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Abstract: There is strong evidence for a genetic contribution to non-syndromic congenital heart de-

fects (CHDs). However, exome- and genome-wide studies conducted at the variant and gene-level 

have identified few genome-wide significant CHD-related genes. Gene-set analyses are a useful 

complement to such studies and candidate gene-set analyses of rare variants have provided insight 

into the genetics of CHDs. However, similar analyses have not been conducted using data on com-

mon genetic variants. Consequently, we conducted common variant analyses of 15 CHD candidate 

gene-sets, using data from two common types of CHDs: conotruncal heart defects (1431 cases) and 

left ventricular outflow tract defects (509 cases). After Bonferroni correction for evaluation of mul-

tiple gene-sets, the cytoskeletal gene-set was significantly associated with conotruncal heart defects 

(βS = 0.09; 95% confidence interval (CI) 0.03–0.15). This association was stronger when analyses were 

restricted to the sub-set of cytoskeletal genes that have been observed to harbor rare damaging gen-

otypes in at least two CHD cases (βS = 0.32, 95% CI 0.08–0.56). These findings add to the evidence 

linking cytoskeletal genes to CHDs and suggest that, for cytoskeletal genes, common variation may 

contribute to the risk of CHDs. 
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1. Introduction 

Congenital heart defects (CHDs) are the most common type of birth defect and are 

associated with significant morbidity and mortality [1–3]. Some individuals with CHDs 

have an identified malformation syndrome (e.g., 22q11.2 deletion, Holt-Oram). However, 

the majority of individuals with a CHD appear to be non-syndromic [4,5]. While a genetic 

contribution to non-syndromic CHDs has long been suspected, the number of genes for 

which there is strong evidence of an association with non-syndromic forms of human 

CHDs is relatively small [5–7]. 
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A few CHD genes have been identified by classic linkage and candidate gene associ-

ation studies [4]. In addition, single nucleotide polymorphism (SNP)-level, genome-wide 

association studies (GWAS) of CHDs and common variants have identified several ge-

nome-wide significant associations, although few of these associations have been inde-

pendently replicated [8]. Further, studies using next generation sequencing data have re-

vealed enrichment of potentially damaging de novo and rare inherited variants in specific 

gene classes. However, genome-wide significant associations with rare variants have been 

identified for only a few individual genes. For example, analysis of whole exome sequence 

(WES) data from 2871 CHD case-parent trios identified only seven genes with an excess 

of rare, potentially damaging de novo and inherited variants that exceeded genome-wide 

significance [9]. 

It is widely recognized that studies requiring genome-wide multiple testing correc-

tions will identify only a small fraction of the disease-relevant genetic variation [10]. Con-

sequently, analytic strategies that complement genome- and exome-wide analyses are 

used to extract additional information from such data. Gene-set analyses, which aggregate 

genetic variants and genes into biologically meaningful groups (e.g., based on function, 

expression pattern, biological pathway), and evaluate the overall effect of the set, provide 

one such strategy. 

Gene-set analyses of de novo and rare inherited variants have provided additional 

insights regarding the genetic architecture of CHDs. For example, Watkins et al. [11] eval-

uated 15 CHD candidate gene-sets using WES data from 2391 trios and identified several 

sets (e.g., cilia, chromatin, and cytoskeletal genes) that were significantly enriched for rare 

damaging genotypes . Further, these analyses revealed differences in the variant profiles 

across gene-sets. For example, cilia genes were found to be enriched for rare inherited 

genotypes (recessive or compound heterozygous) and relatively depleted for rare de novo 

mutations, whereas the opposite pattern was observed for chromatin genes, and cytoskel-

etal genes were found to be enriched for both rare inherited and de novo genotypes. 

Despite the insights into the genetic contribution to CHDs provided by gene-set anal-

yses of rare variants, similar analyses have not been conducted using data on common 

variants. Gene-set analyses of common variants would, however, have increased power 

to detect associations relative to SNP- or gene-level GWAS. In addition to identifying new 

gene-sets that may be related to CHDs, such analyses would help to determine whether 

common and rare variants act through shared or distinct gene-sets. Consequently, to gain 

further insight into the genetic landscape of CHDs, we conducted common variant gene-

set analyses for the 15 CHD candidate gene-sets that were assessed for rare genotypes by 

Watkins et al.  [11]. Since CHDs are a heterogeneous group of conditions that may have 

overlapping but not identical risk profiles, we conducted our analyses separately for the 

two most common types of CHDs: conotruncal heart defects (CTDs) and left ventricular 

outflow tract defects (LVOTDs), as well as for the two defects in combination. 

