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Abstract: Chrysanthemum is one of the most beautiful and popular flowers in the world, and the
flower color is an important ornamental trait of chrysanthemum. Compared with other flower
colors, green flowers are relatively rare. The formation of green flower color is attributed to the
accumulation of chlorophyll; however, the regulatory mechanism of chlorophyll metabolism in
chrysanthemum with green flowers remains largely unknown. In this study, we performed Illumina
RNA sequencing on three chrysanthemum materials, Chrysanthemum vestitum and Chrysanthemum
morifolium cultivars ‘Chunxiao’ and ‘Green anna’, which produce white, light green and dark green
flowers, respectively. Based on the results of comparative transcriptome analysis, a gene encoding a
novel NAC family transcription factor, CmNAC73, was found to be highly correlated to chlorophyll
accumulation in the outer whorl of ray florets in chrysanthemum. The results of transient overexpres-
sion in chrysanthemum leaves showed that CmNAC73 acts as a positive regulator of chlorophyll
biosynthesis. Furthermore, transactivation and yeast one-hybrid assays indicated that CmNAC73
directly binds to the promoters of chlorophyll synthesis-related genes HEMA1 and CRD1. Thus,
this study uncovers the transcriptional regulation of chlorophyll synthesis-related genes HEMA1
and CRD1 by CmNAC73 and provides new insights into the development of green flower color in
chrysanthemum and chlorophyll metabolism in plants.

Keywords: chrysanthemum; transcriptome; green color; chlorophyll; NAC

1. Introduction

Color is an important ornamental trait in plants. Flower color plays an important
role in the co-evolution of plants and insects, as flowers use their color to attract insects or
birds for pollination [1]. In the tropics, plants often use bright colors to protect themselves
from herbivores. In addition, at high altitudes, flowers usually accumulate high levels of
anthocyanin, which protects the plants from damage by ultraviolet (UV) radiation [2]. In
addition to anthocyanins, flower color is also influenced by carotenoids and chlorophyll. In
nature, green flowers are relatively rare, which was disadvantageous for the recognition of
insect pollinators. Since chlorophyll plays an important role in photosynthesis, a number
of studies have focused on the mechanism of chlorophyll metabolism and regulation in
leaves, which is of great importance in delaying leaf senescence and increasing the crop
yield [3].

Chlorophyll biosynthesis and degradation are complex processes involving many en-
zymes. In the chlorophyll biosynthesis cycle, the conversion of glutamyl-tRNA (Glu-tRNA)
to chlorophyll-a involves 14 steps, catalyzed by Glu-tRNA reductase (HEMA), glutamate
1-semialdehyde aminotransferase (GSA), porphobilinogen synthase (HEMB), hydroxymethyl-
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bilane synthase (HEMC), uroporphyrinogen III synthase (HEMD), uroporphyrinogen decar-
boxylase (HEME), coproporphyrinogen oxidative decarboxylase (HEMF), protoporphyrino-
gen oxidase (HEMG), Mg-chelatase D subunit /H subunit/I subunit (CHLD/H/I), Mg-
protoporphyrin IX methyltransferase (CHLM), Mg-protoporphyrinogen IX monomethylester
cyclase (CRD), protochlorophyllide reductase (PORA/B/C), divinyl reductase (DVR) and
chlorophyll synthase (CHLG). In the chlorophyll cycling process, chlorophyllide a oxygenase
(CAO), chlorophyll(ide) b reductase (NYC1) and 7-hydroxymethyl chlorophyll-a reductase
(HCAR) catalyze the conversion between chlorophyll-a and chlorophyll-b. Additionally,
chlorophyll degradation is catalyzed by STAY-GREEN (SGR), pheophytin pheophorbide
hydrolase (PPH), pheophorbide a oxygenase (PAO) and red chlorophyll catabolite reductase
(RCCR) [4]. Mutations in genes involved in chlorophyll synthesis, such as HEMA, signifi-
cantly inhibit chlorophyll synthesis and cause leaf yellowing [5], whereas mutations in the
chlorophyll degradation gene SGR results in the stay-green phenotype where leaves remain
green for a long time [6].

Chlorophyll metabolism is influenced by many factors, such as developmental cues,
light, hormone level and nutrition. Under moderate stress, the rate of chlorophyll break-
down is greater than that of chlorophyll synthesis in old leaves, and the nutrients are
transported to other organs to maintain normal growth [7]. Light plays a complex role in
chlorophyll metabolism. Dark conditions induce chlorophyll degradation, which is medi-
ated by the PHYTOCHROME-INTERACTING FACTORS (PIFs) [8]. Low light intensity
promotes chlorophyll accumulation to compensate for the lack of light [9]. By contrast,
intense light stimulates mitochondrial respiration, leading to the overaccumulation of
NADPH, which inhibits chlorophyll synthesis [10].

