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Abstract: Variants in the TUBB3 gene, one of the tubulin-encoding genes, are known to cause
congenital fibrosis of the extraocular muscles type 3 and/or malformations of cortical development.
Herein, we report a case of a 6-month-old infant with c.967A>G:p.(M323V) variant in the TUBB3
gene, who had only infantile nystagmus without other ophthalmological abnormalities. Subsequent
brain magnetic resonance imaging (MRI) revealed cortical dysplasia. Neurological examinations
did not reveal gross or fine motor delay, which are inconsistent with the clinical characteristics of
patients with the M323V syndrome reported so far. A protein modeling showed that the M323V
mutation in the TUBB3 gene interferes with αβ heterodimer formation with the TUBA1A gene. This
report emphasizes the importance of considering TUBB3 and TUBA1A tubulinopathy in infantile
nystagmus. A brain MRI should also be considered for these patients, although in the absence of
other neurologic signs or symptoms.

Keywords: infantile nystagmus; TUBB3; congenital fibrosis of the extraocular muscle; CFEOM3; tubu-
linopathy

1. Introduction

Infantile nystagmus syndrome is a genetically heterogeneous disorder in which an
involuntary oscillation of the eyes begins within the first 6 months of life [1]. The oscillations
usually start at 2 to 3 months of age when motor and visual functions develop and persist
throughout life [2]. The prevalence of infantile nystagmus syndrome was estimated from
1 in 3000 to 1 in 1000 [3,4]. Infantile nystagmus can be idiopathic or associated with other
ocular diseases, such as retinal disease, albinism, low vision, or loss of vision [5–12]. It
can also occur as a common presenting sign of many neurologic and systemic diseases. It
is noteworthy that nystagmus has psychological and social effects on children and their
parents [13].

An ophthalmic examination involves careful observation of the nystagmus waveform,
frequency, amplitude, direction, and the plane of oscillation, and the presence or absence of
a null point [14]. Clinical workups, including optical coherence tomography, visual evoked
potential, electroretinography (ERG), and genetic testing, are used to differentiate under-
lying causes of infantile nystagmus. As next-generation sequencing (NGS) technology
has enabled us to examine multiple causative genes simultaneously, it is now used as a
front-line diagnostic tool in infantile nystagmus patients [1,15].

Tubulin is a basic structural protein of microtubules, which play many instrumental
roles, such as mitosis, axonal guidance, and neuronal migration during the development
of the nervous system [16,17]. Therefore, mutations in tubulin genes can alter the normal
function and structure of microtubules, leading to severe brain malformations, which are
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called tubulinopathies [18]. Among tubulin encoding genes, mutations in the TUBB3 gene
(OMIM #602661), encoding a class III β-tubulin, have been reported to cause two distinct
congenital neuro-developmental pathologies: isolated or syndromic congenital fibrosis
of the extraocular muscles type 3 (CFEOM3), or malformations of cortical development
(MCD) [19]. CFEOM3 is a congenital, nonprogressive, oculomotor disorder that is charac-
terized by variable deficits of vertical or horizontal eye movements and variable ptosis [20].
The limitation of eye movement in CFEOM3 patients is so various that they range from
no or mild to severe ophthalmoplegia and may also show a unilateral or asymmetric
presentation [21]. Interestingly, a recent study showed that the TUBB3 gene variant could
cause congenital monocular elevation deficiency [22]. MCD includes lissencephaly (agyria–
pachygyria), polymicrogyria or polymicrogyria-like cortical dysplasia, and cortical gyral
simplification. TUBB3 mutations also affect the subcortical regions, generating dysplasia in
the corpus callosum, cerebellar vermis, brainstem, basal ganglia, and cerebellum.

Herein, we report a case of c.967A>G:p.(M323V) variant in the TUBB3 gene found in a
male infant who had only infantile nystagmus without CFEOM.

2. Case Report

A 6-month-old male infant presented to our clinic with infantile nystagmus. The
patient was born at full term (37 weeks), weighing 3.18 kg at the time of birth, after a
normal pregnancy and delivery. He was the only child between non-consanguineous
Korean parents, and neonatal and perinatal insults were not noted. His family history was
also unremarkable.

