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Abstract: Cancer is a disease of cellular evolution. For this cellular evolution to take place, a popula-
tion of cells must contain functional heterogeneity and an assessment of this heterogeneity in the
form of natural selection. Cancer cells from advanced malignancies are genomically and functionally
very different compared to the healthy cells from which they evolved. Genomic alterations include
aneuploidy (numerical and structural changes in chromosome content) and polyploidy (e.g., whole
genome doubling), which can have considerable effects on cell physiology and phenotype. Likewise,
conditions in the tumor microenvironment are spatially heterogeneous and vastly different than in
healthy tissues, resulting in a number of environmental niches that play important roles in driving
the evolution of tumor cells. While a number of studies have documented abnormal conditions
of the tumor microenvironment and the cellular consequences of aneuploidy and polyploidy, a
thorough overview of the interplay between karyotypically abnormal cells and the tissue and tumor
microenvironments is not available. Here, we examine the evidence for how this interaction may
unfold during tumor evolution. We describe a bidirectional interplay in which aneuploid and poly-
ploid cells alter and shape the microenvironment in which they and their progeny reside; in turn,
this microenvironment modulates the rate of genesis for new karyotype aberrations and selects for
cells that are most fit under a given condition. We conclude by discussing the importance of this
interaction for tumor evolution and the possibility of leveraging our understanding of this interplay
for cancer therapy.

Keywords: aneuploidy; polyploidy; tetraploidy; cancer; karyotype aberrations; tumor microenviron-
ment; tumor ecology; niche construction; tumor evolution

1. Introduction

Cancer has been widely described as a process of Darwinian evolution. In a manner
analogous to speciation, cancer cells genomically and phenotypically diverge into distinct
populations (often referred to as clones or stem-lines) that coexist in the same tumor [1].
This heterogeneity is further bolstered by sub-clonal variations within these clonal popula-
tions [2], much like the heterogeneity observed between individuals of a species in nature.
Advances in single cell analysis have provided an unprecedented look into the clonal and
sub-clonal architecture of cancer [3] and uncovered considerable intra-tumor heterogeneity
(ITH) at multiple biological levels. For example, tumors often show extensive cell-to-cell
heterogeneity in epigenetic markers, gene mutations, and chromosome aberrations, as
well as spatial heterogeneity in the conditions of the extracellular microenvironment [4-6].
Heterogeneity in one or more of these components can be associated with poor patient
outcomes [4-8] and increased probability of disease recurrence [9-13]. Not surprisingly,
these forms of heterogeneity underlie marked cell-to-cell heterogeneity in a range of phe-
notypes, including differences in protein biomarker expression, proliferation, cell and
nuclear morphology, immune cell infiltration, motility, metabolism, angiogenic potential,
differentiation status, and metastatic potential [14-17].
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Cell-to-cell heterogeneity emerges through evolutionary processes, in which new
variants are generated by ongoing molecular changes and either survive or are eliminated
by natural selection. Epigenetic changes are common in cancer and can occur in response to
changes in the extracellular environment or due to perturbations in the cellular machinery
that orchestrates epigenetic regulation [18]. For example, mutations or altered expression
of genes involved in epigenetic regulation (e.g., regulating DNA methylation, histone
modifications, and regulatory non-coding RNAs) can lead to increased rates of epigenetic
change (known as epigenetic instability) and epigenetic heterogeneity in tumors [19-25].
Increased rates of mutation at the DNA sequence or chromosomal level, a phenomenon
collectively known as genomic instability (GIN), occurs in the vast majority of tumors [26].
The rate of gene mutation can increase due to defective DNA damage repair (mismatch
repair, nucleotide excision repair, homologous recombination), DNA replication stress, or
structural damage to the chromosomes [8]. Chromosomal abnormalities are also widely
observed in tumors [27]. These aberrations emerge through defective chromosome segre-
gation or chromosomal damage (leading to gain or loss of whole or partial chromosomes,
known as aneuploidy), or abnormal cell cycle events that lead to genome doubling (poly-
ploidy) [28,29]. Chromosomal instability (CIN) refers to the form of GIN where numerical
and/or structural chromosomal aberrations occur at an increased rate.

CIN has been reported as being the most common form of genomic instability in
human cancers [30-32], and both CIN and aneuploidy are present in most human tu-
mors [27,33-35]. Despite the complexity involved with untangling the cellular effects of
aneuploidy, studies in various model systems have made substantial progress in uncover-
ing how chromosomal aberrations alter cell physiology. In addition to gene-specific effects
associated with gain or loss of specific chromosomes or chromosome fragments, aneu-
ploidy and polyploidy in general are associated with a number of cellular effects, including
substantial alterations to proliferation rates, cellular metabolism, protein homeostasis, and
other phenotypes (reviewed in [36]). Aneuploidy and polyploidy have each been shown to
drive tumorigenesis in certain circumstances [37-42]. Large scale chromosome or genome
level alterations, such as aneuploidy and polyploidy (hereafter referred to as karyotype
aberrations), are expected to have a larger penetrance (i.e., more likely to have a pheno-
typic effect on the cell) than most sequence-level events [8]. Furthermore, chromosome
copy number changes affect a larger portion of cancer genomes than any other form of
mutation [43]. Therefore, this review will examine the role of karyotypic heterogeneity (i.e.,
chromosome copy number heterogeneity) in cancer, as well as the environmental context
surrounding karyotype aberrations (for excellent reviews addressing sequence-level and
epigenetic heterogeneity, please see [8,18,44,45]).

There is a growing appreciation for the context-dependent (genetic, physiological,
environmental, etc.) effects of karyotype aberrations on cell physiology and in cancer (re-
viewed in [46]). Aneuploid and polyploid cells can cause changes in the cellular and tissue
environment [47-49], which may disrupt the normal contextual cues from the local environ-
ment that maintain tissue homeostasis. The maintenance of tissue homeostasis serves as a
barrier to tumorigenesis [50,51], and deteriorating tissue health may create opportunities
for cancer development. Although the importance of genomic and environmental changes
in cancer development are generally accepted [7,52], our understanding of the details and
ramifications of the interplay between genomic and environmental alterations is far from
complete. The goal of this review is to discuss the causes and consequences of karyotype
aberrations from the perspective of both the cell and the extracellular environment. We
will focus on the role of aneuploidy and polyploidy within the context of tumorigenesis,
specifically addressing factors that lead to the accumulation of aneuploidy, the effects of
karyotype changes on intercellular and environmental interactions, and the disastrous
impact this may have on the tumor microenvironment (TME) and cancer evolution.
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2. Cellular Routes to Karyotype Change

Several mechanisms that can lead to karyotype changes have been well described
(reviewed in [28,29]), and include events that can lead to gains and losses of individual
chromosomes as well as events that lead to doubling of the genome (Figure 1). Whole
genome duplication (WGD) events can occur by a number of different mechanisms, in-
cluding cell fusion (two cells of the same or different type fuse), cytokinesis failure (a
cell proceeds through mitosis, but fails to complete cytokinesis), mitotic slippage (a cell
aberrantly exits mitosis without chromosome segregation), and endoreduplication (a cell
proceeds through successive S-phases without intervening mitoses) (Figure 1C) [53,54].
The specific route of genome doubling may have different consequences for the cell. For
example, mitotic slippage leads to nuclear envelope defects and DNA damage while the
other mechanisms are less likely to do so [55]. Newly formed tetraploid cells also inherit ex-
tra centrosomes, which can disrupt spindle formation (e.g., leading to multipolar divisions)
and kinetochore-microtubule attachments in subsequent divisions [56,57].