Hormone signals also play a key role in the regulation of chlorophyll metabolism.
Abscisic acid (ABA) and jasmonic acid (JA) promote chlorophyll degradation [11], whereas
Cytokinin (CTK), Gibberellin (GA) and auxin promote chlorophyll synthesis [12]. The role
of ethylene in chlorophyll metabolism is complex. During the transition from skotomorpho-
genesis to photomorphogenesis, ETHYLENE INSENSITIVE 3 (EIN3) promotes chlorophyll
synthesis by directly binding to the promoters of PORA and PORB [13], whereas, in the
leaves of adult plants, ethylene promotes chlorophyll degradation by activating NYC1 and
PAO genes [14].

Transcription factors play important roles in regulating the expression of chlorophyll
synthesis and degradation-related genes in response to light and hormone signals. In
Arabidopsis thaliana, several NAC (short for No Apical Meristem [NAM], Arabidopsis
Transcription Factor [ATAF] and Cup-shaped Cotyledon [CUC]) transcription factors play
important roles in ABA-regulated leaf senescence. Most of the NAC family transcription
factors, including ORE1/NAC2, ANAC016, ANAC019, NAC29, ANAC046, ANAC055,
ANAC072 and NAC092, promote chlorophyll degradation and leaf senescence [15–17].
By contrast, in wheat (Triticum aestivum L.), the NAC gene TaNAC-S negatively regulates
leaf senescence, and overexpression of TaNAC-S leads to the stay-green phenotype and
higher yield [18]. However, whether TaNAC-S is involved in chlorophyll synthesis re-
mains unknown. In chrysanthemum (Chrysanthemum morifolium Ramat.), the expression of
CONSTANS-like 16 (COL16) is highly associated with the chlorophyll content in different
cultivars. In petunia (Petunia × hybrida), overexpression of the COL16 homolog, PhCOL16a,
significantly enhanced the synthesis of chlorophyll [4,19], although the underlying mecha-
nism remains unknown.

Chrysanthemum has been cultivated in China for more than 1500 years [4] and is
considered an important flower around the world. Green chrysanthemums are very rare
but also very popular in the market. However, the molecular mechanism underlying the
development of green flower color in chrysanthemum remains unclear. In this study, three
chrysanthemum materials with different flowers colors, including Chrysanthemum vestitum
(white flowers) and C. morifolium cultivars ‘Chunxiao’ (light green flowers) and ‘Green anna’
(dark green flowers), were analyzed with Illumina RNA sequencing (RNA-seq) performed
by Novogene Co. Ltd. (Beijing, China), and the key transcription factor which mediates
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the synthesis of chlorophyll were be characterized, through transient overexpression of
candidate genes in chrysanthemum leaves, transactivation of chlorophyll synthesis-related
genes, and yeast one-hybrid assay. This work will help to uncover the transcriptional
regulation of chlorophyll synthesis-related genes and provides a better understanding of
the formation of green color in chrysanthemum flowers and the metabolism of chlorophyll
in plants.

2. Materials and Methods
2.1. Plant Materials

Wild chrysanthemum (Chrysanthemum vestitum) and six cultivars of hybrid chrysan-
themum (Chrysanthemum morifolium) with green flowers, ‘Green peony’, ‘Green gemstone’,
‘Chunxiao’, ‘Greenlizard’, ‘Green anna’ and ‘Lv Dingdang’, were grown in the greenhouse
of Huazhong Agricultural University (Figure 1). The outer whorl of ray florets was sampled
from the fully opened flowers of C. vestitum and C. morifolium cultivars ‘Chunxiao’ and
‘Green anna’ at the same time, with three biological replicates. The samples were quickly
wrapped in foil, frozen in liquid nitrogen, transported to the laboratory and stored in a
−80 ◦C freezer until needed for RNA extraction.
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Figure 1. Phenotypic comparison of the flowers of Chrysanthemum vestitum (wild species) and six C. morifolium culti-
vars, ‘Green peony’, ‘Green gemstone’, ‘Chunxiao’, ‘Greenlizard’, ‘Green anna’ and ‘Lv Dingdang’ (from left to right).
Scale bar = 2 cm.

To conduct transient gene overexpression assay and ABA treatment, cut flowers of ‘Lv
Dingdang’ were purchased from Nanhu flower market and transported to the laboratory
within one hour. Flower stems were cut to a length of 40 cm and then placed in vases
containing distilled water.

2.2. Determination of Chlorophyll, Carotenoid and Flavonoid Contents

The total chlorophyll content of ray florets was determined as described by Fu et al. [4].
Total carotenoid and total flavonoid contents were determined according to the methods of
Potosí-Calvache et al. [20] and Cao et al. [21], respectively.