2. Materials & Methods 

2.1. Data Sets 

Our analyses were based on summary statistics from SNP-level genome-wide asso-

ciation meta-analyses of CTDs and LVOTDs, which, collectively, account for approxi-

mately 60% of all CHDs [12]. Details of the data and analyses underlying the summary 

statistics are published [13]. Briefly, meta-analyses were based on five datasets derived 

from study populations recruited through the Children’s Hospital of Philadelphia 

(CHOP) and the Pediatric Cardiac Genomics Consortium (PCGC). Informed consent was 

obtained from each case or the case’s parent/guardian, under protocols approved by the 

institutional review boards at CHOP or the PCGC clinical study sites. Individuals of all 

races and ethnicities were eligible to participate. 

Cases with CTDs included individuals with tetralogy of Fallot, D-transposition of the 

great arteries, ventricular septal defects (conoventricular, posterior malalignment and 
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conoseptal hypoplasia), double outlet right ventricle, isolated aortic arch anomalies, trun-

cus arteriosus, or interrupted aortic arch. Cases with LVOTDs included individuals with 

hypoplastic left heart syndrome, coarctation of the aorta with or without bicuspid aortic 

valve, and aortic valve stenosis, and excluded individuals with variants of hypoplastic left 

heart syndrome, such as mal-aligned atrioventricular canal defects or double outlet right 

ventricle with mitral valve atresia. Medical records were reviewed to ensure accuracy of 

the cardiac phenotype. Cases with a known or suspected genetic syndrome (e.g., 22q11.2 

deletion syndrome) were excluded. 

Genotype data were generated using Illumina arrays followed by imputation. Prior 

to imputation, haplotypes were pre-phased using SHAPEIT2 v2.727 [14]. Genotype im-

putation was performed using Impute 2 v2.3.0 [15], with pre-phased data from the 1000 

Genomes Project (Phase I integrated v3 variant set) as a reference. The following exclu-

sions were made prior to imputation: case-parent trios with a Mendelian error rate > 1%; 

suspected duplicate samples (i.e., samples with pair-wise identity by descent > 0.6); and 

SNPs with a minor allele frequency (MAF)  < 1%, genotyping rate < 90%, or deviation 

from Hardy Weinberg equilibrium in controls/parents (p ≤ 1 × 10−5). Post-imputation, in-

dividuals with genotyping rates < 90% were excluded, as were variants with poor impu-

tation quality (r2 < 0.8), MAF < 5%, or genotyping rate < 90%. 

SNP-level (MAF > 0.05) GWASs, conducted in three CTD datasets: CHOP CTD trios 

(N = 670 trios), CHOP CTD cases/controls (N = 406 cases/2976 controls), and PCGC CTD 

trios (N = 355 trios), and two LVOTD datasets: CHOP LVOTD trios (N = 317 trios) and 

PCGC LVOTD trios (N = 192 trios), have been reported [13]. Briefly, the trio data were 

analyzed using a multinomial likelihood approach [16]. Genotypes were indexed using 

an additive (one degree of freedom) model of inheritance and, for each SNP, a likelihood 

ratio test was use to compare models with and without the genotypic parameter. These 

analyses were implemented in EMIM [17]. As these family-based analyses are robust to 

population stratification bias [18], cases of any race and ethnicity were included. The case-

control data were analyzed in a similar manner using logistic regression as implemented 

in Golden Helix v8.1 (Golden Helix, Inc., Bozeman, MT, USA). The case-control analyses 

were restricted to include only Caucasian cases and controls and the SNP-phenotype as-

sociations were adjusted for the first two principal components of race/ethnicity. An ad-

ditive genetic risk model was used in all analyses. 

Meta-analyses, based on the summary statistics from the EMIM analyses of the indi-

vidual studies, have also been reported [13]. Specifically, we conducted three meta-anal-

yses: CTDs only (3 studies, 1431 cases); LVOTDs only (2 studies, 509 cases); and CTDs and 

LVOTDs combined (5 studies, 1940 cases). Meta-analyses were conducted using GWAMA 

v2.1 [19] with a fixed-effects model, unless there was evidence of heterogeneity (based on 

Cochran’s heterogeneity p ≤ 0.1), in which case a random-effects model was used. 

