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Abstract: Background: Congenital aniridia is a complex ocular disorder, usually associated with
severe visual impairment, generally caused by mutations on the PAX6 gene. The clinical phenotype
of PAX6 mutations is highly variable, making the genotype-phenotype correlations difficult to
establish. Methods: we describe the phenotype of eight patients from seven unrelated families
with confirmed mutations in PAX6, and very different clinical manifestations. Results: Only two
patients had the classical aniridia phenotype while the other two presented with aniridia-related
manifestations, such as aniridia-related keratopathy or partial aniridia. Congenital cataracts were the
main manifestation in three of the patients in this series. All the patients had nystagmus and low
visual acuity. Conclusions: The diagnosis of mild forms of aniridia is challenging, but these patients
have a potentially blinding hereditary disease that might present with a more severe phenotype in
future generations. Clinicians should be aware of the mild aniridia phenotype and request genetic
testing to perform an accurate diagnosis.
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1. Introduction

Congenital aniridia is a rare genetic disease that affects up to 1 in 64,000 people world-
wide [1]. It is a panocular disorder characterized typically by iris and foveal hypoplasia,
resulting in nystagmus and reduced visual acuity. Aniridia usually presents in early infancy
and might be associated with other congenital anomalies such as congenital cataracts, and
later-onset ocular abnormalities like glaucoma, aniridia-related keratopathy and cataracts.
When the classical aniridia phenotype is present, the diagnosis is straight forward and
most commonly caused by heterozygous mutations on the PAX6 gene.

PAX®6, paired box gene 6 (MIM#607108), is a member of the paired box gene family,
which encodes a transcriptional regulator involved in the development of eye and central
nervous tissues. PAX6 is required for the formation of the lens placode, an ectodermal thick-
ening that precedes lens development. The PAX6 gene encodes a transcriptional regulator
that recognizes target genes through its paired-type DNA-binding domain. The paired
domain is composed of two distinct DNA-binding subdomains, the N-terminal subdomain,
and the C-terminal subdomain, which bind respective consensus DNA sequences.
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The PAX6 transcription factor is essential for the development of the visual system, the
CNS, olfactory bulb, pituitary and pineal glands and pancreatic endocrine function [2—4].
The loss of PAX6 function leads to the eyeless phenotype in Drosophila [5]. Haploinsuf-
ficiency of PAX6 in mice causes the congenital condition aniridia, with defects in each
of these organs and systems. Differentiation of the lens, cornea, iris and ciliary body are
specifically affected by PAX6 levels [6,7]. The mouse mutation Small eye (Sey), which has
been proposed as a model for aniridia, results from defects in PAX6, and the human aniridia
and murine Small eye phenotypes arise from homologous defects in PAX6 [8]. PAX6 is
expressed not only in the optic field and in the lens but also in several brain regions and
in the pancreas. PAX6 mutations cause, in addition to ocular diseases, behavioral and
neurodevelopmental phenotypes as well as disorders of the pancreas [9,10].

However, the clinical phenotype in aniridia is highly variable even between patients
within the same family. Over the last few years, a mild or atypical aniridia phenotype has
been described; in these cases the entire iris may be normal or have subtle abnormalities
such as corectopia or ectropion uvea, challenging the diagnosis that can be delayed or
overlooked [11].

The different PAX6 mutations associated phenotypes had been classified in the litera-
ture as follows [12]:

(a) Classical aniridia: Characterized by partial or complete aniridia, nystagmus and
foveal hypoplasia and later-onset cataracts, aniridia-related keratopathy and glau-
coma. This is usually caused by premature termination codon mutations (nosense,
frameshift and splicing);

(b)  WARG (Willms tumour, anirida, genitourinary abnormalities and mental retardation). This
is caused by large 11p deletions including PAX6 and WT1 or chromosomal rearrangements;

(c) Isolated foveal hypoplasia and nystagmus, usually caused by missense mutations;

(d) Microphthalmia, anophthalmia and coloboma;

(e) Anterior segment dysgenesis.

Patients with mutations affecting PAX6 can present with a wide range of ocular features
affecting both the anterior and posterior segment, making the genotype—phenotype corre-
lations difficult to establish. In this case series, we report eight cases from seven unrelated
families of patients with confirmed mutations affecting PAX6, and very different phenotypes.

