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Abstract: The human pathogenic fungus Aspergillus fumigatus is readily eradicated by the innate
immunity of immunocompetent human hosts, but can cause severe infections, such as invasive as-
pergillosis (IA), in immunocompromised individuals. During infection, the fungal redox homeostasis
can be challenged by reactive oxygen species (ROS), either derived from the oxidative burst of innate
immune cells or the action of antifungal drugs. The peroxiredoxin Asp f3 was found to be essential
to cause IA in mice, but how Asp f3 integrates with fungal redox homeostasis remains unknown.
Here, we show that in vivo, Asp f3 acts as a sensor for ROS. While global transcription in fungal
hyphae under minimal growth conditions was fully independent of Asp f3, a robust induction of
the oxidative stress response required the presence of the peroxiredoxin. Hyphae devoid of Asp f3
failed to activate several redox active genes, like members of the gliotoxin biosynthesis gene cluster
and integral members of the Afyap1 regulon, the central activator of the ROS defense machinery in
fungi. Upon deletion of the asp f3 gene Afyap1 displayed significantly reduced nuclear localization
during ROS exposure, indicating that Asp f3 can act as an intracellular redox sensor for several
target proteins.
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1. Introduction

The ascomycete Aspergillus fumigatus is a ubiquitous fungus which is generally in-
volved in the decomposition of (plant based) biomass, thus playing an important role
during carbon and nitrogen recycling [1,2]. With its ability to adapt to a wide temperature
range, different oxygen and pH levels and nutritional challenges like low iron levels, A.
fumigatus thrives in many diverse environments and is also known as the most common air-
borne fungal pathogen. Infection occurs via the widely distributed asexual conidia which
after inhalation, germinate and colonize the lung tissue of immuno-compromised patients
such as those suffering from HIV, leukemia or active therapeutic immunosuppression
following organ and stem cell transplantation [3,4]. Depending on the underlying condi-
tion infections range from allergic bronchopulmonary aspergillosis (ABPA) to often fatal
invasive aspergillosis (IA), a disease reaching mortality rates in the range of 30–95% [5,6].
Reasons for high mortality are deficiencies in specific and timely diagnostics as well as
the limited availability of effective therapeutic treatment [7]. Hence it is imperative to aim
for a better understanding of the pathophysiology of A. fumigatus, enabling more targeted
approaches towards the development of new therapeutic solutions.

The protein Asp f3 was originally found as a prominent allergen on the surface of
fungal conidia [8]. Due to its high abundance and affinity to serum immunoglobulin E
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(IgE) Asp f3 was also introduced as an auspicious vaccine candidate, protecting Asp f3 im-
munized mice against invasive pulmonary aspergillosis [9,10]. Recently, we characterized
the protein as a dimeric, two-type-cysteine peroxiredoxin Asp f3 which showed peroxidase
activity in vitro and protected A. fumigatus from external oxidative stress [11]. The protein
was furthermore required for virulence in a murine model of pulmonary aspergillosis, and
may thus present a promising target for therapeutic applications. Whether its role as a
virulence determinant directly relates to its function as a reductive reactive oxygen species
(ROS) scavenging enzyme is currently unknown.

Clinical data support an essential role of reactive oxygen species in the defense against
fungal infections, as patients suffering from chronic granulomatous disease (CGD) have
reduced capability to produce ROS which renders them especially susceptible to A. fu-
migatus infections [7]. The fact that the absence of the major ROS defense activator Yap1
in A. fumigatus causes hypersensitivity to ROS, but at the same time does not attenuate
its virulence, makes it unlikely that there is a direct correlation between efficient ROS
scavenging and virulence. However, ROS may still impact survival of A. fumigatus in
the host. Only recently host derived ROS were observed to induce the programmed cell
death in conidia of the fungus after ingestion by innate immune phagocytes [12]. Here we
examine the role of Asp f3 in A. fumigatus in the response towards ROS. We show that the
absence of Asp f3 does not affect the fungal transcriptome under unstressed conditions
but leads to a significant shift in gene expression upon challenge with oxidative stress.
Surprisingly, ROS exposure to cells lacking Asp f3 did not activate the AfYap1 regulon,
suggesting that Asp f3 acts as an essential redox switch to launch a potent defense against
ROS or ROS mediated damages.