2.2. Gene-Sets 

We evaluated 15, previously-defined, CHD-related gene-sets [11]. These gene-sets 

were selected based on evidence of a role in heart development, or association with CHDs 

in humans or animals, and include sets based on gene function (e.g., cilia, cytoskeletal), 

pathways (e.g., hedgehog signaling), and expression patterns (e.g., mouse embryonic 

heart) (Table 1). The cytoskeletal gene-set excluded genes specific to cilia function and 

structure.  
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Table 1. CHD-related gene-sets analyzed for association with CTDs and LVOTDs. 

Name Description 1 # of Genes 

Autism High-ranking autism candidate genes 86 

CHD Non-cilia genes associated with congenital heart defects in humans or other organisms 402 

Chromatin 
Chromatin-modifying genes found to be disrupted in patients with congenital heart 

defects 
163 

Cilia 
Expanded cilia gene list including the 302 SysCilia genes and potential cilia genes 

identified by a GOontology search in model organisms (zebrafish and mouse) 
669 

Cytoskeletal 
Cytoskeleton genes identified using the Reactome pathway database, with exclusion 

of genes related to cilia structure or function 
791 

FGF signaling 
Fibroblast growth factor signaling genes identified using the Reactome pathway 

database 
87 

FoxJ1 
Genes with at least a two-fold change in expression when FoxJ1 is over-expressed or 

depleted in a zebrafish model 
116 

Hedgehog 

signaling 
Hedgehog signaling genes identified using the Reactome pathway database 149 

High heart 

expression 

Genes with de novo mutations observed in human CHD cases and in the top quartile 

of expression in mouse embryonic day 14.5 hearts 
146 

Notch1 Hand curated Notch1 associated gene list 130 

PDGF signaling 
Platelet derived growth factor signaling genes identified using the Reactome pathway 

database 
116 

Ser-Thr kinases Ser-Thr kinases identified using the Reactome pathway databases 47 

Syscilia Well-characterized structural cilia genes (SysCil 2.0) assembled from the literature 302 

TGF-β Assembled using the Reactome pathway database 431 

WNT signaling WNT signaling genes identified using the Reactome pathway databases 297 

#, number 1 Gene-sets as defined in Watkins et al. 2019 [11]. 

2.3. Gene-Set Analyses 

Gene-set analyses were conducted using the regression-based approach imple-

mented in MAGMA version 1.08 [20] and SNP-level summary statistics from our prior 

meta-analyses as input. Separate analyses were conducted for CTDs only, LVOTDs only, 

and for CTDs and LVOTDs combined. For these analyses, genes were defined by their 

transcription start-stop coordinates, based on the Genome Reference Consortium Human 

genome build 37. For each gene, we specified an annotation window that included 1 

kilobase up- and downstream of these start-stop coordinates, and all SNPs located in the 

window were mapped to the gene. 

Gene p-values were calculated from the summary statistics for SNPs within the gene 

annotation window. In MAGMA, gene p-values can be estimated by the mean of these 

statistics, the top statistic, or these two gene-level statistics can be combined into an ag-

gregate statistic. We used the aggregate statistic, because it provides a more even distri-

bution of power and sensitivity for a wider range of genetic models than the other gene-

level statistics. The aggregate statistics were transformed to Z-scores using the probit func-

tion, such that associations with lower p-values are associated with higher Z-scores. The 

resulting Z-scores were used as the input for the gene-set analyses. 

We used MAGMA to conduct competitive gene-set analyses using linear regression. 

The dependent variable in these analyses was the gene Z-score and the primary independ-

ent variable was a binary variable (S) indicating whether a gene is (S = 1), or not (S = 0) in 

the gene-set. Additional covariates were included, using the default options in MAGMA, 

to control for gene size, mean minor allele count in the gene and within-gene linkage dis-

equilibrium. To account for linkage disequilibrium between genes in close proximity, 

MAGMA models the residuals as a multivariate normal, with correlations set to the gene-

gene correlations estimated as part of the gene-level analyses. In MAGMA, gene–gene 
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correlations are estimated for pairs of genes within five megabases of each other and are 

otherwise set to zero [20]. The gene-set statistic tests the null hypothesis that the mean 

association of the outcome (e.g., CTDs) with the genes in the set is greater than that of 

genes that are not in the set (i.e., H0: βS = 0 versus H1: βS > 0). A Bonferroni correction was 

used to account for the assessment of 15 gene-sets, such that gene-sets with p < 0.003 were 

considered to be significantly associated with the outcome. 