On initial examination, he could not fix his eyes on an object and follow, and 1–2-Hz
pendular nystagmus was noted. Cycloplegic refraction showed +sph1.50 in the right
eye and +sph2.00 in the left eye. He had neither eye-poking signs nor photoaversion.
Dilated fundus examination showed normal foveal reflex and normal optic disc at the
posterior pole. An extraocular motility test showed a full range of motion. The neu-
rological examination was also unremarkable. Targeted NGS revealed a heterozygous
missense c.967A>G:p.(M323V) variant [Chr16(GRCh37):g.90001826A>G] in the TUBB3
gene (NM_006086.4). This variant is absent in the population databases, such as the
Genome Aggregation Database (gnomAD), the 1000 Genomes Project, and the Korean
Reference Genome Database. This genomic position is highly conserved (phastCons: 1.00
and phyloP: 4.64). The M323 residue is located in exon 4 and conserved across β-tubulin
isotypes from chicken to humans. Multiple lines of computational evidence support a
deleterious effect of this variant (CADD: 25.0, FATHMM: 0.992). It was previously reported
as pathogenic in ClinVar (RCV000023202.4). A de novo mutation was confirmed through
segregation analysis (Figure 1A). This variant was classified as pathogenic (PS2, PM1, PM2,
PP3, and PP5) according to the guideline of the American College of Medical Genetics [23].
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Figure 1. (A) A pedigree of patient reported in this study. Square, male; round, female; black coloring, affected individual. 
Targeted next-generation sequencing showed TUBB3 c.967A>G:p.(M323V) variant. Sanger sequencing confirmed that this 
variant is a de novo mutation. (B) Brain magnetic resonance imaging showing cortical dysplasia. T2-weighted images 
without contrast revealed an asymmetric caudate nucleus (arrowhead) and globular shape of both basal ganglia and thal-
amus. (C) Axial T2-weighted image showing an asymmetric configuration of an occipital lobe (arrow) and abnormal cer-
ebellar vermian foldings. (D) Pictures of an extraocular motility examination showing a full range of motion. 

Subsequently, brain magnetic resonance imaging (MRI) was performed, and it re-
vealed an asymmetric configuration and size of caudate nuclei and asymmetric configu-
rations of lateral ventricles, occipital lobes, and corpus callosum, which are consistent with 
cortical dysplasia (Figure 1B,C). Repeated examination of extraocular motility had shown 
full duction and version until the age of 23 months (Figure 1D), and 2-Hz left-beating jerk 
nystagmus and intermittent head nodding were observed. A non-sedated hand-held ERG 
test (RETeval, LKC Technologies, Gaithersburg, MD, USA) using skin electrodes was per-
formed for the diagnosis of retinal dysfunctions associated with nystagmus. The scotopic 
response was normal, but the result was inconclusive due to poor patient cooperation 
(Figure 2). Neurological examinations showed no gross or fine motor delays. He could sit, 
walk, and even run without support, but mild intellectual disability and mild language 
delay were noted. 

 
Figure 2. Electroretinography (ERG) was performed with skin electrodes. (Top) Dark-adapted 0.01 ERG, dark-adapted 3.0 
ERG, and dark-adapted 10.0 ERG showed relatively normal waveforms, but the patient was very uncooperative during 
examinations. (Bottom) Light-adapted 3.0 ERG 3.0 flicker was obtained. Photopic ERG responses seemed to be reduced, 
but the result was inconclusive due to poor cooperation. The flash strength unit is cd·s/m2. 

  