2. Materials and Methods
2.1. A. fumigatus Strain and Culture Conditions

All strains and plasmids used in the study are listed in Table 1. The asp f3 deletion and
complemented strains were generated as described by Hillmann et al. [11]. A. fumigatus
was cultured on/in Aspergillus minimal medium (AMM) with 1% Glucose as carbon source
and 20 mM NaNO3 as nitrogen source by inoculation with 105 conidia if not otherwise
noted [13]. Liquid cultures were kept shaking at 180 rpm at 37 ◦C for 24 h. Conidia
were harvested with 0.1% (v/v) Tween 80 from AMM-agar plates cultivated at 37 ◦C for
96 h. Mutant-phenotypes were selected by either 250 µg/mL hygromycin B (Invivogen,
Toulouse, France) or pyrithiamine (0.1 mg/mL, Sigma-Aldrich, Taufkirchen, Germany),
depending on the resistance marker used in transformation [14]. Conidia were counted by
a CASY® Modell TT (OLS OMNI Life Science, Bremen, Germany). For long–time storage,
conidia were mixed with glycerol at 20% (v/v) and frozen at −80 ◦C.

Table 1. Strains of Aspergillus fumigatus.

Strain Genotype References

A. fumigatus D141 WT [15]

A. fumigatus ∆asp f3 Asp f3::hph; HygR [11]

A. fumigatus ∆asp f3C Asp f3::hph; HygR

∆asp f3::Asp f3; PTR [11]

A. fumigatus
OE::Afyap1VENUS PGpdA-Afyap1Venus-Tnos::ptrA; PTR This study

A. fumigatus
∆asp f3 OE::Afyap1VENUS

Asp f3::hph; HygR

PGpdA-Afyap1Venus-Tnos::ptrA; PTR This study

2.2. Construction of Fluorescent Reporter Strains

For the generation of a VENUS-Fusion protein expression strain, the gene sequence of
Afyap1 was cloned into plasmid pGpdA-Afyap1-VENUS containing a constitutive gpdA-
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promoter and VENUS gene with a nos terminator (Supplementary Figure S1). The target
gene (Afyap1) was introduced as a N-terminal-fusion to VENUS via CPEC and further
paired with the PtrA resistance cassette which confers resistance to the antimetabolite
pyrithiamine [16]. For a list of Primers see Supplementary Table S1. Plasmids were ampli-
fied in E. coli DH5α, linear fragments for transformation were amplified via PCR (Phusion
Flash Polymerase, Thermo Fisher Scientific, Bremen, Germany) and transformed into A.
fumigatus D141 and ∆asp f3 via protoplast formation [17,18]. Mutants were confirmed by
diagnostic PCR and a detectable VENUS-signal during fluorescence microscopy.

2.3. Isolation of Chromosomal DNA

Fungal strains were cultivated for 16 h at 37 ◦C at 180 rpm in Sabouraud 2% Glucose
Bouillon (Carl Roth, Karlsruhe, Germany). The mycelium was harvested through miracloth,
washed thoroughly with H2O, dried and frozen with liquid nitrogen. Frozen mycelium
was then ground to a fine powder in a mortar and stored at −20 ◦C until further use.
Isolation of chromosomal DNA was carried out as described previously [19].

2.4. Oxidative Stress Experiments

Reactive oxygen species were produced either by addition of H2O2 or directly in vivo
we with the xanthine oxidase enzymatic system generating a mixture of H2O2 and O2

− as
previously described [11]. Prior to treatment 105 conidia were grown in liquid Czapek Dox
medium (BD, Franklin Lakes, NJ, USA) in 6-well tissue culture plates (VWR International,
Leuven, Belgium) in a final volume of 3 mL and cultured for 48 h until a thin layer of
mycelium was formed. A sub-lethal concentration (for ∆asp f3) of 150 µM xanthine was
supplied. The addition of 100 µg/mL (0.2 units/mL) xanthine oxidase (Sigma-Aldrich,
Taufkirchen, Germany) started the reaction. For the transcriptome, analysis reaction was
stopped after 15 min and samples were harvested, frozen with liquid nitrogen and stored
at −80 ◦C until further use. All data analyzed originated from three biological replicates.

2.5. RNA Isolation

Total RNA was isolated from ROS treated and untreated mycelia of the wild type and
the ∆asp f3 strain using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Frozen
mycelium was transferred to tubes containing glass beads (Sigma-Aldrich, Taufkirchen,
Germany), after addition of resuspension buffer cells were disrupted by mechanical force
applied via FastPrep (MP Biomedicals, Irvine, CA, USA) for 60 s at high-speed setting (6.0).
Further processing was conducted according to the manufacturer’s protocol. Extracted
RNA was stored at −80 ◦C. RNA concentration was determined by NanoDrop ND1000
Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, USA).

