stress.

Stress Finger
Millet

Foxtail
Millet

Wild
Millet Kodo Millet Pearl

Millet tef Little Millet Proso
Millet References

Drought 61% 20.3% 30.1% 60.1% 69–77% 80.5% 64% [28,62,130]

Waterlogging 42.14 kg/ha 42.84 kg/ha 18.14 kg/ha [131]

Lodging 41.2% to
51.1% 30–35% [109,132,

133]

Heat

75% at 36/26
◦C

and 84% at
38/28 ◦C

60% at
38/28 ◦C

70 to 75%
at 36/26 ◦C [134–136]

3. Alternative Strategies for Enhancing Stress Resilience in Crops
3.1. Application of Plant Growth-Promoting Rhizobacteria (PGPRs)

The beneficial effect of PGPRs in improving abiotic stress tolerance and yield has been
revealed in various crops [137,138]. PGPRs have been used to mitigate abiotic stresses and
improve productivity in economically important crops including rice [139], soybean [140],
lettuce [141], tomato [142], maize [143], and wheat [144–146]. One mechanism via which
PGPRs improve plant performance is via the biosynthesis of essential plant growth regula-
tors such as gibberellic acid (GA) and indole acetic acid (IAA). PGPRs were also found to
trigger plant defense mechanisms and the biosynthesis of other growth regulators such as
jasmonic acid and salicylic acid [147,148]. It was also found to help plants with nutrient
acquisition from the soil in stress conditions [149].

3.1.1. IAA Synthesis

Inoculation of IAA-synthesizing bacteria in various plant species resulted in enhanced
root growth along with the formation of root hairs and lateral roots [150], resulting in im-
proved nutrient and water uptake [151] and providing support to plants to tolerate osmotic
stress [152]. Drought tolerance of plants increased manyfold due to IAA-synthesizing
Azospirillum [150]. Production of hormones by bacteria and their activity in stimulating
endogenous hormones contribute significantly to improving resistance [153]. Nitric oxide
(NO) produced by Azospirillum brasilense is involved in IAA signaling, which assists
tomato (Solanum lycopersicum) plants in the formation of adventitious root [154]. Associa-
tion of A. brasilense (strain Cd) to bean (Phaseolus vulgaris L.) during drought condition led
to an enhancement in specific root length and root projection area as compared to control
without A. brasilense inoculation [155].

3.1.2. PGPR Effects on Root Morphology under Drought

Cell membranes play a great role in maintaining the physiological status of plant
cells. Rhizobacteria influence processes that take place in the cell membrane. For ex-
ample, in wheat seedlings, Azospirillum brasilense reduces the cell membrane potential,
while, in cowpea, it was shown to decrease the phospholipid level of cell membranes
and cause fluctuations in proton efflux [156]. Water deficit was reported to reduce phos-
phatidylethanolamine, alter root phospholipid composition, and improve phosphatidyl-
choline [157]; however, introduction of Azospirillum to wheat seedlings prevented these
alterations, although lower phosphatidylethanolamine unsaturation and higher phos-
phatidylcholine were detected [158]. Alterations conferring elasticity in the cell membrane
of roots due to bacterium-mediated changes is the primary mechanism for increased resis-
tance to osmotic deficit [150]. The stability of cell membranes in plants is enhanced by the



Genes 2021, 12, 739 7 of 21

presence of PGPRs, which activate the antioxidant defense system, leading to increased
resistance in plants against drought [159].