2.3. RNA Extraction and RNA-seq

The total RNA was isolated from the ray florets of all three accessions (three biological
replicates per accession) using the EASYspin Plant RNA Kit (Aidlab Biotech, Beijing,
China). The nucleic acid was quantified with nanodrop 2000 (Thermo Fisher Scientific,
Waltham, MA, USA). The integrity of RNA was evaluated with agarose gel electrophoresis
and Agilent 2100 (Agilent Technologies, Santa Clara, CA, USA). RNA-seq was performed
by Novogene Co. Ltd. (Beijing, China) using the Illumina HiSeq 2500 platform. After
removing adaptor and low-quality sequences (Q value < 20), clean data were assembled
with the Trinity software (version: r20140413p1), and the assembled transcripts were
used as the reference sequence. The clean data of each sample were mapped onto the
reference sequence using the RNA-Seq tools of the Expectation-Maximization (RSEM)
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software (v1.2.15), and read counts were generated. Gene annotation was performed
based on seven databases, NCBI non-redundant protein sequence (NR), NCBI nucleotide
sequence (NT), Protein Family (Pfam), Eukaryotic Orthologous Groups (KOG), SWISS-
PROT, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO),
using diamond (v0.8.22), blast (v2.2.28+), KAAS (r140224), hmmscan (HMMER3) and
blast2go (b2g4pipe_v2.5) tools. Differentially expressed genes (DEGs) were analyzed using
DESeq with the following parameters: fold-change (FC) > 2 or FC < 0.5, and adjusted
p-value (padj) < 0.05. GO and KEGG analyses of DEGs were carried out using the GOSeq
(1.10.0) and KOBAS (v2.0.12) software (padj < 0.05).

2.4. Quantitative Real-time PCR (qRT-PCR)

In total, 1 µg RNA of each sample was used to synthesize cDNA with the cDNA
Synthesis SuperMix (AE311-03; TransGen Biotech, Beijing, China), according to the manu-
facturer’s instructions. Subsequently, qRT-PCR was performed on LightCycler 96 (Roche,
Basel, Switzerland) using the cDNA template and sequence-specific primers (Table S1).
All reactions were performed with three biological replicates. The thermocycling program
was as follows: 95 °C for 5 min, followed by 40 cycles of three steps (95 °C for 15 s, 60 °C
for 30 s, and 72 °C for 30 s). In the end, there was a melting curve analysis: 95 °C for 15 s,
60 °C for 60 s, and 95 °C for 15 s, which was used to ensure the specificity of the amplified
product. The 2−∆∆Ct method [22] was used to calculate relative gene expression levels.
The chrysanthemum Ubiquitin (CmUBI) gene (accession no. EU862325) was used as the
internal reference.

2.5. Gene Cloning and Vector Construction

The CmNAC73 gene sequence was obtained from the chrysanthemum genome [23],
and the transcriptome data generated in this study and corrected with high-fidelity Phu-
sion DNA Polymerase (Thermo Fisher Scientific, Waltham, MA, USA). The promoter
sequences of chlorophyll synthesis-related genes were cloned according to the chrysanthe-
mum genome, combined with the FPNI-PCR method, as described by Wang et al. [24].

To generate the CmNAC73 overexpression (OE) vector, the open reading frame (ORF)
of CmNAC73, harboring the restriction sites Hind III and Kpn I, was amplified by PCR. The
PCR product was digested and cloned into the pSuper1300 vector, which was derived from
pCAMBIA1300 by the research group of Dr. Zhizhong Gong (China Agricultural University).

To analyze promoter activity, the promoters of candidate genes carrying the Hind III and
BamH I restriction sites were amplified by PCR. The PCR products were digested and ligated,
and the promoter with the appropriate restriction site was cloned into the PBI121 vector.

2.6. Transient Expression of CmNAC73 in Chrysanthemum Leaves

Agrobacterium tumefaciens GV3101 cells carrying the pSuper1300 empty vector or
pSuper::CmNAC73 were harvested by centrifugation and resuspended in infiltration buffer
(10 mM MgCl2, 150 µM acetosyringone [As], and 10 mM 2-morpholinoethanesulfonic acid
[MES], pH 5.6), and the concentration of the cell suspension was adjusted to obtain an
optical density (OD600) of 0.8. Subsequently, the A. tumefaciens suspension was incubated
in the dark, without shaking, for 2 h. Leaves of all three chrysanthemum accessions were
agroinfiltrated under vacuum (0.5 atm). After agroinfiltration, the leaves were washed
with deionized water and placed in a Petri dish lined with wet filter paper. The Petri dish
was incubated in the dark at 8 ◦C for 3 days and then at 23 ◦C, 60% relative humidity and
5000 lux light intensity (time set to 0 days). The leaves were photographed every 2 days
and used for RNA extraction after 4 days.