2.6. Analysis of Transcriptome Data

The preparation of cDNA libraries from total RNA and the sequencing was performed
by GATC Biotech (GATC Biotech, Konstanz, Germany). According to GATC Protocol
samples were enriched for mRNA by isolation of poly(A)+ mRNA, mRNA was fragmented
and cDNA synthesis was performed to generate strand specific cDNA libraries. From these
libraries 1 × 50 bp single end reads were sequenced with the Genome Sequencer Illumina
HiSeq (HiSeq 4000 50bp SR) (Illumina, San Diego, CA, USA). FastQC [20] and Trimmomatic
v0.32 [21] were used for quality control and trimming of library adaptors. Mapping of
reads was achieved with HiSat2 [22] against the reference genome of A. fumigatus A293. The
normalized number of reads were analyzed with EdgeR, Limma, DESeq, DESeq2 [23–26]
and genes were considered as differentially expressed gene (DEGs) when the differences in
the number of reads were statistically significant according to one or more of these tests.

2.7. Gene Expression Analysis by qRT-PCR

A. fumigatus WT and ∆asp f3 conidia (1 × 109) were grown in 3 mL AMM and CD at 37
◦C and 180 rpm for 6 h to induce swelling. After 6 h, swollen conidia were treated with 0.1



Genes 2021, 12, 668 4 of 16

M H2O2 for 15 min. Swollen conidia were harvested from triplicate samples at 0 and 15 min
after the addition of 0.1 M H2O2 by centrifugation at 800 g and 4 ◦C for 5 min. Swollen
conidia were subsequently lysed with glass beads in the FastPrep (MP Biomedicals, Irvine,
CA, USA) for 60 s at 13,000 rpm and processed for total RNA isolation using a Qiagen
RNeasy plant mini kit (Qiagen, Hilden, Germany), according to manufacturer’s protocol.
Extracted RNA was then stored at −20 ◦C. Concentration of each sample was determined
with NanoDrop ND1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington,
DE, USA).

RNA was treated with RQ1 RNase-free DNase (Promega, Walldorf, Germany) and
transcribed into cDNA (RevertAid First Strand cDNA Synthesis Kit, Thermo Fischer
Scientific, Germany), according to the manufacturers protocol. Quantitative real time
polymerase chain reaction (qRT-PCR) was performed using the cDNA as a template. The
∆CT method was used to analyze the relative expression of the target genes, normalized
to the constitutively expressed tubA gene encoding tubulin A. Al primers are listed in
Supplementary Table S1. The reactions were carried out in a total volume of 20 µL on
Quantstudio3 system (Thermo Fisher Scientific, Bremen, Germany).

2.8. DAPI Staining and Fluorescence Microscopy

A total of 105 conidia were incubated at 37 ◦C for 10 h in 300 µL of CD in ibidi®

µ-slide (ibidi, Gräfelfing, Germany) until germination. The nuclei were then stained with
NucBlue™ Live ReadyProbes™ Reagent (ThermoFisher, Dreieich, Germany) according
to manufacturer’s guidelines. Afterwards, 2 mM H2O2 was added and after 30 min
the samples were subsequently analyzed under the microscope. Fluorescent stain and
proteins were excited with 408 nm and 488 nm, respectively, to analyze the localization
of AfYap1VENUS in both WT and ∆asp f3 strains using a Zeiss Axio Observer Spinning
Disk Confocal Microscope (ZEISS, Jena, Germany) using ZEN software (Version 2.6).
Microscopic images were evenly processed and analyzed with ImageJ software [27].

2.9. Co-Localization Analysis

For the co-localization analysis of AfYap1VENUS and DAPI, the Coloc2 plugin of
ImageJ was used to calculate the Pearson’s correlation coefficient to identify the intensity
correlation of fluorescence signals. GraphPad9 Prism software was used to plot the graph
and calculate the p-value. Error bars represent ± standard deviation from at least 3 images.

2.10. Preparation of Protein Extracts and Catalase Activity Measurements

Crude protein extracts were prepared from A. fumigatus swollen conidia incubated for
6 h in CD medium and treated with 2 mM of H2O2 for 45 min. Conidia were harvested
by centrifugation and washed thoroughly with PBS. Conidia were re-suspended in assay
buffer (Abcam, Cambridge, UK) and disrupted by FastPrep treatment, repeated mixing and
sonication for 10 min to enhance the solubilization of proteins. Protein concentration was
determined by the Bradford assay [28] and spectrophotometric measurements (UV mini
1240, Shimadzu, Kyoto, Japan). Catalase activity was determined using the catalase activity
assay kit (cat. No. ab83464 Catalase Activity Assay Kit, Abcam, Cambridge, UK) according
to the manufacturer’s instructions and fluorometric measurements in a fluorescence plate
reader (Tecan, Männedorf, Switzerland) at excitation and emission wavelengths of 535 and
587 nm, respectively.