3.1.3. Activity of ACC Deaminase-Synthesizing Rhizobacteria

Under stress conditions, endogenous ethylene maintains homoeostasis, leading to
diminished shoot and root growth. Aminocyclopropane-1-carboxylic acid (ACC) is a
precursor for ethylene biosynthesis [160], which is acted upon by bacterial ACC deaminase
to impart energy and nitrogen to the plant [161]. In addition, the removal of ACC enables
the bacteria to reduce ethylene toxicity, promoting growth and ameliorating stress [162].
Achromobacter piechaudii strain ARV8 which produces ACC deaminase was shown to
improve the weights of pepper (Capsicum annuum) and tomato seedlings, as well as drop
ethylene synthesis during saline stress [163]. Colonization of PGPRs from water-deficient
areas due to tandem dry episodes are more stress-adapting and plant growth-promoting
compared to bacteria colonized from sites where water is abundantly available [163].
Treatment of tomato seedlings with A. piechaudii ARV8 obtained from an arid site promoted
growth as compared to seedlings treated with GR12-2 of P. putida, which was obtained
from grass rhizosphere where water is abundant [164].

3.1.4. Volatile Compounds and Drought Tolerance

Soil microbes when interacting with plant roots produce chemical compounds which
are either organic volatile and inorganic volatile compounds in the form of gases which
diffuse through the gaps in the soil particles or nonvolatile compounds (siderophores and
phytohormones) [165]. These compounds play vital roles in the food chain of microbes,
as well as in promoting plant growth, by improving plant biomass and defense systems
against the plant pathogens through induced systemic resistance [166–169]. In plants,
exposure to multiple stresses at the same time requires the functioning of volatiles [170,171].
These molecules introduced during stress conditions take part in signaling for generating
systemic and priming effects within the same and nearby plants [172,173]. Enrichment
with the AZP2 strain of Bacillus thuringiensis in wheat seedlings led to an increased biomass
of plant and a five-fold increased survival rate during drought conditions because of a
major decline in volatile emissions and photosynthesis enhancement [145]. These findings
prove that introduction of bacteria contributes to stress resistance in plants [145]. These
molecules stand as major participants for assessing drought and its mitigation through
rapid, noninvasive techniques [145]. Growth of P. chlororaphis O6 in roots reduced loss of
water by regulating stomata pores through a volatile metabolite known as 2R,3R-butanediol,
whereas bacteria lacking such metabolite production did not show any sign of drought
tolerance. This volatile also assists in introducing resistance in Arabidopsis during times of
stress [174].

Given their application in improving plant performance under stress conditions in dif-
ferent crop plants as mentioned above, PGPRs have great potential to boost productivity of
millets under abiotic stress conditions. A graphical illustration of the potential applications
of PGPRs in millet crops is presented in Figure 1.
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Figure 1. Potential application of PGPRs in abiotic stress mitigation and crop yield improvement in millets. PGPRs can
be isolated from plants harboring the bacteria. The PGPRs are then cultured in a laboratory and applied to the soil of
plant-growing substrate.

3.2. Application of CRISPR/Cas9 to Improve Stress Resilience in Millets

Site-specific nuclease (SSN)-based genome editing, developed in the last decade, has
enabled effective and precise gene modification in plant and animal systems. The SSNs
create double-strand breaks (DSBs) in their target DNA. These breaks are repaired via
pathways such as homology-directed recombination (HDR) or nonhomologous end joining
(NHEJ) that lead to mutations such as substitutions and insertion/deletions in the target
regions [175]. Genome-editing techniques are used to produce mutants with defined
phenotypes in contrast to the transgenic approach, in which the foreign DNA is randomly
inserted into the genome and may or may not produce the desired phenotype [176]. Thus,
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the genome-editing technique is becoming a potent tool in crop breeding and functional
genomics. Plants carrying edited genomes have the advantage of carrying modified
DNA for a particular trait [177], while new varieties developed using this method can
be used directly, unlike transgenic plants, with fewer concerns for consumers. Genome-
edited plants carrying new alleles can also be used in breeding programs because of lower
regulatory protocols as compared to genetically modified ones [178].