2.7. Transient Transactivation Assay

The pSuper::CmNAC73 effector plasmid, PBI121 reporter plasmid harboring the
promoter of chlorophyll synthesis related genes, and corresponding empty vectors were
separately transformed into A. tumefaciens strain GV3101. After overnight culture in
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Luria-Bertani (LB) broth, cells were collected by centrifugation at 5000× g for 8 min, and
resuspended in infiltration solution (10 mM MES, 10 mM MgCl2, and 20 µM As [pH5.6])
(OD600 = 1.6). Cells transformed with the effector and reporter plasmids were mixed at
a 1:1 ratio, incubated at room temperature without shaking for 2 h, and then infiltrated
into the abaxial surface of tobacco (Nicotiana benthamiana) leaves using a 1-mL needle-less
syringe. The plants were incubated in the dark at 23 ◦C and 40–60% relative humidity
for 3 days. Subsequently, the agroinfiltrated leaves were collected, immediately frozen in
liquid nitrogen, and stored at −80 ◦C.

2.8. Determination of β-glucuronidase (GUS) Activity

The agroinfiltrated N. benthamiana leaves were ground in liquid nitrogen, and soluble
proteins were extracted with the extraction buffer containing 0.05 M phosphate-buffered
saline (PBS; pH 7.0), 0.1% sodium N-lauroylsarcosine, 10 mM EDTA (pH 8.0), 1/5 volume
of methanol, 1/1000 volume of Triton X-100 and 1/1000 volume of β-mercaptoethanol. The
protein extracts were centrifuged at 8000× g for 10 min at 4 ◦C. The protein concentration
was determined with the Bradford method [25]. To measure GUS activity, 20 µL of the
purified protein was mixed with 180 µL of 2 mM 4-methylumbelliferyl β-d-glucuronide
hydrate (4-MUG; substrate) dissolved in extraction buffer. Then, half the volume of the
mixture (100 µL) was combined with 900 µL of 0.2 M Na2CO3 to immediately terminate
the reaction, while the remaining 100 µL was incubated at 37 ◦C for 15 min before the
reaction was terminated. The fluorescence of 4-methylumbelliferyl (4-MU; reaction product)
was measured using a fluorescence spectrophotometer (F-4500; Hitachi, Tokyo, Japan) at
365-nm excitation and 455-nm emission. GUS activity was defined as the amount of 4-MU
produced per mg protein per min (µM 4-MU mg−1 protein min−1).

2.9. Yeast One-Hybrid Assay

The yeast one-hybrid assay was performed as described previously [26]. Briefly, the
CmNAC73 ORF was cloned into pGADT7, and the promoters of chlorophyll synthesis-
related genes were cloned into pHIS2.1. The recombinant pGADT7 and pHIS2.1 vectors
were co-transfected into yeast (Saccharomyces cerevisiae) strain Y187. The transformed yeast
cells were cultured on a synthetic-defined medium lacking leucine and tryptophan (SD/-
Leu-Trp). Positive clones were verified by PCR and transferred to SD medium lacking Leu,
Trp and histidine (SD/-Leu-Trp-His), supplemented with 0–80 mM 3-aminotriazole (3-AT).

2.10. Statistical Analysis

Statistical analysis of the data was carried out with SPSS 22.0 (IBM, Armonk, NY,
USA). A two-tailed Student’s t-test (* p < 0.05, ** p < 0.01) was used for the comparison of
two groups, and one-way analysis of variance (ANOVA) with Duncan’s multiple range
tests (p < 0.05) was used for comparison of multiple groups.

3. Results
3.1. Pigment Contents in Chrysanthemum Materials

To understand the basis of green flower color in chrysanthemum, we determined the
contents of major pigments in C. vestitum and six C. morifolium cultivars. From C. vestitum
to chrysanthemum ‘Lv Dingdang’, the chlorophyll and carotenoid contents of flowers
increased gradually, consistent with the change in flower color, but the change in flavonoid
contents was not obvious. Additionally, the colorimeter analysis showed that as the
flower color deepened in the seven materials, the ‘L’ value decreased from 92.46 to 62.32,
indicating that the flower color gradually became darker. Similarly, the ‘a’ value declined
steadily from −1.66 to −12.48, indicating a gradual deepening of the green color, while
the ‘b’ value (which represents the yellow color) gradually increased from C. vestitum
to C. morifolium ‘Greenlizard’, and then declined in C. morifolium ‘Green anna’ and ‘Lv
Dingdang’ (Figure 2). These results suggest that chlorophyll is the main color-forming
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pigment in chrysanthemums with green flowers, and both chlorophyll and carotenoid
affect the flower color in these materials.
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Figure 2. Pigment composition and colorimetry analysis of flowers of C. vestitum and six C. morifolium cultivars. (a–c)
chlorophyll (a), carotenoid (b) and flavonoid (c) contents of flowers determined with a UV spectrophotometer. Data
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‘L’ value indicates brightness (range: 0–100), while the ‘a’ and ‘b’ values indicate color (a > 0 represents the degree of red
color, and a < 0 represents the degree of green; b > 0 represents the degree of yellow, and b < 0 represents the degree of blue).