Figure 1. (A) A pedigree of patient reported in this study. Square, male; round, female; black coloring, affected individual.
Targeted next-generation sequencing showed TUBB3 c.967A>G:p.(M323V) variant. Sanger sequencing confirmed that this
variant is a de novo mutation. (B) Brain magnetic resonance imaging showing cortical dysplasia. T2-weighted images
without contrast revealed an asymmetric caudate nucleus (arrowhead) and globular shape of both basal ganglia and
thalamus. (C) Axial T2-weighted image showing an asymmetric configuration of an occipital lobe (arrow) and abnormal
cerebellar vermian foldings. (D) Pictures of an extraocular motility examination showing a full range of motion.
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Subsequently, brain magnetic resonance imaging (MRI) was performed, and it re-
vealed an asymmetric configuration and size of caudate nuclei and asymmetric configura-
tions of lateral ventricles, occipital lobes, and corpus callosum, which are consistent with
cortical dysplasia (Figure 1B,C). Repeated examination of extraocular motility had shown
full duction and version until the age of 23 months (Figure 1D), and 2-Hz left-beating jerk
nystagmus and intermittent head nodding were observed. A non-sedated hand-held ERG
test (RETeval, LKC Technologies, Gaithersburg, MD, USA) using skin electrodes was per-
formed for the diagnosis of retinal dysfunctions associated with nystagmus. The scotopic
response was normal, but the result was inconclusive due to poor patient cooperation
(Figure 2). Neurological examinations showed no gross or fine motor delays. He could sit,
walk, and even run without support, but mild intellectual disability and mild language
delay were noted.
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Figure 2. Electroretinography (ERG) was performed with skin electrodes. (Top) Dark-adapted 0.01 ERG, dark-adapted 3.0
ERG, and dark-adapted 10.0 ERG showed relatively normal waveforms, but the patient was very uncooperative during
examinations. (Bottom) Light-adapted 3.0 ERG 3.0 flicker was obtained. Photopic ERG responses seemed to be reduced,
but the result was inconclusive due to poor cooperation. The flash strength unit is cd·s/m2.

3. Discussion

Our case demonstrates that the TUBB3 M323V syndrome causes infantile nystagmus
without CFEOM. In a previous study, the heterozygous c.967A>G:p.(M323V) TUBB3
variant caused nystagmus phenotypes without CFEOM in two patients in the same family
(father and son) [24]. Table 1 summarizes the clinical findings in previous cases of infantile
nystagmus with the TUBB3 variants, as well as the case described in this report. Previously
reported patients with the M323V syndrome had no CFEOM phenotype, but patients with
G71R and G98S syndrome showed both CFEOM and infantile nystagmus [19,24]. Among
seven patients, including our case, five patients had horizontal nystagmus, and the other
two patients showed multidirectional and rotary nystagmus, respectively.
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Table 1. Literature review of clinical characteristics in infantile nystagmus patients with the TUBB3 variants.

Clinical Characteristics Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7

TUBB3 variant p.M323V p.M323V p.A302V (homo) p.G71R p.G71R p.G98S p.M323V
Inheritance pattern AD AD Isolated (homo) Isolated Isolated Isolated Isolated

Age 36 years 2 years 1 year 5 years 9 years 2 years 6 months
Gender Male Male Female Female Male Female Male

Ethnicity NA NA NA European European European Korean
OFC 3rd p 25th p 3rd p NA NA NA 3-50th p

Motor delay Hypotonia Hypotonia Hypotonia Hypotonia Hypotonia Hypotonia Absent
Cognitive function Severe ID LD NA ID ID ID ID, LD

Epilepsy Absent Absent Absent NA NA NA Absent
CFEOM No No No Yes Yes Yes No

Nystagmus Horizontal nystagmus Horizontal nystagmus Multidirectional
nystagmus Rotary nystagmus Horizontal nystagmus Horizontal nystagmus Horizontal nystagmus

Cortical dysgenesis Gyral disorganization Gyral disorganization Gyral disorganization Gyral
disorganization Gyral disorganization Gyral disorganization Gyral disorganization

Cerebellum vermis Dysplastic Dysplastic Dysplastic Dysplastic Dysplastic Dysplastic Dysplastic
Hemisphere Dysplastic Normal Normal Normal Normal Normal Normal

Brainstem Hypoplastic Hypoplastic Hypoplastic Hypoplastic Hypoplastic Hypoplastic Normal
Corpus callosum Thin Thin Thin Thin Thin Thin Asymmetric

Basal ganglia Hypertrophic/mild
fusion

Hypertrophic/mild
fusion

Fusion caudate/
putamen

Hypertrophic/
fusion

Hypertrophic/
fusion

Hypertrophic/
fusion Asymmetric

Literatures Poirier et al. Hum
Mol Genet (2010)

Poirier et al. Hum
Mol Genet (2010)

Poirier et al. Hum
Mol Genet (2010)

Whitman et al. Am
J Med Genet A.