2. Material and Methods
2.1. Patient Recruitment and Clinical Evaluation

The medical records of patients with an identified mutation in PAX6 gene were
included in this retrospective case series. The purpose was to describe the different
phenotypes in patients with a confirmed PAX6 mutation. The study was conducted
following the principles of the Helsinki Declaration and was approved by the hospital’s
ethics committee (C-GEN-007). All patients signed a consent form prior to participation in
the study.

Clinical data from patients” medical records were collected, including best-corrected
visual acuity, anterior segment examination, intraocular pressure, and fundoscopy ex-
amination. When available, macular optical coherence tomography (OCT) and anterior
segment or posterior segment photography were included.

2.2. Genetic Testing

Genomic DNA was isolated from peripheral blood in the preanilitic area in our insti-
tute with commercial Chemagic MSM I (Chemagen, PerkinElmer, Baesweiler, Germany).
DNA quantity was assessed by spectrofluorometer quantification using TECAN M200
Infinite Pro Microplate Reader.

The DNA was subjected to a mutation test using a customized next-generation se-
quencing (NGS) gene panel containing 341 genes associated with eye pathology of sus-
pected genetic origin, including PAX6. This panel was designed with NimbleDesign
software (https://design.nimblegen.com, Roche NimbleGen, Inc. Pleasanton, CA, USA,
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accessed on 1 February 2021). The target bases covered 95.5% and the size was 1,003,106 Kb.
For each sample, 150 bp paired-end libraries were created according to the standard pro-
tocols of NGS KAPA HTP Library Kit for lllumina® platforms, SeqCap EZ Library SR
(Roche NimbleGen, Inc. USA) and NEXTflex-96 Pre Capture Kit (Bioo Scientific, Phoenix,
AZ, USA) for indexing. DNA from the captured sample was sequenced on a NextSeq
500 instrument (Illumina, San Diego, CA, USA) according to standard operating protocol.
Validation of the variants was performed by Sanger sequencing.

For the analysis of the results, the INGEMM clinical bioinformatics team designed a
bioinformatics analysis system to identify point polymorphisms (SNV, single nucleotide
variant), insertions and deletions of small DNA fragments, as well as larger structural
variants in the capture regions included in the next-generation sequencing panels. The
system comprises a sample pre-processing step, alignment of reads to a reference genome,
identification and functional annotation of variants, and variant filtering. All these steps
use open tools widely used in the scientific community as well as proprietary tools. Fur-
thermore, all phases are designed in a robust way including statistical parameters that
inform about the status of the process and the convenience of continuing with the analysis.
This allows the monitoring of the process and the appropriate quality controls to issue a
reliable report on the aforementioned variants. Finally, the system backs up the raw and
processed data. This data is stored in a database with encrypted and anonymized records
to preserve patient confidentiality.

Software and versions used are as follows: Trimmomatic-0.32, Bowtie2-align version
2.1.0, Picard-tools 1.106, SAMtools version.0.1.19-44428cd, BEDtools v2.18.1, GenomeAnal-
ysisTK version 3.3-0. Databases used are as follows: dbNSFP version 3.0, dbSNP v138,
ClinVar date 20140703, SnpE 4.11, Exac 10.3, SIFT ensembl 66, Polyphen-2 v2.2.2, Muta-
tionAssessor, release 2, FATHMM, v2.3, CADD, v1.3 and dbscSNV1.1. For the classification
of the variants, the ACMG (American College of Medical Genetics and Genomics) criteria
have been followed [13].

Array experiments were performed with a custom made array based on Agilent
Technologies, called KaryoArray®. We selected 60-mer oligonucleotide features from
Agilent’s eArray (Agilent, Santa Clara, CA, USA, https:/ /earray.chem.agilent.com/earray,
accessed on 15 December 2019) probe library in a custom high resolution format of 8 x 60 K.
The array comprised specific probes covering all microdeletion and duplication syndromes,
telomeres and peri-centromeric regions and also probes of backbone. The average density
of the probe coverage is 43 kb. This focused oligonucleotide chip covers more than 350
clinically relevant regions of genomic imbalance.