3.2. Transcriptome Analysis of C. vestitum and C. morifolium Cultivars

C. vestitum is a wild species of chrysanthemum with pure white flowers. C. morifolium
cultivars ‘Chunxiao’ and ‘Green anna’ produce green flowers; however, the green color of
‘Chunxiao’ flowers gradually fades away with the flower opening, whereas that of ‘Green
anna’ flowers is very stable. RNA-seq of the outer-whorl ray florets of these three accessions
(three biological replicates per accession; nine samples total) generated 423,277,980 raw
reads. After the removal of adaptor and low-quality sequences, a total of 403,791,250 clean
reads were obtained (Q30 = 89.78%–91.48%) (Table 1). After assembled with Trinity, a total
of 262,601 unigenes were obtained (Table S2), with the minimum and maximum lengths of
201 and 14,698 bp, respectively, and the N50 value of 1079 bp. Analysis of the DEGs showed
that 19,764 unigenes were upregulated in ‘Green anna’ compared with ‘Chunxiao’, while
33,057 and 24,118 unigenes were upregulated in group ‘Green anna’ vs. C. vestitum and
‘Chunxiao’ vs. C. vestitum, respectively. Additionally, 1269 unigenes were upregulated in
the above three groups (Figure 3, Table S3). In addition, 14,910, 26,154, and 26,963 unigenes
were downregulated in ‘Green anna’ vs. ‘Chunxiao’, ‘Green anna’ vs. C. vestitum and
‘Chunxiao’ vs. C. vestitum comparisons, respectively, and 990 unigenes were significantly
downregulated in all three groups (Figure 3, Table S4).

Table 1. Summary of RNA-seq data of C. vestitum and two C. morifolium cultivars.

Sample No. of Raw Reads No. of Clean Reads Clean Bases (Gb) Error (%) Q20 (%) Q30 (%) GC (%)

CV_1 47,547,792 45,740,146 6.86 0.02 96.58 91.48 42.38
CV_2 46,194,264 44,664,084 6.7 0.02 96.26 90.73 42.70
CV_3 45,414,078 43,364,316 6.5 0.02 96.33 90.77 41.86
CX_1 42,158,158 39,809,564 5.97 0.02 96.12 90.29 43.29
CX_2 47,895,570 45,269,660 6.79 0.02 96.20 90.51 43.27
CX_3 55,487,802 53,570,088 8.04 0.02 96.58 91.37 42.55
AN_1 47,448,436 44,975,644 6.75 0.02 95.94 89.91 42.82
AN_2 47,070,580 44,627,760 6.69 0.02 95.87 89.78 42.82
AN_3 44,061,300 41,769,988 6.27 0.02 95.92 89.89 42.53

CV, C. vestitum; CX, ‘Chunxiao’; AN, ‘Green anna’.
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Furthermore, KEGG pathway enrichment analysis showed that in the ‘Green anna’
vs. C. vestitum comparison, a large number of upregulated genes were enriched in the
photosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism pathway;
94 unigenes were enriched in the photosynthesis pathway; 81 unigenes were enriched in
the porphyrin and chlorophyll metabolism pathway (Figure S1 and Table S5).

Similarly, in the ‘Chunxiao’ vs C. vestitum comparison, a large number of upregu-
lated genes were enriched in the ribosome, photosynthesis, chlorophyll and chlorophyll
metabolism pathway, while 94 and 75 unigenes were enriched in the photosynthesis path-
way and porphyrin and chlorophyll metabolism pathway, respectively (Figure S2 and
Table S6). Photosynthesis and chlorophyll metabolism are closely related and may play
important roles in the development of flower color in green chrysanthemum.

3.3. Expression Pattern of Chlorophyll Synthesis and Degradation Related Genes

Based on the KEGG analysis, 35, 7 and 4 chlorophyll biosynthesis, cycling and
4 degradation-related unigenes, respectively, were differentially expressed in the ‘Green
anna’ vs C. vestitum and ‘Chunxiao’ vs C. vestitum groups (Table S7).

The results of the qRT-PCR analysis showed that expression levels of chlorophyll syn-
thesis related genes, including Cluster-35308.131599 (HEMA1), Cluster-35308.149260 (CHLI1),
Cluster-35308.124019 (CHLH1), Cluster-35308.115727 (CHLM1), Cluster-35308.123158 (CRD1)
and Cluster-35308.134839 (PORA1), varied significantly among the three accessions, consistent
with the transcriptome data (Figure S3). By contrast, expression levels of genes related to chloro-
phyll cycling and degradation showed no significant differences among the three genotypes
(Figure S4).