For each significantly associated gene-set, we re-examined the results for each gene 

and SNP in the set, to determine whether these associations would be significant using a 

gene-set specific Bonferroni correction (i.e., p < 0.05/number of genes in the set). We also 

annotated each SNP in the gene-set with its odds ratio and 95% confidence interval from 

our prior SNP-level genome-wide meta-analyses [13], and with its location (e.g., inter-

genic) or consequence (e.g., missense mutation), and scaled a combined annotation de-

pendent depletion (CADD) score [21,22] obtained using the Ensembl Variant Effect Pre-

dictor [23]. 

In addition, because the present analyses and the analyses of Watkins et al. [11] both 

used data from the PCGC, for each significant (p < 0.003) CHD-gene-set association, we 

determined the number of cases with potentially damaging rare genotypes in relevant 

genes (as identified by Watkins et al. [11]) in the analysis. These cases were not omitted 

from the current analyses, because we used SNP-level summary statistics from GWAS 

that pre-dated the work of Watkins et al. [11]. The number of cases that would have been 

excluded was, however, relatively small. For example, only 2% of the CTD cases in our 

analyses were both included in the analyses of Watkins et al. [11], and found to carry a 

potentially damaging rare genotype in a cytoskeletal gene. 

2.4. Post Hoc Analyses 

Although not part of our original analysis plan, we conducted additional analyses 

for each significant (p < 0.003) CHD-gene-set association, to assess whether the association 

was stronger when the gene-set was restricted to include only those genes that were found 

to harbor damaging de novo or rare recessive or compound heterozygous genotypes in at 

least one of the 2391 whole-exome sequenced CHD trios included in the analyses of Wat-

kins et al. [11]. Specifically, we conducted competitive analyses for three restricted gene-

sets including genes with: damaging de novo mutations in at least one CHD case; damag-

ing recessive or compound heterozygous genotypes in at least one case; or damaging de 

novo mutations and/or recessive or compound heterozygous genotypes in more than one 

case. The magnitude of the association between the outcome and each of these gene-sets 

was compared using the gene-set indicator parameter estimates (i.e., βS). 

3. Results 

We used a regression-based approach to assess associations between 15 CHD-related 

gene-sets and the two most common types of CHDs (i.e., CTDs and LVOTDs). Our anal-

yses were based on summary statistics from prior genome-wide, common variant (i.e., 

MAF > 5%) analyses of CTDs only, LVOTDs only and the combined CTD and LVOTD 

groups [13]. For each outcome (CTDs only, LVOTDs only, CTDs and LVOTDs combined), 

gene-level p-values were generated for 17,343 genes. Using a genome-wide Bonferroni 

correction (i.e., p < 0.05/17,343) no gene was significantly associated with any of these out-

comes (Supplemental Table S1). Further, no gene-set was significantly associated (i.e., p < 

0.003) with LVOTDs only, or with CTDs and LVOTDs combined. However, a significant 

association was identified between the cytoskeletal gene-set and CTDs (p = 0.001) (Table 

2). The coefficient for the gene-set variable (i.e., βS = 0.09) indicates that, on average, the Z-

scores for genes in the cytoskeletal set are higher than the Z-scores for genes that are not 

in this set after controlling for gene size, mean minor allele count in the gene, and both 

within and between gene linkage disequilibrium, since these Z-scores are inversely re-

lated to their corresponding p-values. 
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Table 2. Summary of gene-set analyses for CTDs only (N = 1431 cases), LVOTDs only (N = 509 cases), and CTDs and 

LVOTDs (N = 1940) combined. 

Gene-Set 

# Genes 

Analyzed 

(# of Genes 

in Set) 1 

CTDs Only 

(3 Datasets/1431 Cases) 2 

LVOTDs Only 

(2 Datasets/509 Cases) 2 

CTDs and LVOTDs 

(5 Datasets/1940 Cases) 2 

  ΒS 95% CI p-value 3 βS 95% CI p-value 3 βS 95% CI p-value 3 

Autism 76 (86) −0.12 −0.03–0.06 0.89 0.11 −0.09–0.31 0.12 −0.02 −0.20–0.16 0.59 

CHD 364 (402) 0.04 −0.05–0.11 0.21 0.05 −0.03–0.13 0.14 0.02 −0.06–0.10 0.36 

Chromatin 148 (163) 0.07 −0.05–0.19 0.15 −0.02 −0.16–0.12 0.63 −0.01 −0.13–0.11 0.57 

Cilia 612 (669) 0.06 0.001–0.12 0.03 0.04 −0.02–0.10 0.09 0.06 0.001–0.12 0.04 

Cytoskeletal 726 (791) 0.09 0.03–0.15 0.001 −0.06 −0.12–0.001 0.97 0.04 −0.02–0.10 0.08 