In the design we consulted the Database of Genomic Variants (http:/ /projects.tcag.ca/
variation/, accessed on 1 February 2021) and DECIPHER (http:/ /decipher.sanger.ac.uk/,
accessed on 1 February 2021) to avoid CNVs with no apparent clinical relevance.

Array experiments were performed as recommended by the manufacturer (Agilent
Technologies, Santa Clara, CA, USA). DNAs (500 ng) from the specimen and a reference of
the same sex (Promega, Madison, WI, USA) were double-digested with Rsal and Alul for
2 hat 37 °C. After heat inactivation of the enzymes at 65 °C for 20 min, each digested sample
was labeled by random priming (Genomic DNA Enzymatic Labeling Kit Agilent catalogue
# 5190-0449) for 2 h using Cy5-dUTP for patient DNAs and Cy3-dUTP for reference DNAs.
Labeled products were column purified (Microcon Ym-30 filters, Millipore Corporation,
Burlington, MA, USA). After probe denaturation and pre-annealing with Cot-1 DNA,
hybridization was performed at 65 °C with rotation for 24 h. After two washing steps,
the microarray was then scanned by the Agilent Microarray Scanner and analyzed with
Feature Extraction Software (v9.1 Agilent Technologies) and Genomic Work Bench 5.0.

The analysis and visualization of Karyoarray® data was performed using Agilent
Genomic WorkBench 5.0. A comprehensive description of the statistical algorithms is
available in the user’s manual provided by Agilent Technologies. The aberration detection
method 2 (ADM-2) quality weighted interval score algorithm identifies aberrant intervals
in samples that have consistently high or low log ratios based on their statistical score. The
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score represents the deviation of the weighted average of the normalized log ratios from its
expected value of zero calculated with derivative log? ratio standard deviation algorithm.
A fuzzy zero algorithm is applied to incorporate quality information about each probe
measurement. Our threshold settings for the CGH analytics software to make a positive
call were 6.0 for sensitivity, 0.35 for minimum absolute average log ratio per region, and
3 consecutive probes with the same polarity were required for the minimum number of
probes per region.

3. Results

Eight patients of seven unrelated families were included in this study. Only two pa-
tients presented the full classical description of PAX6-related aniridia: aniridia, nystagmus,
and foveal hypoplasia, while the other two presented manifestations presented in the
aniridia spectrum: partial aniridia or aniridia-related keratopathy. One of the patients
with classical aniridia ocular phenotype was diagnosed with WARG. All the PAX6 variants
including a deletion were found in a heterozygous state. The phenotype and genotype of
each patient is summarized in Table 1.

Table 1. Phenotype and genotype characteristics of the patients.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
Nucleotide arr[GRCh37]
c1183+1G>A  ¢.395C>G 11p14.1p12(28464346-  ¢.395C>G c77G>A c.262A>G ¢.219G>T ¢.398G>T
Change
41944418)x1
Protein
Change - p-(Prol32Arg) - p-(Pro132Arg) p.(Arg26Gln)  p.(Ser88Gly) p.(Arg73Ser) p-(Ser133lle)
Genotype
Described ClinVar Sonoda et al 2 Sonoda et al Williamson 2 2 2
by 1D:49299% [14] ND [14] etal [15] ND ND ND
Inheritance ~ De Novo Maternal De Novo Paternal De Novo De Novo N/A Paternal
Type of Splici . . . . . . .
. plicing Missense Deletion Missense Missense Missense Missense Missense
mutation
BCVA on
follow-up 0.1 N/A1 Fix and Follow 0.16 0.1 0.1 0.1 0.1
(decimal)
Nystagmus Yes Yes Yes Yes Yes Yes Yes Yes
. Aniridia Pe?r-tia.l Ar.liridia Aniridia Congenital Microphthalmia Corgctopia
Anterior C . aniridia Congenital cataract cataract . Ectropion uvea
ongenital . 2 related Normal Congenital .
Ocular segment Posterior em- Aniridia related Secondary Congenital
cataract keratopathy cataracts
Phenotype bryotoxon keratopathy glaucoma cataracts
Chorioretinal
coloboma
Posterior Foveal hy- Foveal Foveal hypoplasia Foveal Foveal Hy- Foveal
segment oplasia hypoplasia Optic nerve hypoplasia Normal poplasia Normal hypoplasia
23 Pop YPOp. hypoplasia YpOop Rod ypop
retinal
dystrophy
Refractive High . . . High . .
error myopia Myopia High myopia - - myopia - High myopia
Bronchiectasis
Type-II
. Aortic Coarctation . diabetes
Systemic Phenotype - - - - - Microcephaly Encephalopathy