2.11. In-Gel Catalase Activity Assay

A. fumigatus conidia of different strains were inoculated in CD medium and grown for
20 h at 37 ◦C prior to a 5 mM H2O2 treatment for 45 min. The mycelium was harvested,
frozen in liquid nitrogen and ground to a fine powder. Isolation of native protein occurred
according to Lessing et. al. (2007) [29]. Again, protein concentration was measurured
via Bradford assay [28] and spectrophotometric measurements (UV mini 1240, Shimadzu,
Kyōto, Japan). A total of 30 µg of protein was loaded on an 8–16% polyacrylamide (wt/vo)
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Tris-Glycine Gel (Invitrogen™ Novex™ WedgeWell™, Art. Nr.: 15486814 ). The runtime
was for 4 h at 60 V at 4 ◦C. Catalase activity in the gel was determined with the method
described by Goldberg and Hochman [30]. A total of 1 µg catalase from bovine liver
(C1345, 2000–5000 units/mg protein, Sigma-Aldrich, Taufkirchen, Germany) was used as a
positive control.

2.12. Functional Annotation of Transcriptome Data

Enrichment analyses of genes were carried out with the FungiFun2 package [31].
Default settings were used to enrich genes according to GO and FunCat categories. Hits
were deemed significant with a p-values < 0.01. Enrichment was carried out for the Go-
terms “biological process” and “molecular function”. Additional analyses were performed
with the AspGD Gene Ontology Term Finder (http://www.aspergillusgenome.org/cgi-
bin/GO/goTermFinder, accessed on 28 February 2021) [32].

3. Results
3.1. Global Transcriptome Analysis Reveals a ROS Specific Function of Asp f3

To understand the protective role of Asp f3 during ROS exposure we monitored
global transcription in wild type hyphae of A. fumigatus (WT) and the ROS sensitive
deletion mutant ∆asp f3. Both strains were first grown in minimal medium and either left
untreated (−ROS) or exposed to H2O2 and O2

− (+ROS), therefore ROS were generated
in vivo by the xanthine oxidase enzymatic system for 15 min in biological triplicates. A
principal component analysis of the fungal transcriptomes demonstrated a comparatively
low cumulative variance in untreated samples, indicating that the lack of Asp f3, despite
its abundance as protein, did not significantly impact transcription under ambient growth
conditions of fungal hyphae in minimal medium (Figure 1). These results corresponded
to a widely indistinguishable phenotype under a wide range of growth conditions with
various carbon sources (Supplementary Figure S2).
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In fact, in the absence of ROS, WT and ∆asp f3 showed an exceptionally high similarity
in their genome expression and only seven genes were found to be differentially expressed
genes (DEGs). The only DEG commonly identified by all four methods was asp f3 which
remained undetected in the mutant strain, as expected. This indicated that Asp f3 plays
a minor role in the absence of ROS and allowed a direct comparison of the ROS-treated
samples without a background of genes that directly respond to the absence of Asp f3.

ROS exposure induced a shift in the global transcriptome with nearly identical num-
bers of DEGs for both strains. For the wild type and ∆asp f3 mutant we identified 1810
and 1729 ROS dependent DEGs, respectively. The numbers of up- and downregulated
genes are likewise similar, identifying 1124 up- and 686 downregulated genes for the WT
and 1025 up- and 704 down-regulated genes in ∆asp f3 (Figure 2A). However, when the
DEGs were compared between the two strains, we found only about two thirds of them in
congruency. This proportion was comparable for up- as well as for the down-regulated
genes (Figure 2B).
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3.2. Transcriptional Induction of the ROS Defense Requires Asp f3

Although the number of ROS induced DEGs was similar in hyphae of the wild type
and ∆asp f3, 653 genes were differentially expressed only in the wild type, indicating that
Asp f3 was required for gene expression under oxidative stress and ∆asp f3 seems to react
differently when challenged with ROS. To get an overview of the effects triggered by loss
of the peroxiredoxin we plotted the expression of all genes in WT and ∆asp f3 under ROS
exposure (Figure 3A).

This direct comparison of the treated samples showed 319 DEGs of which 60 were
higher expressed in hyphae of the mutant when compared to those of the wild type. The
remaining 259 genes showed lower expression in the mutant during ROS exposure. The
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lowest was the asp f3 gene itself with RPKM values of 14 and approximately 5900 in hyphae
of the mutant and the wild type, respectively.
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Gene ontology enrichment according to Molecular function (B) and Biological process (C) of genes specifically down-regulated
in ∆asp f3 in response to ROS.