FGF signaling 83 (87) 0.03 −0.15–0.21 0.37 0.008 −0.17–0.18 0.46 −0.07 −0.23–0.09 0.80 

FoxJ1 105 (116) 0.06 −0.08–0.20 0.20 0.06 −0.08–0.20 0.20 0.05 −0.09–0.19 0.24 

Hedgehog signaling 137 (149) 0.11 −0.01–0.19 0.04 0.06 −0.06–0.18 0.19 0.05 −0.07–0.17 0.21 

High heart expression 133 (146) −0.12 −0.26–0.02 0.96 −0.03 −0.16–0.12 0.66 0.02 −0.12–0.16 0.41 

Notch1 120 (130) −0.05 −0.19–0.09 0.77 0.18 0.04–0.32 0.007 −0.12 −0.26–0.02 0.95 

PDGF signaling 101 (116) −0.11 −0.27–0.05 0.92 0.08 −0.08–0.24 0.15 −0.18 −0.34–0.02 0.99 

Ser-Thr kinases 41 (47) −0.06 −0.31–0.19 0.66 −0.03 −0.28–0.22 0.60 −0.13 −0.37–0.13 0.84 

SysCilia 280 (302) 0.04 −0.06–0.14 0.19 0.04  −0.06–0.14 0.20 0.01 −0.07–0.09 0.40 

TGF-β 402 (431) −0.03 −0.11–0.05 0.77 −0.05 −0.13–0.03 0.88 −0.04 −0.12–0.04 0.86 

WNT signaling 275 (297) 0.08 −0.02–0.18 0.04 −0.02 −0.12–0.08 0.65 0.05 −0.05–0.15 0.16 

#, number; CI, confidence interval; CTDs, conotruncal heart defects; LVOTDs, left ventricular outflow tract defects. 1 # of 

genes in the set that were represented in our data (# of genes in set as specified in Watkins et al. 2019). 2 Number of datasets 

and total number of cases included in the meta-analyses that provided the summary statistics used as the initial input for 

these analyses. 3 Test of the null hypothesis that the mean association of the phenotype with the genes in the set is greater 

than that of genes not in the set (i.e., H0: βS = 0 versus H1: βS > 0).  

We re-examined the gene-level p-values for genes in the cytoskeletal gene-set (Sup-

plemental Table S2), using a Bonferroni correction for the number genes in the set (N = 

726, p < 6.89 × 10−5). No gene was significantly associated with CTDs after this correction. 

We also re-examined the associations for SNPs mapping to genes in the cytoskeletal set 

(N = 131,628 SNPs). The odds ratios for the associations between these SNPs and CTDs 

ranged from 0.7–1.5 (Supplemental Table S3). Using a Bonferroni correction for the num-

ber of SNPs in the cytoskeletal set (p < 3.8 × 10−7), none of these SNPs were significantly 

associated with CTDs. 

The 10 cytoskeletal genes with the lowest p-values are provided in Table 3. The low-

est gene association p-value was for Cas scaffold protein family member 4 (CASS4, p = 

0.0032), a cytoplasmic adaptor protein involved in integrin signaling pathways that are 

important for cell migration and adhesion [24]. Of the SNPs mapping to CASS4, the lowest 

p-value was p = 0.0002 for an intronic variant (rs2064860) with a scaled CADD score of 

1.06. This gene also includes a variant in the 5′ untranslated region with a p-value < 0.05 

and a CADD score > 10 (rs17462136, p = 0.038, CADD = 18.66) (Supplemental Table S3). 

For SNPs mapping to a cytoskeletal gene, the lowest (albeit non-significant) p-value was 

p = 6.6 × 10−6, for an intronic variant (rs12072230), with a scaled CADD score of 2.14, in 

kazrin periplakin interaction protein (KAZN), a cytoplasmic adaptor that binds to p120 

catenin family members, which are important in maintaining cell shape integrity via the 

actin cytoskeleton [25]. An additional seven SNPs mapping to this gene had p < 0.05 and 

CADD > 10, including four intronic variants (rs41269409, p = 0.008, CADD = 11.13; 

rs1721829, p = 0.028, CADD = 10.40; rs804127, p = 0.032, CADD = 13.07; rs761191, p = 0.045, 

CADD = 13.74), two intergenic variants (rs17399514, p = 0.011, CADD = 10.47; rs2697976, 

p = 0.016, CADD = 10.06;) and one variant in a regulatory region (rs10927460, p = 0.010, 

CADD = 11.76) (Supplemental Table S3). KAZN had the fourth lowest gene-level p-value 

(p = 0.007) in the cytoskeletal gene-set (Table 3).  
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Table 3. Top 10 associations in the analyses of CTDs (N = 1431 cases) and all genes in the cytoskeleton gene-set and in the 

sub-set with rare, putatively damaging variants in > 2 cases 1 with a congenital heart defect. 