Bilateral Renal cyst

Epilepsy
Perthes disease

! Not Available. 2 ND: Not described. Eight patients have been analyzed, of which one has a splicing mutation already described in the
literature, three others have missense mutations already described in the literature and one patient with an atypical deletion of 13.48Mb
and three missense variants is described for the first time. All changes are in heterozygosity.

3.1. Case 1

Ocular phenotype: aniridia, congenital cataracts, nystagmus, foveal hypoplasia,
high myopia.

A 7-month-old boy presented with bilateral congenital cataract, aniridia, and nystag-
mus. He had no relevant family history and his parents were not consanguineous. He
was able to fix and follow a small toy and he had horizontal nystagmus with left gaze
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torticollis (gaze towards the nystagmus’ nulls point). On anterior segment examination,
he had bilateral anterior polar cataracts with rests of persistent pupillary membrane and
complete aniridia. The fundus exam revealed bilateral foveal hypoplasia.

At 3 years old he had developed high myopia with a cycloplegic refraction of —10 diopters
in both eyes, and his visual acuity was 0.1 on each eye using contact lenses. The examination
remained otherwise unchanged and there were no signs of keratopathy or limbal insufficiency.

Mutation: PAX6: NM_001258462.3:c.1183+1G>A (chr11:31812257, hg19), heterozy-
gous. ACMG criteria: pathogenic. Inheritance: de novo. This variant has been described
as pathogenic by one submitter in ClinVar, accession: VCV000492996.1, and variation
ID:492996 in four patients with aniridia 1.

3.2. Case 2

Ocular phenotype: partial aniridia, nystagmus, posterior embryotoxon, foveal hypoplasia.

A two-month-old boy was referred to our clinic for bilaterally dilated pupils. He
had a family history of congenital nystagmus in his mother, his mother’s sisters, and his
grandfather. He had a low amplitude high-frequency nystagmus. On examination, he had
bilateral partial aniridia and posterior embryotoxon. The fundus examination revealed
bilateral foveal hypoplasia. His intraocular pressure was normal. His cycloplegic refraction
was —1 diopters in both eyes.

Mutation: PAX6:NM_001258462.3:c.395C>G:p.(Prol132Arg) (chr11:31823113, hg19)
heterozygous. ACMG criteria: likely pathogenic. Inheritance: maternal. This variant has
been described as pathogenic by Sonoda et al [14] in a family with congenital nystagmus
associated with a variant form of aniridia.

3.3. Case 3

Ocular phenotype: aniridia, nystagmus, anterior piramidal cataracts, optic nerve
hypoplasia, foveal hypoplasia, aniridia-related keratopathy, high myopia.

Systemic phenotype: aortic coarctation.

A 6 week-old-boy was referred to our clinic for bilateral aniridia and cataracts with a
confirmed genetic diagnose of WARG syndrome. He had no relevant family history. At
birth he was diagnosed with aortic coarctation and had surgical treatment at four days of
age, the genetic/environmental cause of the aortic coarctation had not been determined.
On anterior segment examination, he presented bilateral aniridia, limbal insufficiency and
piramidal cataracts, the funduscopy revealed bilateral optic nerve and foveal hypoplasia.
An abdominal ultrasound was performed and he had a renal cyst in each kidney, and
Willms tumor was ruled out. On his follow up, at nine months old, he was able to fix and
follow a small object, he presented nystagmus and his cycloplegic refraction was —6 dp in
his right eye and —10 dp in his left eye, the rest of the examination remained unchanged.

KaryoArray® identified a copy-number loss spanning 13.48 Mb 11p14.1p12(28464346_
41944418), NCBI Build 37. Also, array CGH analysis was performed on both parents and
neither parent was found to carry the deletion.