Of the 259 genes that were specifically downregulated in ∆asp f3 under ROS, 53 genes
were not affected by ROS in the wild type. The remaining 205 of these DEGs were up-
regulated after ROS exposure of the wild type. A gene ontology analysis for molecular
functions of the group of genes that lacked ROS dependent expression in the absence of the
peroxiredoxin identified primarily oxidoreductase activity, inorganic phosphate transmem-
brane transporter activity, peroxidase activity and FMN binding as significantly enriched
categories (Figure 3B, Supplementary Table S2). Biological processes that showed attenuated
expression specific to the absence of Asp f3 included categories such as phosphate ion
transport, transmembrane transport and mycotoxin biosynthetic processes. The latter was
in principle limited to gliotoxin biosynthesis (Figure 3C, Supplementary Table S3). Indeed,
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a closer look at the genes of the gliotoxin cluster identified 7 of 12 genes as downregulated,
including gliP, the gene for the non-ribosomal peptide synthetase. The largest enriched
biological processes were oxidation-reduction processes and transmembrane transport.
More specifically, the transmembrane transport of phosphate ions and the specific response
to oxidative stress was deregulated in the absence of the peroxiredoxin. To analyze whether
Asp f3 is required for the activation of ROS defense, catalase activity was determined in
total protein extracts from both strains before and after a treatment with H2O2 by indirect
measurement of catalase activity (Figure 4A). Untreated hyphae (−H2O2) revealed insignif-
icant differences in catalase activity. Exposure of H2O2 to the swollen spores increased
catalase activity in both WT and ∆asp f3, but ROS dependent upregulation in ∆asp f3 led to
significantly lower activity then in hyphae of the wild type. To determine which catalases
were active in the samples both strains were grown for 20 h and challenged with H2O2
for 45 min. Proteins were extracted and loaded in equal amounts (30 µg) on a native
polyacrylamide gel to perform an in-gel catalase activity assay (Figure 4B,C). Catalase
activity was visualized by a negative staining and shows a strong induction of Cat2 in
the wild type after challenge with H2O2. In contrast to the wild type, Cat2 activity was
detectable in the unchallenged sample of ∆asp f3. However, exposure to H2O2 did not lead
to an induction of Cat2 activity. Activity of the spore borne catalase CatA was not observed.
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Figure 4. Catalase activity in hyphae of the wild type and the asp f3 deletion mutant of Aspergillus fumigatus. (A): Catalase
activity was measured in total protein isolated from swollen spores 30 min after stress treatment with either 0 mM (−H2O2) or
2 mM (+H2O2) H2O2. (B): Catalase activity staining was performed according to the method of Goldberg and Hochman [30].
Cultures of wild type and ∆asp f3 were grown for 20 h and treated with 5 mM H2O2. Negative staining shows catalase
activity of Cat1 and Cat2 as described previously [29,33] (C): Loading control stained with Coomassie. *: p < 0.05
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3.3. Full ROS Dependent Activation of Several Afyap1 Target Genes Requires Asp f3

Several genes with a major role in the redox-homeostasis and the defense against
oxidative stress were upregulated in the wild type (Table 2), among them three con-
firmed targets of the major activator AfYap1 [29]: the bifunctional catalase-peroxidase
(cat2, AFUA_8g01670), the Cytochrome c peroxidase (ccp1, AFUA_4G09110), and the p-
Nitroreductase family protein (pnr1, AFUA_5g09910). The latter is not only known to be
strongly induced by diverse environmental stresses such as superoxide stress, osmotic
stress and heat stress but is also expressed when the fungus is exposed to neutrophils [34,35].
However, other putative AfYap1-targets suggested by Lessing and colleagues [29], such
as the mitochondrial peroxiredoxin (Prx1) or methionine synthase, were not significantly
affected in the transcriptome data set of the wild type or the mutant. The expression of the
putative Afyap1 targets, the yap1 itself, and several other ROS defense genes was analyzed
by qRT-PCR in two different conditions (Figure 5). Expression of ROS defense genes in
Czapek-Dox (CD) medium (Figure 5A), which was also used to generate the transcriptome
data, was approximately an order of magnitude lower than in Aspergillus minimal medium
(AMM) which was supplemented with added trace metals as a major difference (Figure 5B).
For both wild type and ∆asp f3 the expression of the Afyap1 gene was comparably lower in
CD than in AMM even without the addition of ROS stress. For both strains the transcript
levels were also not significantly affected by the addition of ROS in CD, while a significant
induction of the regulator gene Afyap1 was detected for both strains in AMM. For several
other ROS defense genes, including the putative Afyap1 targets ccp1, cat2, and pnr1, ROS
dependent activation was lower in hyphae of the asp f3 deletion mutant. This lack of
activation was also more pronounced in the trace metal free CD medium. ROS mediated
induction of catA and gpx3 were detected for both strains in both media.