Gene 

Symbol 
Gene Name p-value 

# De 

Novo 1 

# Recessive or 

Compound 

Heterozygous 1 

Total # of Rare 

Variants 1 

Top 10 gene-associations in the full cystoskeletal gene-set (N = 726) 

CASS4 Cas scaffold protein family member 4 0.003 0 0 0 

CLIP1 Cap-gly domain containing linker protein 0.006 0 0 0 

ACTA2 Actin α 2, smooth muscle 0.006 0 0 0 

KAZN Kazin, periplankin interaction protein 0.007 0 0 0 

MAEA Macrophage erythroblast attacher, E3 ubiquitin ligase 0.010 0 0 0 

TBC1D21 TBC1 domain family member 21 0.010 0 0 0 

NRP1 Neuropilin 1 0.010 0 0 0 

SPIRE2 Spire type actin nucleation factor 2 0.012 0 2 2 

SEPT9 Septin 9 0.014 0 0 0 

CLIC5 Chloride intracellular channel 5 0.014 0 0 0 

Top 10 gene-associations in the sub-set of cystoskeletal genes with damaging rare genotypes in > 2 cases 1 (N = 50) 

SPIRE2 Spire type actin nucleation factor 2 0.012 0 2 2 

TNS1 Tensin 1 0.035 1 2 3 

SCNN1D Sodium channel epithelial 1 subunit delta 0.040 0 2 2 

RAPH1 Ras association and pleckstrin homology domains 1 0.046 1 1 2 

TENM2 Teneurin transmembrance protein 2 0.049 0 2 2 

TACC2 Tranforming acidic coiled-coil containing protein 2 0.050 0 2 2 

PLEC Plectin 0.060 0 8 8 

TRIP6 Thyroid hormone receptor interactor 6 0.073 0 2 2 

NOS3 Nitric oxide synthase 3 0.086 0 2 2 

BSN Bassoon presynaptic cytomatrix protein 0.093 1 4 5 
1 As reported in Watkins et al. [11]; includes cases with any type of CHD. 

The relatively low magnitude of association between SNPs in this gene-set and CTDs 

(i.e., odds ratio range: 0.7–1.5), suggests that the association between CTDs and the cyto-

skeletal gene-set observed in this study is unlikely to be driven by linkage disequilibrium 

between common and rare damaging variants with large effect sizes. Further, of the 1431 

CTD cases included in our analyses, only 29 were included, and found to carry a rare 

damaging genotype in a cytoskeletal gene in the analyses of Watkins et al. [11] Hence, it 

is unlikely that the common-variant signal detected in the current analyses is driven by 

the same individuals that drove the rare-variant signal reported in Watkins et al. [11] 

Post-hoc analyses were performed to assess whether the magnitude of the association 

between CTDs and the cytoskeletal gene-set was stronger when the set was restricted to 

include only those genes that were found to harbor rare damaging genotypes in cases with 

CHD in the analyses of Watkins et al. [11]. The genes included in each sub-set can be found 

in Supplemental Table S2. This table also includes the number of damaging de novo mu-

tations and rare recessive or compound heterozygous genotypes in each gene, as reported 

by Watkins et al. [11] and the gene-level p-values generated in the MAGMA analysis of 

CTDs only. 

Compared to the association between CTDs and the full cytoskeletal gene-set (βS = 

0.09, 95% CI 0.03–0.15), the magnitude of the association with the de novo subset (N = 82 

genes, βS = 0.12, 95% CI −0.05–0.30) was 1.3-fold higher (Table 4), and the magnitude of 

the association for the rare recessive or compound heterozygous subset was two-fold 

higher (N = 120 genes, βS = 0.18, 95% CI 0.04–0.3). Further, when the cytoskeletal gene-set 

was restricted to include only those genes for which variants (de novo or recessive/com-

pound heterozygous) were identified in more than one case (N = 50 genes: one gene with 
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>2 de novo mutations only; 31 genes with >2 recessive or compound heterozygous geno-

types only; 18 genes with at least one de novo mutation and one recessive or compound 

heterozygous genotype), the magnitude of the association with CTDs was 3.6-times 

higher (βS = 0.32, 95% CI 0.08–0.56) than that for the full cytoskeletal gene-set. Similar re-

sults were obtained when this subset was further limited to include only the 39 genes for 

which recessive or compound heterozygous genotypes were observed in >2 cases (Table 

4). Similar analyses conducted for the remaining 14 gene-sets revealed no clear patterns 

across datasets and none of the sub-set analyses had p-values less than our initial Bonfer-

roni corrected value of p < 0.003. 