The deletion identified in this case encompasses the following genes: KCNA4, FSHB,
Cllorf46, MPPED2, DCDC1, DNAJC24, IMMPIL, ELP4, PAX6, RCN1, WT1, WIT1, EIF3M,
CCDC73, PRRG4, QSER1, DEPDC7, TCP11L1, LOC283267, CSTF3, HIPK3, C11orf41, C11o0rf91,
CD59, FBX03, LMO2, CAPRIN1, NAT10, ABTB2, CAT, ELF5, EHF, APIP, PDHX, CD44,
SLC1A2, PAMRI1, FJX1, TRIM44, LDLRAD3, COMMD9, PRR5L, TRAF6, RAG1, RAG2,
C11orf74, and LRRC4C.

3.4. Case 4

Ocular phenotype: nystagmus, foveal hypoplasia, aniridia-related keratopathy.

A 29-year-old woman, related to case 2 (aunt), followed in our clinic for nystagmus,
foveal hypoplasia, and limbal insufficiency. Her visual acuity was 0.16 on her right eye
and 0.1 on her left eye. On examination, she had severe limbal insufficiency in both eyes
with peripheral and central aniridia-related keratopathy grade 3 [16]. The iris morphology
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was normal in both eyes. The intraocular pressure was normal and on the fundus exam,
she had bilateral foveal hypoplasia.

Mutation: PAX6:NM_001258462.3):¢.395C>G:p.(Pro132Arg) (chr11:31823113, hg19)
heterozygous. ACMG criteria: likely pathogenic. Inheritance: paternal. This variant has
been described as pathogenic by Sonoda et al [14] in a family with congenital nystagmus
associated with a variant form of aniridia.

3.5. Case 5

Ocular phenotype: congenital cataracts, nystagmus, secondary glaucoma.

A two-week-old boy presented with bilateral congenital cataracts. On examination,
he had bilateral dense anterior cataracts that hindered the retinal examination, with no
iris anomalies. The posterior pole was normal on the ocular ultrasound. He underwent
cataract surgery with no IOL insertion at 6 weeks on his right eye and 7 weeks on his left
eye. A few weeks later he developed secondary glaucoma on both eyes, he had a bilateral
trabeculectomy first and Ahmed drainage implant on his right eye 8 months later.

At five years old his best-corrected visual acuity is 0.1 on each eye. On examination,
he had sensory nystagmus with left gaze torticollis. His fundus examination was normal
with no foveal hypoplasia. He had a cup/disc ratio of 0.2 on his right eye and 0.1 on his
left eye, and the intraocular pressure was 16 mmHg in both eyes, using timolol 0.5% twice
a day on his right eye.

Mutation: PAX6:NM_001258462.3:¢.77G>A:p.(Arg26GIln) (chr11:31824316, hg19), het-
erozygous. ACMG criteria: likely pathogenic. Inheritance: de novo. This variant has been
described as pathogenic by Williamson et al [15] in a family with bilateral microphthalmia,
bilateral iris coloboma, and bilateral congenital cataracts. One of the patients in this family
also had nystagmus and secondary glaucoma.

3.6. Case 6

Ocular phenotype: nystagmus, chorioretinal coloboma, foveal hypoplasia, high my-
opia, rod retinal dystrophy.

A six-month-old boy came to our clinic for a second opinion. He was born at 39 weeks
from a spontaneous pregnancy of non-consanguineous parents. He had a history of
nystagmus, which was first noted by his parents at 2 months old. On the first examination,
he was able to fix and follow a small toy with both eyes, his pupils were hyporeactive
and he had jerk nystagmus with a vertical component. The anterior segment was normal
with no iris or lens abnormalities. On fundoscopy, he had a small chorioretinal coloboma
inferior to the optic disc in his left eye and foveal hypoplasia in both eyes. The cycloplegic
refraction showed low myopia. The neurological examination was normal and the visual
evoked potential showing a low amplitude in both eyes.

At six years old his vision was 0.1 (decimal) in both eyes and he had developed
—10 sphere diopters, and the fundus revealed a hypo-pigmented retina with bilateral
foveal hypoplasia. Retinal dystrophy was suspected and the electroretinogram showed low
amplitude in the rods responses, with normal oscillatory potentials and cones responses.

Mutation: PAX6:NM_001258462.3:c.262 A>G:exon7:p.(Ser88Gly) (chr11:31823246, hg19),
heterozygous. ACMG criteria: likely pathogenic. Inheritance: de novo. This variant has
not been previously described in the literature.