Whole chromosome gains or losses generally arise through missegregation of chro-
mosomes in mitosis, leading to an unbalanced inheritance of genomic information by
the two daughter cells (Figure 1B, left column). Whole chromosome missegregation can
occur via multipolar divisions. While multipolar divisions in tetraploid cells lead to highly
aneuploid karyotypes with chromosome counts in between diploid and tetraploid—as
observed in tumors [58]—they also lead to a very high likelihood of losing most or all
copies of at least one chromosome [59] and daughters of multipolar divisions are rarely
viable in cell culture [57,59]. Whole-chromosome missegregation can also occur due to
erroneous attachment of the sister chromatids (via the kinetochore) to the microtubules of
the mitotic spindle. Such errors include chromosome non-disjunction and anaphase lag-
ging chromosomes. Chromosome non-disjunction occurs when both sister chromatids are
segregated into one daughter cell when their kinetochores are both attached predominantly
(mero-syntelic attachment) or solely (syntelic attachment) to microtubules from one spindle
pole [60-63]. Chromosome non-disjunction may also occur if spindle assembly checkpoint
function is compromised and cells enter anaphase with monotelic attachments (one sister
kinetochore is attached to a spindle pole while the other kinetochore is unattached) [64,65].
Anaphase lagging chromosomes are another example of chromosome missegregation and
they occur when a single kinetochore is attached to microtubules from two spindle poles
(merotelic attachment), causing the chromosome to lag behind the other chromosomes
in anaphase. Lagging chromosomes may segregate into either daughter cell and rejoin
the main chromosome mass before nuclear envelope reformation, resulting in either aneu-
ploidy or euploidy [60,66]. However, lagging chromosomes often lead to the formation of
micronuclei, where the nuclear envelope reforms separately around the main chromosome
mass and the lagging chromosome(s).

Chromosomes in micronuclei undergo DNA damage at higher rates than chromo-
somes in the main nucleus [67,68], in part because of defective nuclear envelopes in
micronuclei [67,69,70] and erroneous mitotic DNA replication [71]. Chromosomes in
micronuclei have been observed to undergo large scale damage (shattering), leading to
complex structural re-arrangements of chromosomes in a short time period, a process
known as chromothripsis [68,72,73]. Furthermore, a study in PtK1 cells found that chromo-
somes from micronuclei were more likely than those in the main nucleus to missegregate
in the following cell division [74]. Thus, lagging chromosomes can result in no karyotype
change, or can lead to whole chromosome aneuploidy, structural aneuploidy, or both.
Aneuploidy can also arise due to DNA damage, often accompanied by aberrant DNA
repair (Figure 1B, right column). DNA damage can break chromosomes, which can lead
to missegregation of chromosome fragments, unbalanced chromosomal translocations,
and other partial chromosome copy number changes. Chromatin bridges—a result of
chromosome fusion after DNA breaks, telomere dysfunction, or failure to completely
replicate or decatenate DNA—often result in structural karyotype aberrations [71,75-79],
but can also lead to polyploidy and whole chromosome aneuploidy [79-81]. Along with
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lagging chromosomes, chromatin bridges and acentric fragments can give rise to cells with
micronuclei, which mark the occurrence of chromosome segregation errors [82,83].
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Figure 1. Cellular mechanisms leading to karyotype aberrations. Examples of (A) a normal mitosis and (B) abnormal
mitoses leading to the missegregation of whole chromosomes (lagging chromosomes and chromosome non-disjunction;
left column), chromosome fragments (right column, right daughter cell), or chromatin bridge-mediated chromosome
missegregation (chromatin bridge, right column, left daughter cell; which can give rise to a variety of outcomes, including
aneuploidy and tetraploidy [79,84]). Lagging chromosomes, chromatin bridges, and acentric fragments can all give rise to
cells with micronuclei. (C) Examples of whole-genome duplication events, including endoreduplication, cytokinesis failure,

mitotic slippage, and cell fusion (left to right).
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3. Environmental Causes of Karyotype Change

The mechanisms leading to karyotype change discussed above can arise due to spon-
taneous cellular errors. However, conditions in the extracellular environment can increase
the frequency of aberrant mitoses. Various environmental stresses can induce gene mu-
tations or CIN [85-91]. The specific effects of these stresses are modulated by the nature,
magnitude, and duration of the stress. Both endogenous (physiological) and exogenous
stressors may contribute to genome instability in this way.

Chronic inflammation, which can result from hereditary conditions, diet, and environ-
mental exposure to toxic substances or infectious agents, is a major risk factor for cancer
development [92]. Many precancerous lesions (such as Barrett’s esophagus, inflammatory
bronchial lesions, and ulcerative colitis) are closely associated with both inflammation
and karyotype aberrations [93-95]. Notably, inflammatory factors have been causatively
linked to aneuploidy [96-98] and micronucleus formation [99] in some systems. Several
mechanistic links between inflammation, DNA damage, and chromosomal aberrations
have been reported. One study found that misexpression of activation induced cytidine
deaminase (AID), induced by inflammation-mediated NF-«B signaling, can lead to DNA
double strand breaks, somatic mutations, and chromosomal aberrations [100]. Several
matrix metalloproteases (MMPs) are also increased in inflamed tissue [101], and expression
of MMP-3 and MT1-MMP have been linked to increased CIN [102-104]. Furthermore,
inflammation can induce epithelial-to-mesenchymal transition (EMT) in cancer cells both
by direct action of soluble mediators of cancer-associated inflammation (TGF-f3, TNF-«,
IL-183, IL-6, IL-8, CCL2, among others) and by the action of various types of immune cells
including M2-activated tumor associated macrophages (TAMs) [105]. It has been shown
that cells undergoing EMT can fail cytokinesis and become chromosomally unstable if
they fail to arrest [106]. Finally, inflammation can promote genome instability by inducing
oxidative stress [101]. Oxidative stress—which may be the product of inflammation or
factors such as metabolic dysfunction or radiation [107]—causes damage to various cellular
components, including DNA. Oxidative stress is associated with oxidation of DNA bases,
induction of DNA double strand breaks, gene mutation, and structural aberrations of the
chromosomes [108-112]. Chronic oxidative stress has also been reported to lead to loss
of telomere function and, possibly as a consequence, polyploidization [112,113]. There-
fore, chronic inflammation and/or oxidative stress can have mutagenic, clastogenic, and
aneugenic effects on cells that reside within the inflamed tissue or tumor.