Table 4. Summary of post hoc analyses of the association between CTDs and the cytoskeletal gene-set and sub-sets. 

Gene-Set/Sub-Set # of Genes S 
95% 

Confidence Interval 
p-value 2 

Full cytoskeletal gene-set 726 0.09 0.03–0.15 0.001 

Subset with de novo mutations 1 82 0.12 −0.05–0.30 0.09 

Subset with rare recessive mutations 1 120 0.18 0.04–0.32 0.007 

Subset with more than one reported de novo or recessive 

mutations 
50 0.32 0.08–0.56 0.002 

Subset with more than one reported recessive mutation 39 0.32 0.08–0.56 0.005 

#, number; 1 18 genes are in both the de novo and recessive sub-sets. 2 Test of the null hypothesis that the mean association 

of the phenotype with the genes in the set is greater than that of genes that are not in the set (i.e., H0: βS = 0 versus H1: βS > 

0). 

The 10 genes with the lowest p-values in the subset of cytoskeletal genes that had rare 

variants in two or more cases are provided in Table 3. The genes in this subset include 

only one of the genes (Spire Type Actin Nucleation Factor 2, SPIRE2) with the 10 lowest 

p-values in the full cytoskeletal gene-set. The lowest gene association p-value in this sub-

set was for SPIRE2 (p = 0.012), which, along with SPIRE1, drives nucleation of actin fila-

ments cells involved in intracellular vesicle transport [26]. Of the SNPs mapping to 

SPIRE2, the lowest p-value was p = 0.0004 for an intronic variant (rs12922448) with a scaled 

CADD score of 0.20. No variant in this gene had both a p-value < 0.05 and a CADD score 

> 10. 

4. Discussion 

We assessed the associations of 15 CHD candidate gene-sets with CTDs and LVOTDs 

using summary statistics from analyses of common (i.e., MAF > 5%) genetic variants. We 

found that, as a class, cytoskeletal genes were associated with CTDs. The cytoskeleton is 

involved in all aspects of cell shape changes and motility and is, therefore, critical for tis-

sue morphogenesis and development. A role for cytoskeletal genes in the etiology of 

CHDs, including defects of the outflow tract, is supported by studies in animal models 

[27–29], and by the identification of potentially causal mutations in cytoskeletal genes in 

humans with CHDs [30,31]. In addition, among individuals with a CHD, the cytoskeletal 

gene-set has been found to be significantly enriched for damaging de novo mutations (p 

< 7 × 10−5) as well as recessive or compound heterozygous (p < 4 × 10−5) genotypes [11]. 

Hence, our study adds to the evidence for involvement of cytoskeletal genes in the etiol-

ogy of CHDs in humans, and suggests that CHD risk may be influenced by common as 

well as rare variants in these genes. 

Our study highlights the importance of conducting downstream analyses of genome-

wide data that aggregate SNPs and genes into biologically meaningful groups and assess 

the overall effect of the set. In our data, no single SNP in the cytoskeletal set was strongly 

associated with CTDs (i.e., range of odds ratios: 0.7–1.5) and no SNP or gene in this set 

passed strict genome-wide, or even more lenient set-wide significance thresholds. Fur-

ther, while the Z scores for genes in the cytoskeletal set were, on average, significantly 
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higher (corresponding to lower p-values) than for all other genes, this difference was mod-

est (i.e., βS = 1.09). Hence, consistent with the observation that common genetic variants 

generally have only modest disease-associations, our analyses indicate that the association 

between CTDs and common variants in cytoskeletal genes is driven by weak signals 

across many genes, rather than by strong signals from a few genes. 