The CRISPR/Cas9 genome-editing technique has been used in more than 20 plant
species [179] for improving various traits such as biotic and abiotic stress resilience and
yield improvement [180,181]. Selection of a target gene is crucial to achieve the improve-
ment of a desired trait. There are mainly two categories of genes that can be targeted
for trait improvement: regulatory and structural genes. Proteins encoded by structural
genes directly affect a trait, for example, abiotic stress tolerance [182], while regulatory
genes act indirectly by controlling expressions of other genes that may also be involved
in other cellular processes [183]. Furthermore, cis-regulatory sequences also play a crucial
role in controlling abiotic stress tolerance [182]. In plants, the CRISPR/Cas9 system has
been successfully employed in species such as cotton [184], maize [185,186], rice [187,188],
and wheat [188,189] for abiotic stress mitigation. However, application of the CRISPR
technique is limited to a few plant species, and it has focused on improvement of traits
such as biotic stresses (diseases and insect pests), whereas its application for improving
abiotic stress resilience and crop yield is limited. Recently, CRISPR/Cas9 was used to im-
prove heat tolerance by targeting the SlAGAMOUS-LIKE 6 (SIAGL6) gene, which showed
enhanced fruiting ability under heat stress in tomato [190]. CRISPR/Cas9 was also used
for drought tolerance in maize by regulating the ARGOS gene without affecting the yield
of the crop [181,191]. CRISPR/Cas9 technology has tremendous potential in developing
multi-stress-resilient crops via simultaneous expression of many structural and regulatory
genes in crop plants. Multiple gene editing via CRISPR/Cas9 has been performed for
some crops including cotton [192], maize [185], wheat [193], and rice [187]. Single-base
editing system of CRISPR-Cas has further widened its applications for the improvement of
many important traits in crop plants [194,195]. Single-nucleotide changes in an essential
domain of a gene may lead to loss-of-function mutation. It is thought that this technique
may replace the traditional plant breeding approaches which were mostly based on the
presence of populations with enough genetic variations for introducing desired traits to
particular crop cultivars [196,197]. The base-editing technique of CRISPR/Cas9 can pro-
duce allelic variants in a particular population, thus leading to a desirable trait which can
be identified by gRNA sequencing [198]. Thus, underutilized orphan crops such as millet
could benefit from the immense potential of CRISPR/Cas9 genome-editing technology
for environmental stress resilience and yield improvement. Table 2 summarizes the list of
candidate genes which can be edited in millet crops through the CRISPR/Cas9 technique.
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Table 2. List of candidate genes from related species for potential CRISPR/Cas9 editing in millets.

Crop species Candidate Genes for Editing in Millets References

Candidate genes for drought tolerance

Oryza sativa OsDIS1, OsiSAP7, OMTN2, OMTN3, OMTN4, OMTN6 [199–201]

Arabidopsis thaliana ARR1, ARR10, ARR12, AtPUB19, FtMYB10, RGLG2 [202–205]

Nicotiana benthamiana GhWRKY17 [206]

Triticum aestivum WRKY mRNA, TaWRKY146 [207,208]

Eleusine coracana Threonine dehydratase mRNA [21]

Oryza sativa Japonica OsCDPK7, NF-Y18, Arginine decarboxylase (ADC),
CIPK12 [209–211]

Zea mays NF-YB [212]

Candidate genes for heat tolerance

Triticum aestivum TamiR159, TaHsfA6f, TaMBF1c, TaFER-5B,
TaOEP16-2-5B, TaB2, TaGASR1 [213–219]

Oryza sativa
hsp101, ZFP, OsWRKY11, OsGSK1, OsHsfA2e,

mtHsp70, sHSP17.7, FAD7, SBPase, Sp17 (rice spotted
leaf gene)

[220–228]

Candidate genes for dwarfism (lodging tolerance)

Oryza sativa Japonica KO2 [229]

Zea mays GA regulatory factor-like (GRF) mRNA [230]

Oryza sativa Indica Growth-regulating factor 10 (GRF10) [231]

Oryza granulata GA20-oxidase (GA20ox2) [232]

Triticum aestivum BRI1, Rht1 [233,234]

Oryza sativa Sd-1 (used in green revl) [235]