Other extracellular conditions have also been observed to promote genetic or chro-
mosomal changes in cultured cells, including serum starvation, hypoxia, lactic acidosis,
irradiation, and exposure to DNA damaging agents [86-88,114-117]. These factors repre-
sent stresses that can occur in tissues or tumors under certain conditions but are largely
atypical in healthy tissues. A variety of exogeneous biotic and abiotic factors have also
been linked with karyotypic changes, including viral infection [118-120] and exposure to
chemicals [121,122]. Viruses or mutagenic agents can also lead to gene mutations or gene
inactivation, which may be permissive for the proliferation of aneuploid or polyploid cells
(such as inactivation of p53) [123,124]. A number of other studies have linked chemical
exposure (e.g., bisphenol A (BPA), heavy metals, air pollution) with accelerated telomere
attrition [125-127], which promotes chromosome fusions and breakages, polyploidization,
and aneuploidy [128,129].

Tissue architecture is critically important for the maintenance of euploidy. Loss of
tissue architecture was shown to lead to mitotic errors and aneuploidy in mouse epithelial
cells [130]. Total loss of substrate adhesion was also found to promote cytokinesis fail-
ure [131], and wound healing is also associated with emergence of tetraploid cells [132].
Interestingly, loss of substrate adhesion was also found to reduce p53 expression [133,134],
which may enable the survival of both aneuploid and polyploid cells [135,136]. Aging—one
of the most potent risk factors associated with cancer—is associated with deteriorating
tissue architecture [137,138], suggesting that one link between aging and cancer could be a
loss of some karyotype-protective features found in younger tissues. Indeed, aneuploid
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and polyploid cells in the body have been reported to accumulate with age [139-142],
although this claim has been disputed [143]. Altogether, these studies show that the body
and tissue environment are critical factors in preventing the genesis of abnormal cells
and that a number of factors—including aging, chemical exposure, inflammation, and
exposure to harmful chemicals or biological agents—can destabilize cellular mechanisms
for maintaining genome integrity.

4. Aneuploidy and Polyploidy Can Both Promote and Buffer
Karyotypic Heterogeneity

Aneuploidy, karyotypic heterogeneity, and CIN correlate with several parameters of
disease progression, including drug resistance [9,144-149], metastasis risk [150-157], and
clinical outcome [6,158-163]. While in many cancers the degree of CIN correlates with
degree of aneuploidy and karyotypic heterogeneity [164-167], the relationships between
CIN, aneuploidy, and heterogeneity can be complicated. Highly aneuploid tumors are
sometimes observed in the absence of ongoing CIN and, conversely, tumors displaying
CIN are not always highly aneuploid or karyotypically heterogeneous [30]. The rate at
which new karyotype aberrations arise is certainly an important piece of the equation
for determining the extent of karyotype heterogeneity in a tumor, but it is balanced by
the ability of cells to tolerate new karyotypic aberrations and selective pressures from
the environment. Therefore, the amount of karyotypic heterogeneity in a population is a
function of the rates at which cells with novel karyotypes are generated and eliminated.

For karyotypic heterogeneity to accumulate, cells must tolerate either ongoing or
punctuated bursts of mitotic errors. But what determines if a cell will survive and contribute
to karyotypic heterogeneity? The type of error that occurs can affect the cellular outcome
(Section 2). The ploidy of the cell in which karyotypic aberrations occur is also important
for determining their effects. Aneuploidy already established in a mother cell appears
to be associated with reduced fitness cost of additional chromosome missegregation (i.e.,
aneuploidy tolerance) and with more karyotypic variation [168]. In organoids derived
from colorectal cancers, the degree of aneuploidy was, indeed, found to correlate with
the ability of cells to tolerate mitotic errors and with karyotypic heterogeneity [164]. In a
study of paired primary and metastatic cancer cell lines, the amount of karyotypic variation
from cell to cell (i.e., “karyotypic divergence”) was higher in the more aneuploid cancer
cells [169]. For example, a near-diploid breast cancer trisomic for chromosomes 7 and 10
(modal chromosome number of 48) had one non-clonal chromosome aberration per cell
on average with a range from 0-5, whereas a highly aneuploid pancreatic cancer (modal
chromosome number of 64) averaged 10 non-clonal chromosome aberrations per cell with
a range from 0-26 [169]. Consistently, an analysis of the Mitelman database found that
near-triploid tumors displayed more intercellular karyotype variability compared to near-
diploid tumors [170]. Similar to aneuploid cells, tetraploid cells are more tolerant of mitotic
errors and accumulate more karyotypic heterogeneity than their diploid counterparts in cell
culture [171]. Tetraploidy may offset the high fitness cost of chromosome gains and losses
by doubling the copy number of each chromosome [172-174]. This aneuploidy tolerance
may explain why WGD often occurs in the evolution of tumors with complex karyotypes.
In line with this theory, Dewhurst et al. reported that a majority of colorectal cancers with
near-triploid karyotypes evolved through a tetraploid intermediate and displayed more
genomic complexity than near-diploid tumors [175]. Together, these studies suggest that
polyploidy and/or the degree of aneuploidy may increase the margins of viable karyotype
variation, or the “permissive zone” for which cancer cell karyotypes can diverge from the
modal karyotype and survive (Figure 2).
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their near-2N counterparts, which may explain why whole genome doubling increases karyotypic heterogeneity and is a

favorable route to complex aneuploid karyotypes.

Another important factor for karyotypic heterogeneity is the rate of chromosome
segregation errors. While aneuploidy can provide a fitness advantage under some circum-
stances [176-178], aneuploidy may also lead to decreased fitness under normal growth
conditions [178-180]. High levels of CIN can also lead to decreased cellular fitness and in-
creased cell death, due to the emergence of cells with new and inviable karyotypes [181,182].
A mathematical model predicted that cancer cells will find an optimal chromosome mis-
segregation rate, at which fitness costs due to missegregation and random, possibly detri-
mental, aneuploidies are balanced by the generation of phenotypic heterogeneity [173,183].
According to this model, if the rate of chromosome missegregation is too high, cell pop-
ulation growth becomes hampered by the frequent birth of daughter cells with inviable
karyotypes. Conversely, not having enough CIN results in less karyotypic (and presumably
phenotypic) heterogeneity, which reduces the tumor’s evolutionary potential. This model
is supported by observations in mice and human tumors. Several clinical studies reported
an association between high CIN and poor patient outcomes in several solid tumor types by
categorizing patient tumors as either high or low CIN [161,162,184,185]. However, studies
using a non-binary classification of CIN in breast tumors found that the highest levels
of CIN were associated with improved patient outcomes [186,187]. Similarly, a parabolic
relationship between CIN and patient outcome was observed in breast, ovarian, gastric
and non-small cell lung cancers, such that tumors with intermediate levels of CIN had the
worst prognosis and both low and high levels of CIN corresponded with better patient
outcomes [188] (for further discussion on the relationship between CIN and clinical out-
come, see [189]). In a mouse model, low-to-moderate levels of CIN were found to promote
tumorigenesis, while high levels of CIN suppressed tumor progression [163]. As a result of
these observations, it has been proposed that exacerbating CIN beyond a tolerable level
may be a viable therapeutic strategy [190], but such an approach should be considered
with caution [191,192].