In ‘Chunxiao’, the color of ray florets in the outer whorl gradually changes from green
to white during flower opening. Our results showed that the chlorophyll content of the
outer-whorl ray florets also decreased gradually during flower opening, and the expression
of chlorophyll synthesis related unigenes HEMA1, CHLI1, CRD1 and PORA1 also showed
a steady decline (Figure 4).
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Figure 4. Content of chlorophyll and expression of chlorophyll synthesis related genes during flower
opening in C. morifolium cultivar ‘Chunxiao’. (a) Different flower opening stages: stage 1 (S1), the
outer-whorl ray florets are short, and therefore cannot wrap the inner disc florets; stage 2 (S2), inner
disc florets are wrapped by the outer ray florets; stage 3 (S3), a few outer-whorl ray florets spread out;
stage 4 (S4), more ray florets spread out, and the outer-whorl ray florets turn white. (b) Chlorophyll
content. Data represent the mean ± SE of three biological replicates. (c) Heat map showing the
expression of HEMA1, CHLI1, CHLH1, CHLM1, CRD1 and PORA1 at different stages of flower
opening (S1–S4). The different colors represent gene expression levels determined by qRT-PCR
analysis of three biological replicates.

It has been shown that ABA promotes the degradation of chlorophyll and causes
the yellowing of leaves [27]. Here, we treated cut ‘Lv Dingdang’ flowers with 20 mg/L
ABA and examined the expression of chlorophyll synthesis-related genes. The results
showed that the expression of HEMA1, CHLI1, CHLH1, CRD1 and PORA1 was significantly
inhibited by ABA (Figure S5).
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3.4. Selection of Key Transcription Factors involved in Chlorophyll Synthesis

Analysis of DEGs showed that 45 and 58 transcription factor-encoding genes were
significantly upregulated and downregulated in the three comparison groups, ‘Green anna’
vs. ‘Chunxiao’, ‘Green anna’ vs. C. vestitum, and ‘Chunxiao’ vs. C. vestitum (Tables S3 and S4).

The expression of a subset of the up- or down-regulated transcription factor-encoding
genes was analyzed by qRT-PCR. The results showed that the expression of 10 genes
increased gradually in C. vestitum, ‘Chunxiao’ and ‘Green anna’, while that of 4 genes, such
as Cluster-35308.188936 (bHLH), decreased gradually in the three materials, consistent with
the transcriptome data. Among these genes, Cluster-35308.177654, a NAC family gene,
showed the most significant change in expression (Figure 5).
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Figure 5. Expression of candidate transcription factor-encoding genes in C. vestitum and C. morifolium cultivars ‘Chunxiao’
and ‘Green anna’. The different colors represent gene expression levels determined by qRT-PCR. Data represent the
mean ± SE of three biological replicates.

The RNA-seq data of Cluster-35308.177654 (NAC) and chlorophyll synthesis-related
genes were used to analyze their Pearson correlation coefficients with SPSS 22.0 (IBM,
Armonk, NY, USA). The results showed that the expression of HEMA1, CRD1, PORA1,
CHLI1, CHLM1 were significantly correlated with Cluster-35308.177654 (p < 0.05), for
HEMA1, CRD1 and PORA1, the correlation was highly significant (p < 0.01) (Table S8).

The expression of Cluster-35308.177654 (NAC) was further examined in the flowers
of C. morifolium cultivars ‘Chunxiao’ (at different opening stages) and ‘Lv Dingdang’
(treated with or without ABA). In ‘Chunxiao’, the expression of Cluster-35308.177654
(NAC) increased significantly from stage 1 to stage 2 and then declined gradually from
stage 2 to stage 4. In ‘Lv Dingdang’, ABA treatment significantly decreased the expression
of Cluster-35308.177654 (Figure 6).
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Figure 6. Expression analysis of Cluster-35308.177654 (NAC) by qRT-PCR. (a,b) Expression of Cluster-35308.177654 (NAC)
in C. morifolium cultivar ‘Chunxiao’ flowers at different opening stages (a) and in cut flowers of C. morifolium cultivar ‘Lv
Dingdang’ treated with or without 20 mg/L ABA. Data represent mean ± SE of three biological replicates.

3.5. Characterization of CmNAC73

Our results showed that the expression of Cluster-35308.177654 (NAC) was highly
correlated with chlorophyll synthesis (Figures 2 and 4–6). To investigate the role of Cluster-
35308.177654 in chlorophyll synthesis, we first cloned this gene from C. morifolium cultivar
‘Chunxiao’. The full-length CDS of Cluster-35308.177654 (NAC) is 876 bp in length and
is predicted to encode a protein of 291 amino acids. Phylogenetic analysis revealed that
the protein encoded by Cluster-35308.177654 (NAC) showed high homology to NAC73
genes in many other species. Therefore, we named the Cluster-35308.177654 (NAC) gene as
CmNAC73 (Genbank accession: MW916171) (Figure S6).

Next, we transiently overexpressed CmNAC73 in the leaves of C. morifolium cultivar
‘Lv Dingdang’. Leaves overexpressing CmNAC73 exhibited delayed yellowing and signifi-
cantly higher expression of HEMA1, CHLI1, CHLM1, CRD1 and PORA1 compared with
leaves expressing the Super1300 empty vector control (Figure 7).