Table 2. Expression of oxidative stress genes in the Aspergillus fumigatus wild type and ∆asp f3 in response to reactive oxygen
species (ROS).

Gene ID Afyap1
Target *

WT + ROS vs.
WT − ROS

∆asp f3 + ROS vs.
∆asp f3 − ROS

∆asp f3 + ROS
vs. WT + ROS

1 Putative NADH flavin
oxidoreductase (AFUA_2g04060) − 4.16 1.93 −2.65

2 bifunctional catalase-peroxidase (cat2,
AFUA_8g01670) + 2.85 0.31 −2.64

3 p-Nitroreductase family protein (pnr1,
AFUA_5g09910) + 4.05 2.4 −2.15

4 Oxidoreductase, putative
(AFUA_5G01250) − 2.12 0.39 −1.87

5 Thioredoxin reductase
(trxR, AFUA_4g12990) − 2.75 1.79 −1.74

6 Glutathione transferase, putative
(AFUA_2g15770) − 2.53 0.95 −1.66

7
NADH-dependent flavin
oxidoreductase, putative

(AFUA_7G06420)
− 1.81 0.88 −1.47

8 Glutathione peroxidase
(gpx3, AFUA_3g12270) − 1.31 0.35 −1.34

9 Cytochrome c peroxidase
(ccp1, AFUA_4G09110) + 1.36 0.21 −1.3

10 Glutathione S-transferase, putative
(AFUA_2G00590) − 0.85 0.22 −1.18
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Table 2. Cont.

Gene ID Afyap1
Target *

WT + ROS vs.
WT − ROS

∆asp f3 + ROS vs.
∆asp f3 − ROS

∆asp f3 + ROS
vs. WT + ROS

11 Ferric-chelate reductase, putative
(AFUA_6G13750) − 0.86 −0.26 −1.14

12 Gliotoxin Cluster e.G. gliM
(AFUA_6G09680) − −0.3 0.62 −1.12

13 Metalloreductase, putative
(AFUA_6g02820) − 1.21 0.27 −1.1

14 Thioredoxin (Asp29/Trx1)
(AFUA_5g11320) − 1.63 0.7 −1.1

15 Mitochondrial peroxiredoxin Prx1
(AFUA_4G08580) + −0.75 −0.66 0.13

16 Methionine synthase MetH/D
(AFUA_4G07360) + −0.11 −0.02 0.07

* Putative members of the Yap1 regulon according to Lessing et al., 2007 [29].
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Figure 5. Gene expression of ROS defense genes in wild type (WT) and aspf3-deleted (∆asp f3) hyphae
of Aspergillus fumigatus in Czapek Dox (A) and Aspergillus minimal medium (B) in the absence (−ROS)
or presence (+ROS) oxidative stress. Data from qRT-PCR are displayed as logFC normalized to the
housekeeping gene tubA and represent the mean and SD of three biological replicates. For statistical
analysis, Student’s t-test with *: p < 0.1; **: p < 0.05; ***: p < 0.01 was used.
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3.4. Asp f3 Is Required for Afyap1 Activation and Nuclear Localization