As incorporation of millet crops in food security programs is attracting increasing
interest, the improvement of millets via the application of CRISPR/Cas9 and other gene-
transformation technologies is being considered by the scientific community. For example,
Mamidi, et al. [236] reported the genome assembly of Setaria viridis for the identification
of important loci for traits such as loss of shattering and leaf angle, which are considered
important yield predictors in many grass crops. They further validated the Less Shattering1
(SvLes1) gene through CRISPR/Cas9 to control seed shattering. In other studies, Agrobac-
terium-mediated transformation was previously performed in foxtail millet (Setaria italica)
for downregulation of phosphate transporters (SiPHT1;2, SiPHT1;3, and SiPHT1;4) [237].
They reported significant reductions in inorganic and total phosphate in root and shoot
tissues, as well as an increase in the number of roots and hairy roots for the nonredun-
dant roles. Furthermore, foxtail millet was the first millet crop to be sequenced [50]. The
genome sequence of pearl millet has also been published [53]. Another study reported
the successful production of transgenic finger millet (Eleusine coracana (L.) Gaertn.) plants
through Agrobacterium [238]. The Agrobacterium-mediated transformation protocol has
been developed for finger millet, and four cultivars of finger millet have been successfully
regenerated through Agrobacterium transformation techniques [239]. Johnson, et al. [240]
performed genome-wide population studies of three important millet crops: proso millet,
little millet, and kodo millet. They identified various SNIPs: 3461 in kodo millet, 2245 in
little millet, and 1882 for proso millet. These findings could help in genome editing for
stress resilience and crop improvement.

Recently, a foxtail millet mutant was generated by EMS-induced mutagenesis [241]. A
point mutation named ‘Xiaomi’ in the light receptor gene phytochrome C (PHYC), which
is essential in photoperiodic flowering and has rapid cycling time, was developed [242].
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A CRISPR/Cas9 system that can be used to edit millet crops to improve stress resilience
and yield is illustrated in Figure 2. We recently summarized tef homologs of major abiotic
stress-responsive genes identified in related monocots such as rice, wheat, and maize,
and we suggest those genes for CRISPR/Cas9 editing in tef for stress resilience and crop
improvement [243].
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Figure 2. Illustration of CRISPR/Cas9 application in genome editing for yield improvement and stress mitigation. For
CRISPR/Cas9 gene editing, a guide RNA (gRNA) is designed from a gene of interest, such as those listed in Table 2, and
inserted into a binary vector. A bacterial CAS9 Nickase enzyme (Cas9) protein is also inserted into a binary vector. The
gRNA and Cas9 expression cassettes are then used for Agrobacterium-mediate transformation for trait improvement. The
foxtail millet plant is used as a new model plant for CRISPR/Cas9 editing [241].
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4. Conclusions and Future Prospects

Millet crops have vital nutritional benefits as compared to other cereals. Nearly all
millet crops have innate mechanisms to cope with certain environmental stresses such
as heat, drought, lodging, and waterlogging, yet these stresses remain a threat to millet
production with increasing impact of climate change. Techniques such as PGPRs and
CRISPR/Cas9 are being used in other crops to lessen the impact of abiotic stresses, as well
as to improve the productivity of crops. In this paper, we reviewed available literature on
the subject matter and projected that the use of PGPRs and CRISPR/Cas9 will not only
enable the plants to grow well in adverse conditions but also improve their yield signifi-
cantly. Some candidate genes that can be targeted for manipulation by the CRISPR/Cas9
system to improve the growth and yield of millet crops have been suggested. Genomics,
transcriptomics, metabolomics, proteomics, and other fields of study will also complement
the alternative strategy we put forward. Improvement of millets has lagged behind that
of major food crops and deserves increased attention from geneticists, biotechnologists,
breeders, germplasm conservationists, etc. to improve global food security amidst climate
change that is increasingly affecting the productivity of staple crops.
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