Altogether, these findings suggest that the coupling of an optimal CIN rate with
sufficient aneuploidy to tolerate ongoing karyotypic variation appears to create ideal
conditions for cancer evolution.



Genes 2021, 12, 558

8 of 31

5. The Role of Aneuploidy and Polyploidy in Tumor Niche Construction

For a complete picture of the role of genomic changes in tumor progression, it is
important to examine the bidirectional interplay between cancer cells and their environ-
ment, in which cells and tissue both determine and modulate the health of the other. This
interplay unfolds throughout the evolutionary history of the tumor, molding and shaping
both the TME and tumor cells into entities that are distinctly different than those found
in normal tissues (Figure 3). This mirrors ecology’s “niche construction concept,” which
describes the formation of ecological niches through the continuous interplay between
selection of individuals by the environment and the modification of the environment by the
individuals [193-195]. Mathematical modeling and experimental observations of natural
systems in which niche construction is an acting force demonstrate that it can alter the
evolutionary trajectory of populations [194-197] and the spatial patterning of individuals
in an environment [195,197-199]. In tumors, niche construction by cancer cells often results
in harsh environments, such as areas with low pH (acidosis) and/or oxygen (hypoxia),
that may favor the growth of malignant cells over non-malignant cells. As we have dis-
cussed, genomic changes may result from perturbations in the environment (Section 3).
There is also evidence that aneuploid and polyploid cells actively remodel their local
environment and may have an advantage compared to diploid counterparts in stressful
conditions [171,178]. These findings along with the widespread nature of aneuploidy
and abnormal environmental conditions observed in human tumors hint at a relationship
between aneuploidy and tumor niche construction, although much remains to be learned
about this possible link. In this section, we will explore this subject further by examining
the role of aneuploid and polyploid cells in shaping the TME (Section 5.1) and the role of
the TME as a selective force on karyotypically heterogeneous cells in tumors (Section 5.2).

5.1. Environment Remodeling by Aneuploid and Polyploid Cells: Home Is Where You Make It

While changes in the local environment may cause cell stress and genomic alterations,
cells can also shape their own environmental niche through complex interactions with
other cells, the extracellular matrix (ECM), and the secretion of signaling molecules or
metabolites [200,201]. Cancer cells often harbor a myriad of gene mutations, epigenetic
modifications, and karyotypic abnormalities that drive tumorigenesis [26], making it dif-
ficult to attribute any environmental effects to a specific oncogenic event. To avoid such
confounding factors, much of our understanding about the cellular consequences of aneu-
ploidy comes from carefully controlled experiments that use yeast and mammalian cells
with single (or few) aneuploidies or induce short pulses of chromosome missegregation
by perturbing the mitotic checkpoint. Aneuploid and polyploid cells have been found to
exhibit a diverse spectrum of biological changes, including altered cell fitness, metabolism,
and gene expression (reviewed in [36,202-204]). While some of the physiological effects
associated with aneuploidy may be specific to the loss or gain of a certain chromosome and
not others, a number of studies have found that some physiological effects of aneuploidy
are independent of the identity of the particular chromosome being gained or lost. These
studies have provided various lines of direct and indirect evidence suggesting that the
physiological changes brought about by CIN, aneuploidy, or polyploidy are important in
shaping the cell’s relationship with its surroundings. Here, we discuss how the known
cellular effects of karyotype aberrations, while only one of the important players in tumor
formation, may have potent effects on the environment that disrupt tissue homeostasis and
contribute to the co-evolution of cancer cells and the TME observed throughout disease
progression [50,205].
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Figure 3. Bidirectional, cell-environment interplay in tumor niche construction and the genomic
evolution of cancer cells. (A) In normal tissues, cells and the environment interact to promote home-
ostasis by regulating cell growth, division, and other behaviors essential for proper health. Teal
circles depict normal diploid cells and beige-colored square indicates a normal, healthy environment.
(B) Over time, however, changes—either natural (aging) or from stress (smoking, obesity, inflamma-
tion, etc.)—may occur in either the cell or environment that disrupt this homeostasis. Spontaneous
cellular errors may lead to genomic changes (red circle) that alter cell physiology and interactions
with the environment, through senescence, cell death, or increased production of lactate, reactive
oxygen species, and other signaling molecules, initiating the process of niche construction (thin
dashed arrow). Alternatively, environmental conditions may change (light orange-colored square)
that increase the frequency of mutations and mitotic errors in cells and select for cells with favorable
genomic alterations and/or phenotypes (thin dashed arrow). The order of events that begin tumor
niche construction can vary, starting from either a cellular or environmental change. (C) As this
bidirectional interplay persists, genomic and environmental evolution continue to influence and
shape each other. As the environment erodes and is replaced by a pro-tumorigenic one (dark orange-
colored square), various stresses (hypoxia, acidosis, nutrient scarcity, etc.) may emerge that exert
strong selective forces (thick dashed arrow) and favor the survival of tumor cells with advantageous
genomic changes. In turn, the outgrowth of these abnormal cells amplifies their environmental
effects (thick dashed arrow), which continue to modify selective pressures for their benefit. This cycle
may serve as a destabilizing feedback loop that explains the substantial genomic and environmental
alterations and heterogeneity (different colored circles) observed in malignant aneuploid tumors.
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5.1.1. The Transmission of ER Stress to Inmune Cells Impairs Anti-Tumor Immunity

Aneuploidy has been found to elicit characteristic cellular stress responses regard-
less of which chromosome is affected. For example, stoichiometric mismatches between
subunits of protein complexes that are encoded on different chromosomes can lead to
endoplasmic reticulum stress (ER stress) in aneuploid cells [206-208], and this appears to
happen regardless of the specific chromosome that is gained or lost in human and yeast
cells [206,208]. Cells experiencing ER stress release soluble molecules into the extracellular
environment. These cell secretions can, in turn, induce an ER stress response in adjacent
stromal cells and alter their behavior [209-211]. In one study, inducing ER stress in cancer
cells elicited an ER stress response in macrophages in co-culture, which led to enhanced
production of proinflammatory cytokines by the macrophages [210]. Similarly, the transmis-
sion of ER stress from cancer cells to dendritic cells led to arginase activation and impaired
T cell function [211]. In mice, ER stress in dendritic cells resulted in constitutive XBP1 activa-
tion and altered lipid homeostasis, which repressed T cell-dependent anti-tumor immunity
and promoted ovarian cancer progression [209]. An analysis of chromosomal alterations in
TCGA samples across 32 tumor types found that aneuploidy positively correlated with
gene expression associated with ER stress and the unfolded protein response (UPR), but
negatively correlated with intra-tumor T cell cytolytic activity [212]. Furthermore, the same
study found that inducing aneuploidy in pseudodiploid cancer cell lines and polyploidy
(via cell fusion) in mouse embryonic fibroblasts (MEFs) triggered ER stress. Strikingly,
exposure of macrophages to conditioned media from these aneuploid cells promoted an
immune-suppressive and proinflammatory phenotype [212]. Altogether, these findings
suggest that aneuploidy-induced ER stress may play an important role in repurposing the
TME to fuel cancer progression, particularly through altering the function and behavior of
immune cells in the tumor microenvironment.