Several cytoskeletal genes for which there is prior evidence of a role in heart devel-

opment or an association with CHDs in humans had relatively low p-values in our anal-

yses: ACTA2 (p = 0.006), which is associated with bicuspid aortic valve in individuals with 

ACTA2-related thoracic aortic aneurisms [31] and with complex CHDs in individuals with 

ACTA2-related multisystemic smooth muscle dysfunction syndrome [32]; NRP1 (p = 0.01), 

for which a homozygous splice site mutation was identified in a multiplex, consanguine-

ous family with truncus arteriosus [33]; RAC1 (p = 0.04), which is associated with a range 

of outflow tract defects in targeted knockout mice [27,28]; and NOS3 (p = 0.09) which is 

associated with septal defects in the mouse knockout [34]. 

The relatively low p-values observed for cytoskeletal genes with prior links to CHDs 

provide some support for a causal interpretation of our observed association between 

CTDs and the cytoskeletal gene-set. Further support for such an interpretation is provided 

by the stronger association observed when our analyses were restricted to include only 

cytoskeletal genes with predicted damaging mutations in more than one CHD case, as 

compared to the full cytoskeletal gene set (i.e., βS = 0.32 and βS = 0.09, respectively), since 

the finding of deleterious genotypes in more than one affected individual increases the 

likelihood that a gene is truly disease-related. 

In their rare variant burden analyses, Watkins et al. [11] observed enrichment of sev-

eral gene-sets in addition to the cytoskeletal set—most notably, enrichment of de novo 

variants in the chromatin gene set (p < 1 × 10−5) and enrichment of recessive and compound 

heterozygous genotypes in the cilia gene-set (p < 1 × 10−5) [11]. In our analyses based on 

common variants, we found no evidence for association with the chromatin gene-set 

(CTDs, p = 0.15; LVOTDs, p = 0.63; CTDs + LVOTDs, p = 0.57) and only modest evidence 

for association with the cilia-gene set (CTD only, p = 0.03; LVOTD only, p = 0.09; CTD + 

LVOTD, p = 0.04). Watkins et al. also found some evidence of enrichment for de novo 

variants in the NOTCH signaling pathway gene-set (p < 0.001) [11], which, while not for-

mally significant after correction for multiple testing, had a relatively low p-value (p = 

0.007) in our LVOTD only analyses.  

Based on their analyses of rare variants, Watkins et al. [11] concluded that different 

classes of genes contribute to CHDs via different mechanisms, with some gene-sets con-

tributing predominantly via dominant (i.e., de novo) mutations (e.g., chromatin) and oth-

ers via rare recessive or compound heterozygous genotypes (e.g., cilia). Our results extend 

these findings to suggest that some gene-sets also contribute to CHD risk via common 

variants. In the analyses of Watkins et al. [11], the cytoskeletal gene-set was one of only 

two sets (the other was TGFβ signaling) for which there was strong evidence of enrich-

ment for both de novo mutations and rare recessive or compound heterozygous geno-

types. As common variants are generally expected to have mild functional consequences, 

it may be that the developing heart is particularly vulnerable to variation in cytoskeletal 

genes. 

In our analyses, the lack of association between CHDs and common variants in some 

gene-sets that were found to be enriched for rare variants (e.g., chromatin) may indicate 

that the impact of common variation on CHD risk is specific to particular gene-sets. How-

ever, the lack of association in this study could also be related to statistical power. In ad-

dition, the approach we used may underestimate true associations, since there may be a 

relatively large number of CHD-related genes outside of any given candidate gene-set. 

Moreover, each gene-set is likely to include a mixture of CHD relevant and non-relevant 

genes, which would also dilute the association signal. Further, although we considered 

the two largest categories of CHDs (i.e., CTDs and LVOTDs), it is possible that common 

variation in some gene-sets is associated with other CHD phenotypes. Such differences in 
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the contribution of common variants across CHD phenotypes might also explain our ob-

servation of an association between the cytoskeletal gene-set and CTDs, but not LVOTDs. 

5. Conclusions 

Our analyses provide evidence for an association between CTDs and common vari-

ation within cytoskeletal genes. These findings highlight the importance of conducting 

downstream analyses of data from GWAS. Our findings also add to the evidence that 

cytoskeletal genes contribute to CHDs, and in particular to CTDs, in humans and suggest 

this gene-set may be somewhat unique in that variation across the spectrum, from rare to 

common, may contribute to risk. Given the evidence that CHD-related genetic variation 

includes a range of variant types (e.g., common, de novo, rare inherited), future studies 

aiming to enhance our understanding of the causes of CHDs should seek to capture all 

potentially relevant variation (e.g., common, de novo, rare inherited) as well as other po-

tential etiologic complexities such as interactions within and between genes and gene-

sets. 
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