(2016)
Whitman et al. Am J
Med Genet A. (2016)

Whitman et al. Am J
Med Genet A. (2016) This study

Abbreviations: AD, autosomal dominant; CFEOM, congenital fibrosis of the extraocular muscle; homo, homozygous; ID, intellectual disability; LD, language delay; NA, not available; OFC, occipitofrontal
circumference; p, percentile.
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Our report demonstrates that the TUBB3 gene should be considered as a causative
gene for infantile nystagmus. The heterozygous missense mutation c.967A>G:p.(M323V) is
located at the intermediate domain (residues 230–371) in a class III β-tubulin (Figure 3B),
which engages in heterodimer stability and longitudinal and lateral interactions [25]. In a
protein model using UCSF ChimeraX [26], a p.M323V is predicted to cause a clash between
TUBB3:p.V323 and TUBA1A:p.Y210, which may affect the stability of the heterodimer
(Figure 3A). The TUBB3:M323 residue is the interaction site with TUBA1A when forming
heterodimers. The proposed mechanism of nystagmus phenotype in M323V syndrome
is an impaired capacity to form αβ tubulin heterodimers, not through the independent
mechanism of GTP-binding. The present case resembles TUBA1A-associated tubulinopathy,
rather than classic TUBB3 CFEOM3, where nystagmus was present in 3/29 (10.3%) cases,
and no CFEOM phenotypes were observed [27].
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heterodimer in M323V syndrome. Green, class III β-tubulin encoded by TUBB3; Yellow, α tubulin
encoded by TUB1A1. A clash occurred between TUBB3:p.V323 and TUBA1A:p.Y210 (arrowhead).
(B) Schematic diagram of deleterious variants in TUBB3 functional domains. A total of thirty-two
missense variants, including p.M323V, have been reported until recently. Variants associated with
malformations of cortical development (MCD) with or without congenital fibrosis of the extraocular
muscles type 3 (CFEOM3) are marked above, and variants only representing CFEOM3 are marked at
the bottom. Most variants in the N-terminal and the intermediate domain cause MCD, and missense
variants in the C-terminal cause either MCD or CFEOM3 phenotypes. A red word indicates the
variant in this study. Green words denote previously reported variants associated with infantile
nystagmus, and a blue word indicates a variant associated with monocular elevation deficiency.

Optic nerve hypoplasia has been reported with TUBA1A, TUBB2B, and TUBA8 muta-
tions, suggesting that tubulin gene mutations, in general, can cause optic nerve hypopla-
sia [28–30]. The possibility that optic nerve hypoplasia is the cause of nystagmus cannot be
excluded. Although optic nerve hypoplasia has been reported in tubulinopathies, there
were no reports of infantile nystagmus in patients with optic nerve hypoplasia who had
TUBB3 mutations. Moreover, a dilated fundus examination and brain MRI did not reveal
optic nerve hypoplasia in our case. TUBB3 has widespread expression in the retinal gan-
glion cells, amacrine cells, horizontal process, and cone photoreceptors [31]. The neuronal
circuit of direction-selective retinal cells may be disrupted due to TUBB3 mutation [32].
Because we could not obtain optical coherence tomography, it is possible that a mild degree
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of foveal hypoplasia or retinal dystrophy co-exists. However, our targeted panel included
429 genes associated with inherited retinal diseases and infantile nystagmus syndrome, so
we can exclude those possibilities. Further research is needed to determine whether the
cause of nystagmus is due to cortical, cerebellar, or retinal origin [33].

In conclusion, our case report shows that infantile nystagmus can arise without
CFEOM owing to the TUBB3 variant. Therefore, pediatric ophthalmologists should keep in
mind that the clinical features of the TUBB3 syndrome are so diverse that only nystagmus
could appear as the main presenting sign. We also thought that TUBB3 and TUBA1A genes
should be included in the targeted panel of infantile nystagmus. In general, a brain MRI
has a low diagnostic yield for patients with infantile nystagmus in the absence of other neu-
rologic signs or symptoms [34]. However, as in this case, an accurate molecular diagnosis
will enable clinicians to determine whether a brain MRI is necessary or not. Additionally,
collaborations with multiple specialties may facilitate the appropriate management in
such cases.
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