5.1.2. Changes in Metabolism and ROS Homeostasis May Contribute to Tumor Acidosis
and Inflammation

Metabolic alterations are commonly observed in aneuploid and polyploid cells [180,213-218].
Both aneuploidy and polyploidy lead to increased glycolytic activity and lactate pro-
duction [215,217-220]. Metabolic byproducts, such as lactate, are thought to be a major
contributor to tumor acidification [221]. Therefore, it is plausible that increased lactate
production by cells with abnormal karyotypes could promote the acidification of the extra-
cellular environment during tumor formation, but this link has not been experimentally
validated in vivo. Acidosis is common in tumors and can have profound effects on the
ongoing cell-cell and cell-environment interactions in the TME. Low extracellular pH dis-
rupts immune system interactions with cancer cells, promotes tissue remodeling, invasion,
and metastasis [221-224]. Aneuploid yeast, human, and rodent cells in vitro have been
reported to harbor numerous other metabolic changes, including increased glutamine
uptake, increased production of ammonium and glutamate and altered nucleotide and
sphingolipid metabolism [215,216,219,220]. The metabolic composition of tumor interstitial
fluid was recently characterized for several murine tumor types and compared to levels in
circulating plasma. The composition of the two fluids was found to differ considerably,
due to the rates of nutrient influx via circulation, consumption of nutrients and excretion
of metabolic byproducts by cells, and the clearing of metabolic waste into circulation [225].
It is not clear how the altered metabolism of aneuploid or polyploid cells may influence
the composition of the interstitial fluid, or what functional consequences this may have
for tumor evolution. However, given the observations of altered metabolism in cells with
karyotype aberrations, this may be an interesting and important question to answer.

Aneuploid and chromosomally unstable cells show increased levels of reactive oxygen
species (ROS) [214]. Multiple mechanisms may contribute to the elevated ROS production
in aneuploid cells. Ca* release from the endoplasmic reticulum, which occurs following
prolonged activation of the UPR during ER stress, can interfere with the electron transport
chain, lower mitochondrial integrity, and increase ROS levels [226,227]. Furthermore,
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increases in the number and activity of mitochondria in cells after the induction of CIN may
also lead to the accumulation of ROS [214,228,229]. Higher ROS levels are common in the
TME and can promote oxidative stress in cancer and stromal cells [230,231]. While oxidative
stress is associated with genotoxicity, protein damage, and mitotic errors [232-234], it also
affects how cells interact with their surroundings. In cancer-associated fibroblasts (CAFs),
for example, oxidative stress leads to excessive production of lactate, ROS, and nitric
oxide, which can increase aneuploidy in adjacent cancer cells [235]. Oxidative stress can
also induce inflammation, another driver of cancer development, which can cause DNA
damage and CIN [101,236]. Inflammation, in turn, can trigger recruitment of leukocytes,
such as neutrophils, lymphocytes, dendritic cells, and macrophages [237]. Although an
immune response can eliminate cancer cells, these immune cells can also secrete potent
growth factors that promote angiogenesis and potentiate cancer progression [238].

5.1.3. CIN, Cell Death, and Senescence: Potent Forces in Tissue Niche Construction

CIN can lead to the birth of cells with reduced fitness and an increase in cell death
owing to the inheritance of complex, and sometimes inviable, karyotypes with random
aneuploidies. Cell death has been found to cause the release of stimulatory factors that
promote the proliferation of nearby cells [239,240], as well as inflammation and immune
cell recruitment [241,242]. Indeed, increased proliferation along with increased cell death
(i.e., high cell turnover rate) in tumors may signal a more aggressive disease [243,244].
Complex karyotypes and/or micronuclei formation resulting from CIN can also cause cell
cycle defects, DNA damage, and/or stress-induced cell senescence [181,182,245]. The latter
is especially important to consider, as senescent cells can have powerful effects on the local
environment. Senescent cells exhibit a secretory phenotype (known as the ‘senescence
associated secretory phenotype’, or SASP), which can be associated with tumor progres-
sion [246,247]. Secreted SASP proteins, which include growth-promoting factors, cytokines,
and chemokines, have been shown to promote cell proliferation, inflammation, cell differ-
entiation or phenotype switching, tissue remodeling, angiogenesis, and invasion [246,247].
Senescent cells can also help neighboring cells escape immune detection by cleaving cell
surface receptors both in Natural Killer (NK) cells and their potential target cells [248,249].
The enrichment of senescent cells at the invasive front compared to the tumor center in
breast [181] and papillary thyroid carcinomas [250] suggests that SASP-mediated environ-
mental remodeling may be important for tumor invasion. Furthermore, increased levels of
tetraploidy and karyotypic heterogeneity have also been observed at the tumor margins
relative to the core [181,251]. Why tumor cell senescence, WGD events, and CIN may occur
more frequently at the tumor margins is unclear but could stem from the environmental
conditions (and/or the need for environmental remodeling) and interactions between
cancer and stromal cells in these regions.

Micronucleus formation due to chromosome missegregation can also trigger inflam-
matory signaling [156,252,253]. When micronuclei containing missegregated chromosomes
rupture, genomic DNA is exposed to the cytoplasm and activates the cGAS-STING path-
way, which can lead to non-canonical NF-«B signaling, EMT, and metastasis [156]. This
same study also found that cancer cells with a high rate of CIN displayed mesenchymal cell
traits, including increased motility, invasiveness, and vimentin expression [156]. Changes
in the levels or spatial organization of vimentin, an intermediate filament involved in cell
adhesion, in cancer cells can lead to the stiffening of tumor tissues and alter the biome-
chanical properties of the TME [254-256]. Reducing CIN levels or micronuclear rupture
delayed metastasis in aneuploid tumors [156], demonstrating that the environmental ef-
fects associated with cGAS-STING activation, chronic inflammation, and altered tissue
stiffness—rather than the karyotypic alterations alone—are important for cancer progres-
sion in this system. Importantly, these changes are independent of aneuploidy, indicating
that lagging chromosomes can contribute to cancer progression and niche construction
via micronucleus formation even if the lagging chromosome is ultimately segregated into
the correct daughter cell. CIN and micronucleus formation, however, do not always cause
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EMT or promote invasive behavior, even if cGAS-STING is active [257]. Similarly, mi-
cronucleus formation does not always lead to cGAS activation [258]. One study found that
chromatin bridges, but not micronuclei originating from whole chromosomes, activated
cGAS, resulting in the spread of inflammatory signaling from cancer cells to stromal cells
(fibroblasts and monocytes) in a co-culture model [258]. Therefore, while the effects of
CIN and micronucleus formation on EMT and cGAS-STING activation appear context-
dependent, both whole chromosome missegregation and chromatin bridges may induce a
chronic inflammatory response that fuels tumor progression.