3.6. Regulation of Chlorophyll Synthesis-Related Genes by CmNAC73

Based on the published reference genome of chrysanthemum, the promoters of
HEMA1, CHLI1, CRD1 and PORA1 (1648, 1245, 1580, and 1192 bp, respectively) were
cloned. Transient transactivation assays in N. benthamiana leaves showed that CmNAC73
significantly induced the promoters of HEMA1, CHLI1 and CRD1 but did not have a
significant effect on the promoter activity of PORA1 (Figure 8a).



Genes 2021, 12, 704 11 of 17
Genes 2021, 12, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. Transient overexpression (OE) of CmNAC73 in the leaves of C. morifolium cultivar ‘Lv Dingdang.’ (a) Phenotypic 
analysis of leaves transformed with the Super1300 empty vector and CmNAC73. (b, c) Expression analysis of CmNAC73 
(b) and chlorophyll synthesis related genes (c) in the control and CmNAC73 OE samples by qRT-PCR. Data represent the 
mean ± SE of three biological replicates. 

3.6. Regulation of Chlorophyll Synthesis-related Genes by CmNAC73 
 Based on the published reference genome of chrysanthemum, the promoters of 

HEMA1, CHLI1, CRD1 and PORA1 (1,648, 1,245, 1,580, and 1,192 bp, respectively) were 
cloned. Transient transactivation assays in N. benthamiana leaves showed that CmNAC73 
significantly induced the promoters of HEMA1, CHLI1 and CRD1 but did not have a sig-
nificant effect on the promoter activity of PORA1 (Figure 8a). 

Previous studies have shown that NAC transcription factors bind to the core se-
quence CACG or CGTG [28,29]. In this study, 13, 5, 6 and 1 putative NAC-binding sites 
were found in the promoters of HEMA1, CHLI1, CRD1 and PORA1, respectively (Figure 
8b). To test whether CmNAC73 binds to the promoters of HEMA1, CHLI1, CRD1 and 
PORA1, we performed a yeast one-hybrid assay. When pHEMA1-His and pGAD-
CmNAC73 were co-transferred into yeast, the positive clone of yeast cells could grow 
normally on SD/-Leu-Trp-His, supplied with 4 mM 3-AT, while the yeast carrying pGAD 

Figure 7. Transient overexpression (OE) of CmNAC73 in the leaves of C. morifolium cultivar ‘Lv Dingdang’. (a) Phenotypic
analysis of leaves transformed with the Super1300 empty vector and CmNAC73. (b,c) Expression analysis of CmNAC73
(b) and chlorophyll synthesis related genes (c) in the control and CmNAC73 OE samples by qRT-PCR. Data represent the
mean ± SE of three biological replicates. For Student’s t-test, * p < 0.05; ** p < 0.01.
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Figure 8. Regulation of HEMA1 and CRD1 by CmNAC73. (a) Transient transactivation assays of
HEMA1, CHLI1, CRD1 and PORA1 promoters in N. benthamiana leaves. Data represent mean ± SE.
Asterisks indicate significant differences (For Student’s t-test, * p < 0.05; ** p < 0.01). (b) Schematic
representation of NAC-binding sites in the promoters of HEMA1, CHLI1, CRD1 and PORA1. Squares
and triangles represent binding sites on the + and - strands, respectively. (c) Yeast one-hybrid assay
testing the interaction between CmNAC73 and the promoters of HEMA1, CHLI1, CRD1 and PORA1.
(d) The SD/-Leu-Trp medium was used to select positive yeast clones, and 3-AT was used to suppress
background growth due to leaky HIS3 expression in the pHIS2.1 reporter vector.

Previous studies have shown that NAC transcription factors bind to the core sequence
CACG or CGTG [28,29]. In this study, 13, 5, 6 and 1 putative NAC-binding sites were
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found in the promoters of HEMA1, CHLI1, CRD1 and PORA1, respectively (Figure 8b).
To test whether CmNAC73 binds to the promoters of HEMA1, CHLI1, CRD1 and PORA1,
we performed a yeast one-hybrid assay. When pHEMA1-His and pGAD-CmNAC73 were
co-transferred into yeast, the positive clone of yeast cells could grow normally on SD/-
Leu-Trp-His, supplied with 4 mM 3-AT, while the yeast carrying pGAD and pHEMA1-His
could not grow, which suggested CmNAC73 have a weak binding to the HEMA1 promoter.
Additionally, CmNAC73 showed strong binding to the promoter of CRD1, and 70 mM 3-AT
can completely inhibit the expression of HIS gene in the combination of GAD + pCRD1,
whereas CmNAC73 + pCRD1 could grow normally (Figure 8c,d).