The oxidative stress regulator Afyap1 localizes to the nucleus in response to ROS and
activates the transcription of target genes, such as cat2 [29]. The reduced expression levels
of cat2 in ∆asp f3, as well as the lower catalase activity in the mutant, prompted us to eval-
uate whether Afyap1 activation depends on this peroxiredoxin. Thus, we monitored the
subcellular localization of the AfYap1-Venus fusion protein in germlings of the wild type
and ∆asp f3 (Figure 6). In the absence of H2O2, AfYap1VENUS displayed diffused cytosolic
localization in both, wild type and ∆asp f3 (0 min). An addition of 2 mM H2O2, induced
nuclear localization of AfYap1VENUS in wild type germlings within 30 min. Conversely,
in the ∆asp f3 background, a larger proportion of the AfYap1VENUS remained diffused
in the cytoplasm with only a minor nuclear concentration of the activator. To overcome
heterogeneity in the microscopic data, we quantified the fluorescence intensity signals for
AfYap1VENUS and DAPI as a nucleus specific signal. Co-localization of the two different
fluorescent intensities was determined as Pearson’s correlation coefficient (PCC, Figure 7).
In the absence of H2O2, PCC values were 0.48 and 0.46 for wild type and ∆asp f3, respec-
tively. Whereas, after 30 min of H2O2 exposure PCC values significantly increased for the
wild type (0.80). However, a significantly lower PCC value was observed for ∆asp f3 (0.61)
when compared with the treated wild type indicating that efficient nuclear localization of
Afyap1 depends on the peroxiredoxin Asp f3.
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Figure 6. Subcellular localization of AfYap1VENUS. Aspergillus fumigatus conidia were incubated in
Czapec Dox for 10 h until germination. Both strains were challenged with 2 mM H2O2 for 30 min
before microscopy. The VENUS-tag shows a green fluorescent signal for the target protein AfYap1,
nuclei were stained with NucBlue™ Live ReadyProbes™.
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Figure 7. Quantification of co-localization of DAPI and AfYap1VENUS dependent fluorescence signals.
Pearson’s correlation coefficient (PCC) for DAPI and AfYap1VENUS co-localization calculation in the
presence and absence of H2O2 in the wild type and ∆asp f3 background strains. The data represents
the mean and standard deviation from at least three independent experiments (n ≥ 3). Significant
differences calculated by Student’s t-test are shown as *: p < 0.05; **: p < 0.01; ***: p < 0.001.

4. Discussion

The peroxiredoxin Asp f3 is a major allergen and an abundant protein of A. fumigatus,
as an allergen on the conidial surface, but also within growing hyphae. It was shown to
function in the defense against ROS and was essential during invasive aspergillosis in a
mouse infection model [11]. However, it remained unclear how this confirmed biochemical
function as a peroxiredoxin would serve precisely during infection in the host. In the
absence of oxidative stress, the absence of ∆asp f3 yields an inconspicuous phenotype, nearly
indistinguishable from the wild type. Our transcriptome analysis confirmed, under in vitro
conditions without ROS exposure, only minor transcriptional changes were detected and
the Asp f3 protein appears to be dispensable for growth. This observation is in line with
earlier results for Saccharomyces cerevisiae which demonstrated that the yeast was still
viable despite a deletion of all five peroxiredoxin genes and that single mutants grew
like the wild type in aerobic conditions [36]. Interestingly, the authors also showed that
the Asp f3 orthologue in yeast, Tsa1p, secured long-term genomic stability by preventing
mutations [37,38]. Such a protective function may well be conserved in A. fumigatus
but would most likely not explain the avirulent phenotype of the ∆asp f3 strain in the
aspergillosis animal model.

While Asp f3 was dispensable in hyphae during the absence of ROS, confrontation
with ROS induced major changes in the transcriptome. Resulting from its hypersensitive
phenotype, one may have expected a slightly higher expression level of oxidative stress
genes to compensate the phenotype, but indeed the opposite was observed. Several
ROS defense genes were slightly downregulated under ambient growth conditions, and
for others no induction was seen in response to ROS. Amongst the unaffected or even
downregulated genes are several which are pivotal to the oxidative stress response or
involved in virulence. Several of the genes, including trxR, ccp1 and gpx3, also coincide
with genes upregulated in A. fumigatus conidia when exposed to neutrophils, indicating
their relevance during virulence [35]. Although not all of these gene products may be
crucial to defend against innate immune cells, it confirms the presence of a perceptible
exposure to ROS. Furthermore, TrxR was recently described as an essential gene which not
only affects oxidative stress resistance but is needed for full virulence in animal models
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of both Galleria melonella and immunosuppressed mice [39]. Seven genes of the gliotoxin
gene cluster are downregulated in ∆asp f3, including gliP, which encodes the nonribosomal
peptide synthase catalysing the first step in the biosynthesis of gliotoxin. This mycotoxin is
produced in vivo during infections and is known to mediate immunosuppressive effects
on human cells [40–43]. When interacting with human neutrophils, gliotoxin was shown
to re-organize the actin-skeleton, thus inhibiting phagocytosis and further inhibiting the
respiratory burst and other neutrophil functions such as superoxide production [44,45].
Additionally, deletion of gliP was shown to attenuate virulence in mice immunosuppressed
with hydrocortisone [42,46]. With regard to its reversible dithiol linkage, a regulatory link
between gliotoxin biosynthesis and the fungal redox state seems likely and has previously
been observed [47]. We saw a mild H2O2 dependent upregulation in the wild type and the
opposite tendency in the absence of Asp f3. Such downregulation of the gliotoxin gene
cluster in the ∆asp f3 strain may lead to lower levels of the mycotoxin during infection
which might thus attenuate its virulence potential in the lung environment in the host.