5.1.4. Altered Centrosome Homeostasis Affects Tissue Organization, Invasiveness, and the
Cellular Secretome

Karyotypic aberrations have also been associated with altered centrosome homeosta-
sis [54,172,259,260] and, while causation has not been demonstrated experimentally, it
has been proposed that aneuploidy may lead to disrupted centrosome homeostasis [261].
Importantly, similar to aneuploidy, extra centrosomes and structural centrosome abnormal-
ities are common features in human malignancies [262]. It has been shown that, in some
contexts, extra centrosomes by themselves are sufficient to promote tumorigenesis [263,264].
Extra centrosomes may contribute to cancer progression by promoting CIN and therefore
more aneuploidy [56,57]. Besides promoting CIN, extra or abnormal centrosomes can
promote behaviors that alter their microenvironment directly. Experimentally induced
centrosome structural defects, meant to mimic changes seen in cancer cells, disrupted tissue
organization in 3D cultures [265] and increased invasiveness [266]. Furthermore, extra
centrosomes have been linked to a secretory phenotype very similar to that observed in
senescent cells which increased invasiveness in nearby cells [267]. Finally, tumors derived
from the injection of tetraploid cells into mice had high levels of centrosome amplification
and high expression of MMPs [37], which modify the ECM and the extracellular surfaces of
other cells and increase cellular invasiveness. The full nature of the link between polyploidy
and centrosome amplification remains unknown, however, as polyploid cells in culture
quickly lose extra centrosomes [57,84,171,266,268].

5.1.5. Aneuploid Stromal Cells May Also Alter the Tumor Microenvironment

Within a tumor, karyotype aberrations are not exclusive to the cancer cells and have
been detected in a variety of cell types in the tumor stroma. While it is recognized that
cancer-associated stromal cells have distinct phenotypes compared to their normal counter-
parts, the effects of aneuploidy on stromal cell behavior and their interactions with the TME
is less clear. Chromosomal abnormalities and centrosome amplification have been reported
in tumor-associated endothelial cells (TECs) as a result of hypoxia-induced oxidative stress,
increased ROS production, and excessive pro-angiogenic signaling in the TME [269-271].
Interestingly, aneuploid TECs were morphologically distinct from normal endothelial cells,
including differences in nuclear and cell size [270], which could contribute to the struc-
turally abnormal and leaky blood vessels seen in tumors [272,273]. Defective vasculature,
leading to inconsistent nutrient delivery and waste removal, is a major cause of hypoxic
and acidic environments in tumors. Nevertheless, it remains uncertain to what extent
aneuploidy in TECs contributes to these abnormal phenotypes. Some studies reported
that CAFs, one of the most abundant stromal cell populations in solid tumors, are diploid
and do not acquire genetic changes [274,275], while other studies have reported chromo-
some and gene copy number alterations in CAFs derived from melanoma, breast, prostate,
colorectal, and ovarian cancer [276-280]. Nevertheless, loss of heterozygosity (LOH) due
to changes in chromosome copy number or focal deletions in breast cancer CAFs at the
genetic loci of EP300, ATM, IL2RB, and IBD5, which play a role in neovascularization, cell
adhesion, ECM organization, and immune cell recognition, were associated with higher
tumor grade and metastasis [280]. Together, these studies suggest that genomic alterations
in TECs and CAFs may be an important feature of a tumor’s ecological landscape and
contribute to disease progression.
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5.1.6. Environmental Remodeling by Aneuploid and Polyploid Cells—Summary

Together, the observations discussed here show that the diverse physiological effects
of aneuploidy, polyploidy and CIN can lead these cells to alter the extracellular environ-
ment in various ways (Table 1). Aneuploidy- and/or polyploidy-associated changes in cell
physiology include changes in stress response, metabolism, and centrosome homeostasis,
each of which can manifest independent of the specific chromosome(s) gained or lost.
Various lines of direct and indirect evidence suggest that these changes can contribute to
tissue environment remodeling in ways that may influence tumor evolution. In light of
these studies, we can theorize that optimal degrees of aneuploidy, CIN, and centrosome
amplification may create a perfect storm for tumor evolution by allowing the evolving cell
population to explore new karyotypes and phenotypes, and by producing a substantial
level of inviable or senescent cells that release stimulatory and pro-tumorigenic factors into
the local environment. In doing so, the emergence of more abnormal and aggressive cells
may occur while the homeostatic mechanisms of normal tissues may simultaneously be
eroded and replaced by a pro-tumorigenic, genome-destabilizing environment (Figure 3).
Although we focused our discussion on the effects of aneuploidy in general, genetic, epige-
netic, or chromosomal events that affect specific chromosomes, genes, or processes also
have the potential to promote tissue remodeling. For instance, cells with oncogenic KRAS
mutations have been observed to potently alter their surroundings and mediate cancer
progression [281]. HCT-116 cells with trisomy 5 induced a partial EMT phenotype resulting
in increased invasive and metastatic behavior, while gains of other chromosomes sup-
pressed these phenotypes [257]. Moreover, specific chromosome arm copy number changes
were associated with differences in leukocyte infiltration as well as macrophage polarity,
although the cellular basis for these observations is unclear [282]. However, the value of
karyotype aberrations in environmental remodeling may be especially relevant in tumor
progression as these effects arise from general and common phenomena (aneuploidy, poly-
ploidy, chromosome missegregation) and do not rely on specific aberrations, which may
arise much less frequently. Because of the complex nature of cancer biology, it is important
that these connections be interrogated with rigorous studies to better understand the role
of aneuploid and polyploid cells in shaping the tumor niche(s) that drive tumor evolution.

Table 1. The effects of karyotypically abnormal cells on the TME.

Experimental System

Influence of the Cellular Effect(s) on

Cellular Effect(s) the TME

° ER stress can transmit from cell to
cell, including from cancer to
stromal cells such as macrophages
and dendritic cells [209-211].

° ER stress in dendritic cells can lead

Budding yeast [208].

HCT-116 and hTERT-immortalized
RPE-1 cells with various trisomies
and tetrasomies [206].

CENP-E inhibited HeLa cells [283].

Endoplasmic reticulum (ER) stress:

Protein aggregates [208].
Compromised proteosome and
chaperone proteins [206,208].
Impaired protein folding [206].

to XBP1 activation, altered lipid
homeostasis, and repressed T
cell-dependent anti-tumor
immunity [209].