4. Discussion

Chrysanthemum is an important flower, owing to its diverse flower shapes, bright
colors and a long ornamental period. Chrysanthemum has more than 30,000 cultivars [30].
Depending on the flower color, 811 varieties of chrysanthemum were divided into nine
groups, including brown, orange, pink, purple, red, white, yellow, yellow-green and
dark red; green varieties are very rare and are therefore classified into the yellow-green
group [31]. It has been speculated that the ancestry of modern chrysanthemum includes C.
vestitum (2n = 54), C. indicum (2n = 18, 36), C. lavandulifolium (2n = 18), C. nankingense (2n = 18)
and C. zawadskii (2n = 54) [32]. Interestingly, none of these ancestral species produce green
flowers. Moreover, the evolution of green chrysanthemums remains unclear.

The flower is an important organ of angiosperms derived from leaves [33]. One of the
important functions of leaves is photosynthesis, which takes place in chloroplasts. These
photosynthetic organelles have also been observed in some green flowers by transmission
electron microscopy [4,34]. In transgenic Arabidopsis and Nicotiana tabacum lines overex-
pressing SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) or SOC1-like,
heat-stress induced the biogenesis of chloroplasts and the formation of green petals [35].
In many plants, such as lily and chrysanthemum, flowers are green at the early stages of
blooming, and their chlorophyll content decreases during the opening process [4,34,36].
This phenomenon was also observed in C. morifolium cultivar ‘Chunxiao’ (Figure 4). A
previous study reported that white flowers are formed partly as a result of chlorophyll
degradation [37]. It has been speculated that the maintenance of green color in green
chrysanthemum may be related to the continuous synthesis and reduced degradation of
chlorophyll. The results of the current study also showed that the content of chlorophyll
and expression of chlorophyll synthesis-related genes increased steadily in C. vestitum
and C. morifolium cultivars ‘Chunxiao’ and ‘Green anna’, which was closely related to the
change in their flower color (Figure 2, Figure S3).

The chlorophyll biosynthesis and degradation pathways have been elucidated [3].
Chlorophyll metabolism is highly upregulated during biological processes, such as pho-
tomorphogenesis [38], leaf senescence [39], fruit ripening [40] and green flower produc-
tion [41], and is influenced by many factors, including light, hormones and nutrient
availability [42–44]. Under magnesium deficiency conditions, chlorophyll in old leaves
is largely degraded, and nutrients are transported to young leaves to sustain limited
growth [45,46]. Additionally, Hormones such as ABA, ethylene and salicylic acid (SA)
significantly promote leaf senescence [7,47], whereas CTK, GA and auxin delay this process
partly by promoting chlorophyll synthesis [48–50].

During ABA-induced leaf senescence, several NAC genes are induced, which inhibits
the accumulation of chlorophyll, partly by promoting the expression of genes related to
chlorophyll degradation [15,16]. Conversely, in rice (Oryza sativa), OsNAC2 accelerated
leaf senescence by promoting ABA biosynthesis [51]. A few NAC genes have been shown
to negatively regulate leaf senescence. Overexpression of a grape (Vitis vinifera L.) NAC
gene, DRL1, in N. benthamiana inhibited ABA biosynthesis and significantly inhibited leaf
senescence [18,52]. However, whether the genes regulate chlorophyll metabolism remains
unclear. During the ripening process of citrus (Citrus reticulata Blanco) fruits, chlorophyll
degradation was accompanied by fruit color changes, and two ethylene-responsive genes,
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CitERF6 and CitERF13, promoted chlorophyll degradation, leading to fruit degreening [53].
Some studies have also reported the regulation of chlorophyll metabolism in green flowers.
In chrysanthemum, CmCOL16, CmERF and CmbHLH transcription factors were found to
be closely related to chlorophyll synthesis [4]. In petunia, overexpression of PhCOL16a, a
homolog of the CmCOL16 gene, significantly promoted the synthesis of chlorophyll [19]. In
this study, we found a novel chrysanthemum NAC gene, CmNAC73, whose expression was
repressed by ABA, and its transient overexpression in chrysanthemum leaves delayed leaf
senescence by activating several chlorophyll synthesis-related genes, including HEMA1,
CHLI1, CHLM1, CRD1 and PORA1 (Figures 6 and 7). Furthermore, transient transactivation
and yeast one-hybrid assays showed that CmNAC73 binds to the promoters of HEMA1
and CRD1, thus activating their expression (Figure 8).

5. Conclusions

In short, we carried out transcriptome analysis of three chrysanthemum accessions,
including C. vestitum and C. morifolium cultivars ‘Chunxiao’ and ‘Green anna’, with white,
light-green and dark-green colored flowers, respectively, and identified a novel NAC
gene, CmNAC73, which acts as a positive regulator of chlorophyll biosynthesis, at least
in part, through the direct activation of chlorophyll synthesis-related genes HEMA1 and
CRD1. These results provide a better understanding of the formation of a green color
in chrysanthemum flowers and the metabolism of chlorophyll in plants and guide the
breeding of more green-flower chrysanthemum cultivars.
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