Some of the downregulated genes in ∆asp f3 were confirmed regulatory targets of
Afyap1. Furthermore, Afyap1VENUS overexpression in a ∆asp f3 background could not
compensate for the absence of Asp f3. These results suggested that Afyap1 and Asp f3
could be functionally interconnected, especially as a reversible disulphide bond formation
is known to regulate Yap1 localization and activity. In baker’s yeast, activation of Yap1 was
first reported to occur by the glutathione peroxidase (Gpx3), acting as the hydroperoxide
receptor and redox transducer [48]. In our transcriptome the Gpx3 orthologue of A.
fumigatus was clearly upregulated in the wild type in response to ROS but transcription
remained unchanged in ∆asp f3 after ROS treatment. It should not be excluded that lower
levels of Gpx3 in the mutant may attenuate Afyap1 activation, either via direct interaction
or as a member in a redox relay system.

Peroxiredoxin dependent activation of the Yap1 regulator has also been proposed for
filamentous fungi previously [49]. In Aspergillus nidulans, the Yap1 orthologue is coined
NapA and regulates a wide set of genes far beyond ROS defense. Neither GpxA (Gpx3 in
A. fumigatus) or two other peroxiredoxins, TpxA (AFUA_4g08580, Prx1 in A. fumigatus) and
TpxB (AFUA_8G07130 in A. fumigatus), were found to be involved in NapA activation [50],
making it seem unlikely that their orthologous proteins would fulfil this role in A. fumigatus.
Both peroxiredoxins were slightly downregulated under oxidative stress, independent
of Asp f3. Another peroxiredoxin, Tsa1p was shown to activate Yap1 in specific yeast
strains [51]. Asp f3 is most likely not a true homologue of Tsa1p, as the amino acid
identity between the two proteins is lower when comparing Asp f3 to Ahp1 (18% and 37%,
respectively). In contrast to Tsa1p, Ahp1p is specific for alkylhydroperoxides [52].

We found Asp f3 to be the peroxiredoxin that mediates nuclear retention of Afyap1
under ROS exposure in A. fumigatus, indicating that this function may well be conserved
for its homologue in A. nidulans-PrxA, which was found to be involved in oxidative
stress defense and suspected to be the regulatory peroxiredoxin for NapA [49,53]. We
speculate that this occurs via direct interaction of the two proteins and that rather its
cellular abundance rather than specific biochemical properties of Asp f3 determine this
interaction. As Afyap1 was previously found to be dispensable for virulence in a mouse
model of aspergillosis our results also suggest that another, Afyap1 independent function
of Asp f3 must be essential during infection conditions. A previous study has identified
that iron availability may be compromised in response to oxidative stress [54] and Asp f3
may represent a regulatory hub between these interconnected stress responses.

5. Conclusions

Aspergillus fumigatus puts immunocompromised patients at a high risk of severe and
often fatal infections. It is thus imperative to find not only more reliable diagnostic tools
but also research a more targeted approach for antimycotic treatment. In this study we
investigated the in vivo function of Asp f3, a protein that plays an essential in virulence. A
transcriptomic approach showed clear differences between the wild type and the highly
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ROS-sensitive ∆asp f3 mutants. Further investigations led to the conclusion that Asp
f3 deficient mutants suffer from a deregulation of the oxidative stress response due to
lacking nuclear retention of the regulator Afyap1. However, loss of Afyap1 does not lead
to avirulence of A. fumigatus, strongly suggesting additional cellular effects upon challenge
with ROS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12050668/s1, Figure S1: Overexpression construct for Afyap1VENUS. A Vector Map
of gpdA-Afyap1-VENUS including the pyrithiamine resistance gene thiA (ptrA) gene of Aspergillus
oryzae as a selectable marker for successful transformation in A. fumigatus. Figure S2: Growth of
Aspergillus fumigatus on minimal media (AMM) with various carbon sources. 2 × 104 conidia of
the wild type (D141) and the asp f3 deletion mutant (∆asp f3) were point-inoculated on AMM with
indicated supplements (% w/v) as carbon/nutrient sources and incubated at 37 ◦C for 48 h. The
Afyap1 deletion strain (∆Afyap1) and its wild type like parent CEA17∆akuBKU80 (CEA17) are shown
for comparison. Table S1: Primer list for the generation of Afyap1VENUS. Table S2: Results of the gene
enrichment analysis (GO-term search, molecular function). Table S3: Results of the gene enrichment
analysis (GO-term search, biological process).
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