Aneuploidy positively correlated
with gene expression associated
with ER stress and unfolded protein
response (UPR) and negatively
correlated with intra-tumor T cell
cytolytic activity [212].
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Table 1. Cont.

Experimental System

Cellular Effect(s)

Influence of the Cellular Effect(s) on

the TME

Mouse embryonic fibroblasts (MEFs)
with Trisomy 1, 13, 16, or 19 [180].
Spindle assembly checkpoint (SAC)
deficient MEFs [214].

Trisomic MEFs and chromosomally
unstable cancer cell lines [219].
Haploid yeast strains with disomies
for each chromosome [220].
HCT-116 and hTERT-immortalized
RPE-1 cells with various trisomies
and tetrasomies [215].

A near-tetraploid and a near-diploid
line of Ehrlich’s ascites tumor [217].

Altered metabolism:

Increased production of lactate,
glutamate, and ammonium;
increased glucose and glutamine
consumption [180,214,219,220].
Altered nucleotide and membrane
metabolism [215].

Altered consumption and
production of various
metabolites [219].

Increased glycolytic activity in
near-tetraploid tumor cells
compared to near-diploid tumor
cells [217].

Increased lactate is a common cause
of acidosis in tumors [284].
Increased lactate production may
result in secretion of lactate into the
tumor microenvironment.
Increased glucose and glutamine
consumption may result in their
removal from the environment and
other metabolic changes may also
contribute to differences in the
nutrient landscape observed in
tumors [225,285].

Low pH in the extracellular
environment may suppress
anti-cancer immune response [286].

Spindle assembly checkpoint (SAC)
deficient MEFs [214].

MEFs and human primary
fibroblasts with downregulated
BUB1 and SMC1A [182].

Aurora B inhibited U20S and
HCT-116 cells [287].

Budding yeast with various
aneuploidies [208,228].

Altered reactive oxygen species
(ROS) homeostasis and elevated
ROS levels associated with
aneuploidy and chromosomal
instability [182,208,214,287].

Increased cellular ROS levels may
translate to elevated tissue ROS
levels, as observed in tumors [230].
Cancer cell-induced oxidative stress
in cancer-associated fibroblasts
leads to excessive production of
lactate, ROS, and nitric oxide, which
can be released in the TME and
promote aneuploidy in adjacent
cancer cells [235].

Oxidative stress can cause
inflammation [236], which is a
hallmark of cancer [26,237].

MEFs and human primary
fibroblasts with downregulated
BUB1 and SMCI1A [182].
Nocodazole and Reversine
treatment in HCT-116 and
hTERT-immortalized RPE-1

cells [181].

Cancer cell lines with high levels of
multipolar divisions [57].

DLD-1 and hTERT-immortalized
RPE-1 p537/ cells undergoing
multipolar divisions after induced
cytokinesis failure [59].

CIN-associated cell
death [57,59,182].
CIN-associated
senescence [181,182].

Cell death can release stimulatory
factors to promote proliferation of
nearby cells [239,240].

Cell death can promote
inflammation and immune cell
recruitment [241,242].

The senescence-associated secretory
phenotype (SASP) is associated with
cell proliferation, inflammation, cell
differentiation or phenotype
switching, tissue remodeling,
angiogenesis, and

invasion [246,247].

Senescent cells can help neighboring
cells escape immune detection by
cleaving cell surface receptors in NK
cells and potential target

cells [248,249].




Genes 2021, 12, 558 15 of 31

Table 1. Cont.

Experimental System Cellular Effect(s) Influence of the Cellular Effect(s) on

the TME
e Acquisition of extra centrosomes e  Centrosomal defects meant to mimic
occurs with whole genome those seen in cancer disrupted tissue
e Various cell lines treated to induce duplication (WGD) [57,59]. Note, organization in 3D cultures [265].
cytokinesis failure, including DLD-1, other molecular changes may be e  Extra centrosomes and/or
HCT-116, MCF10A, and required for cells to retain centrosomal defects can promote
hTERT-immortalized RPE-1 and BJ WGD-associated extra centrosomes, invasiveness in cells harboring them
fibroblast cells [57,59,171,266,268]. as they are quickly lost in cell [266] and in adjacent cells [267].
®  Aneuploid colorectal cancer cell culture [59]. e  Extra centrosomes have been linked
lines compared to diploid e  Altered centrosome homeostasis to a secretory phenotype similar to
ones [259]. proposed to occur due to SASP, known as the extra
aneuploidy (speculation and centrosome-associated secretory
associational evidence) [259,261]. phenotype (ECASP) [267].

5.2. Rigged Selection? Stress Conditions in the TME May Favor the Growth and Survival of
Karyotypically Abnormal Cells

For niche construction to formally be said to occur, two conditions must be met: (1) an
entity must engage in some activity to alter the environment and (2) the environmental
change must modify the selective forces acting on that entity [197,288]. The TME, shaped
by cancer cells throughout tumor evolution, does indeed exert selective pressures on cells
that are very different than the forces that dictate cell survival in normal tissues [200].
In this section, we consider how selective pressures exerted by the constructed tumor
microenvironment may favor the growth of karyotypically abnormal cancer cells. We
also consider the role of stresses originating from outside of the evolving tumor—namely,
cancer therapeutic treatments—in driving the actions of natural selection on aneuploid
and/or polyploid cells.

5.2.1. Karyotype Aberrations Can Confer Selective Advantage of Cancer Cells in Their
Constructed Niches and in the Face of Cancer Therapeutics