3.7. Case 7

Ocular phenotype: microphthalmia, congenital cataracts, nystagmus.

Systemic phenotype: microcephaly.

A two-and-a-half-month-old girl was referred to our clinic for bilateral congenital
cataracts. On examination, her visual acuity was at least light perception and she had low
amplitude nystagmus. On the anterior segment exam, she had bilateral dense anterior
cataracts that hindered the retinal examination. Her iris configuration was normal. An
ultrasound revealed a normal posterior pole with an axial length of 16 mm in both eyes.
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She had a bilateral lensectomy without intraocular lens (IOL) insertion at 3 months old.
She was referred to the pediatrician who noted microcephaly with a normal brain and
abdominal ultrasound. The fundus examination after bilateral cataract extraction was
normal with no signs of foveal or optic nerve hypoplasia.

Mutation: PAX6:NM_001258462.3:c.219G>T:(p.Arg73Ser) (chr11:31823289, hg 19),
heterozygous. ACMG criteria: likely pathogenic. Inheritance: no parents available. This
variant has not been previously described in the literature.

3.8. Case 8

Ocular phenotype: nystagmus, corectopia, ectropion uvea, congenital cataracts,
foveal hypoplasia.

Systemic phenotype: bronchiectasis, type-lI diabetes, encephalopathy, epilepsy,
Perthes disease.

A 14-year-old girl presented with nystagmus and congenital cataracts. She had a
family history of congenital cataract and nystagmus in her father and sister, and her sister
also has an iris coloboma. She had a medical history of bronchiectasis, type-II diabetes, en-
cephalopathy, epilepsy, and Perthes disease, no other genetic diagnosis has been associated
to her systemic phenotype, but she continues to be under investigation. Her visual acuity
was 0.1 in her right eye and 0.05 in her left eye. She had bilateral microphthalmia and
horizontal nystagmus, right gaze torticollis (gaze towards the nystagmus’ nulls point), and
30 diopters exotropia. The anterior segment examination showed a bilateral corectopia with
ectropion uvea and anterior polar cataracts. On fundoscopy, she had foveal hypoplasia
and peripheral vascular thinning. The cycloplegic refraction was —14 sphere diopters in
both eyes.

Mutation: PAX6:NM_001258462.3:c.398G>T:p.(Ser133lle) (chr11:31823110, hg19), het-
erozygous. ACMG criteria: likely pathogenic. Inheritance: paternal. This variant has not
been previously described in the literature.

4. Discussion

The function of the PAX6 protein is crucial in human eye development, and patients
affected with PAX6 mutations showed a wide variety of congenital ocular disorders, often
resulting in nystagmus and severe visual impairment. In our case series, seven out of eight
patients had nystagmus, and visual acuity was reduced in all the patients where visual
acuity testing was possible to measure due to collaboration.

Three new likely pathogenic mutations have been detected in the PAX6 gene.

The variations p.Ser88Gly and p.Ser133Ile have not been reported in the literature
in individuals with PAX6-related disease. The p.Ser88Gly change replaces serine with
cysteine at codon 88 of the PAX6 protein, and the p.Ser133Ile change replaces serine with
isoleucine at codon 133 of the PAX6 protein. These variants are not present in population
databases (ExXAC and GnomAD no frequency). Algorithms developed to predict the effect
of missense changes on protein structure and function (SIFT, PolyPhen-2, Align-GVGD) all
suggest that these variants are likely to be disruptive, but these predictions have not been
confirmed by published functional studies and their clinical significance is uncertain. In
summary, thanks to the description of our patients and the confirmation that the variant
p-Ser88Gly is de novo, and p.Ser133lle is inherited from the father who has congenital
cataract and nystagmus, we consider that both variants are likely pathogenic.

In the mutation p.Ser380ArgfsTer20, the sequence change creates a premature transla-
tional stop signal in the PAX6 gene. The deletion causes a frameshift starting with the codon
serine 380, changes this amino acid to an arginine residue and creates a premature stop
codon at position 20 of the new reading frame, denoted p.Ser380ArgfsTer20. This likely
pathogenic variant is predicted to cause loss of normal protein function either through
protein truncation or nonsense-mediated mRNA decay. It is expected to result in an absent
or disrupted protein product. This variant is not present in population databases (ExAC
and GnomAD no frequency) and is inherited de novo in our patient. The loss-of-function
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variants in PAX6 are known to be pathogenic. For these reasons, this variant has been
classified as likely pathogenic.

Only four cases in this study (1, 2, 3, and 4) presented with the classical aniridia
phenotype, aniridia or aniridia-related keratopathy, nystagmus, and foveal hypoplasia.
Classical aniridia is usually associated with deletions or premature protein truncations,
while other aniridia phenotypes are associated with missense changes.

The sporadic cases of aniridia might have an increased risk of developing a nephroblas-
toma or Wilms tumor (WARG syndrome). This syndrome is caused by large chromosomal
deletions in chromosome 11p13, including PAX6 and the Wilms tumor gene (WT1), this
genotype represents 10% of all classical aniridia cases [12]. In patients with aniridia sec-
ondary to mutations only in PAX6, investigations for Wilms tumor are not necessary [17].
In young infants with the classical aniridia phenotype we recommend performing an
abdominal ultrasound and a complete pediatric examination to rule out a nephroblastoma
and genitourinary malformations before receiving the genetics results.

Five patients of our series had bilateral congenital cataracts, and it was the main ocular
finding at diagnosis in three of those patients. This phenotype has not been classically
associated with PAX6 mutations. Bilateral congenital cataract usually has a good visual
prognosis if surgery is performed between 6 and 8 weeks old and no other ocular abnor-
malities are seen [18]. Patients with PAX6 mutations often had posterior pole abnormalities
such as foveal hypoplasia, which might be difficult to diagnose in a young infant presenting
with congenital cataracts, as this patient will characteristically present nystagmus at a low
visual acuity, like case 4, 7 and 8. We believe that this phenotype should be recognized as a
new entity within the PAX6 classification, as PAX6-related congenital cataracts. Clinicians
should be aware that mutations in the PAX6 gene can initially present as bilateral congenital
cataracts and search for the mutation, especially if the patient has low vision, nystagmus,
and foveal hypoplasia.

Nystagmus was the most consistent ocular finding between the patients in this study.
Even though many forms of hereditary infantile nystagmus have no sensory visual defect
detectable, like X-linked forms of the FRMD? gene [19], a high proportion of patients
initially classified as infantile nystagmus have underlying anatomical abnormalities af-
fecting the eye or the optic nerve on close examination, on visual evoked potentials or on
electroretinography. Vision loss in early infancy (before 2 years of age) is usually associated
with nystagmus, the clinician should be aware and look carefully for abnormalities in every
appointment, especially in infants and toddlers since at that age visual acuity is usually
less reliable. All children with nystagmus should have a complete ophthalmological ex-
amination in every appointment including a slit lamp exam and fundoscopy. The use of
optical coherence tomography (OCT) and electrophysiology testing in these patients with
nystagmus and vision loss might reveal subtle forms of optic atrophy, albinism, congenital
retinal dystrophies [20], or aniridia as described in this article.

The most frequent refractive error found in our patients was myopia or high my-
opia [21]. This finding, also described in other inherited eye diseases that cause low vision
since a young age, is probably secondary to the emmetropization process being impaired
since early childhood. A recently published study suggested that in patients with high
myopia, PAX6 mutations do not increase the risk of developing myopic maculopathy [22].

The clinical diagnosis of mild aniridia is challenging. In these cases, the iris is usually
normal or nearly normal, with a subtle transillumination defect, partial defects, corectopia,
ectropion uvea, or embryotoxon. This mild phenotype had been associated with less
severe visual implications compared to classical aniridia, but these patients have a severe,
potentially blinding, hereditary disease that might present with a more severe phenotype in
future generations [1,11]. In the patients described in this series, even the mild phenotypes
had severe visual impairment. Clinicians should be aware of this mild aniridia phenotype
and the PAX6-related congenital cataracts and request genetic testing when suspected.

In summary, this manuscript describes the wide phenotypic spectrum of PAX6 muta-
tions, including a newly described phenotype, the PAX6-related congenital cataracts with
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no iris abnormalities present, and we have also described three new likely pathogenic
mutations in the PAX6 gene.
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