Generally speaking, harsh or stressful environments (e.g., acidic, hypoxic, nutrient
poor) eliminate cells that cannot tolerate them, allowing the proliferation and survival of
those cells that are best adapted to the environment. Aneuploidy may provide a fitness ad-
vantage to various cell types under stress [9,289-294]. In some cases, specific aneuploidies
may provide a selective advantage in a given environment by affecting the expression of im-
portant genes. The loss of chromosome 8p in MCF10A mammary epithelial cells promoted
resistance to hypoxic conditions and chemotherapeutic drugs. This effect was attributed
to increased autophagy linked to ASAHI LOH [295]. Although 8p loss was insufficient
to induce transformation in MCF10A cells [295], it is commonly lost in human tumors of
epithelial origin, which may be partly connected to the number of tumor-suppressor genes
in that genomic region [296] as well as its effects on autophagy and lipid metabolism [295].
In human colon epithelial cells, trisomy 7 cells were found to out-compete diploid counter-
parts under serum starvation [176]. Similarly, the frequency of chromosome 7 copy number
changes also increased in response to glucose deprivation and lactic acidosis in HCT-116
colorectal cancer (CRC) cells [297]. In a study using a different CRC cell line, DLD-1 cells
harboring either an extra chromosome 7 or 13 showed more robust growth than euploid
controls under conditions common in tumors, including hypoxia, nutrient starvation, and
chemotherapy [178]. Notably, gain of 7p and 13q occur recurrently in CRCs [298], sup-
porting the notion that these chromosomal changes may provide important contextual
(genomic, transcriptional, environmental, etc.) advantages during colon carcinogenesis.
In the case of trisomy 7, this karyotypic alteration may be favorable for cells in stressful
environments due at least in part to dysregulation and/or amplification of the EGFR gene,
which can maintain intracellular glucose levels and prevent autophagic cell death [299].
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In many cases, the molecular mechanisms underlying the selective advantages of
whole chromosome and chromosome arm aneuploidies are more complex (involving
multiple genetic loci on different chromosomes) or unclear. For example, only 2 out of
64 chromosome arm alterations (CAAs) that were predictive of chemotherapeutic drug
responses across cancer types could be explained by focal deletions of known drug tar-
gets [300]. This suggests that most CAAs associated with drug responses likely depend on
the interaction of multiple genes across the affected genomic region and/or other interchro-
mosomal genetic interactions. Following the induction of CIN, recurrent aneuploidies were
observed in non-small cell lung cancer cells that developed resistance to the topoisomerase
Iinhibitor Topotecan [192]. The drug-resistant phenotype in this case was not driven by
chromosomal alterations affecting the expression of the drug target. Instead, chromosome
6p gain caused the overexpression of resident genes MAPK13 and MAPK14 that encode
for p38 kinase subunits, which led to the selective upregulation of a drug efflux pump
on chromosome 4q [192]. Direct gain of 4q may not have been favorable in this context
because it harbors numerous tumor suppressor genes, indicating that genetic interactions
between specific aneuploidies and other chromosomes influence karyotype evolution (as
reported in yeast [301]). In a similar study, recurrent aneuploidies were also detected in
various cell lines following Mps1 disruption and drug pressure; however, the observed
karyotypic changes were unique for each cell line used even when challenged with the
same drug [191]. Although the mechanisms underlying resistance were not identified in
this study, the unique karyotypic routes to drug resistance across cell types demonstrate
there are multiple genomic paths to a given phenotype (drug resistance) and the cell’s
genomic and/or epigenetic background is an important factor for the observed effects of
chromosomal alterations.

There is also evidence that WGD can protect normal and cancer cells from stresses in the
environment, including energy depletion, oxidative stress, and chemotherapy [171,302-305].
Polyploidy may be a major driver of treatment failure, tumor relapse, and drug-induced
genomic evolution [306]. Multiple studies found that giant multi-nucleated polyploid cells
arise in vitro and in vivo following drug exposure [307-309]. These polyploid cells may
enter a reversible senescent-like state or slow cell cycle progression in response to drug
treatment. While many of these cells may permanently arrest or perish [307], on some
occasions, they undergo asymmetric, reductive divisions that produce mononuclear cells,
which are often aneuploid and highly tumorigenic [310-312]. Furthermore, tetraploidy
increased the resistance of non-transformed RPE-1 cells and HCT-116 CRC cells to a
variety of chemotherapeutic drugs [171]. The effects of WGD may depend on the genetic
background and/or mechanism of tetraploidization, as drug-induced mitotic slippage
in PC9 lung cells did not promote resistance to the EGFR inhibitor gefitinib [191]. WGD
can also render cells vulnerable to specific genetic challenges, such as impairment of
DNA replication, proteasome inhibition, and KIF18A depletion [313]. Highly aneuploid
cells (both WGD- and WGD+) were also more dependent on KIF18A compared to less
aneuploid or euploid counterparts [314], indicating that KIF18A inhibitors may have
immense therapeutic potential.

5.2.2. Karyotypic, Genetic, and Epigenetic Changes Alter Selective Survival of Tumor
Stromal Cells

Tumor stromal cells may also acquire important selective advantages through kary-
otypic changes. Karyotypic complexity and heterogeneity in TECs increased with tumor
malignancy [315], and aneuploid TECs were more resistant to anti-angiogenic agents and
chemotherapeutic drugs, such as vincristine, paclitaxel, and 5-fluorouracil, than normal en-
dothelial cells [316,317]. Polyploid and aneuploid tumor-associated macrophages (TAMs)
have also been detected in the blood of cancer patients [318,319]. By acquiring cancer cell
DNA through phagocytosis, TAMs may gain tumorigenic functions that enhance tumor
invasion and metastasis [318]. Recent studies found that CAFs isolated from premalig-
nant and malignant skin squamous cell carcinoma were characterized by chromosomal
abnormalities and genomic instability [320,321]. Katarkar et al. showed that CAFs with
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karyotype aberrations that amplified NOTCH1 suppressed DNA damage-induced ATM
signaling and cell cycle arrest in response to UV irradiation, promoting their survival over
other CAFs [321]. Therefore, stromal cells with favorable genomic changes can indeed
undergo positive selection during tumor progression, and the identification of such events
could unlock new stroma-focused anti-cancer intervention strategies. This highlights the
need for continued characterization of genetic, karyotypic, and epigenetic alterations in the
tumor stroma and their effects on cancer-stromal cell interactions, which may underlie the
clinical diversity in treatment response among tumors of the same class and stage [280].

5.2.3. Karyotype Aberrations and Immune Interactions: A Matter of Context

The immune system’s role in eliminating damaged and abnormal cells represents
an important selective pressure that cancer cells must overcome. The literature supports
the idea that karyotype aberrations can modulate immune cell interactions, although the
mechanisms and outcomes appear complicated and context dependent. Aneuploid cells
in culture were found to be more susceptible than euploid cells to elimination by NK
cells [322]. Similarly, it was shown that polyploid cells could be detected and eliminated by
the immune systems of mice [323]. These findings suggest that the immune system may
maintain tissue health and protect against cancer by detecting and eliminating aneuploid
cells [324]. In humans, however, aneuploidy and polyploidy are associated with reduced
immune cell infiltration in tumors, suggesting that aneuploidy may confer cells with a
heightened ability to escape immune detection [35,313,325].

The mechanisms relating aneuploidy and immune interactions within tumors are
not well understood, as highlighted by recent contrasting observations. One study found
that aneuploid cells activated NF-kB signaling to promote their clearance by immune
cells, and the NF-«kB activity correlated with the degree of aneuploidy in cancer cell
lines [326]. In clinical samples, however, highly aneuploid tumors had lower levels of
NEF-«B activity [35]. This discrepancy suggests that the suppression of NF-«B signaling
may result from selective pressures imposed by the TME and represent an important
event in the evolution of aneuploid cells in tumors. One explanation may lie in the link
between aneuploidy, ER stress, and anti-tumor immunity (Section 5.1.1). ER stress, which
is often induced by aneuploidy [206-208], has been associated with the down-regulation
of MHC class I-associated peptides [327] and a reduced immune response in cell culture
and mouse models [328]. Aneuploidy-induced ER and metabolic stress may also help to
create immune suppressive environments through non-cell autonomous mechanisms, as
we discussed earlier [212,221,224]. Nevertheless, this proposed mechanism is speculative
and based on associative evidence, and further research is needed to directly address these
important questions regarding aneuploidy and immune evasion in cancer.

CIN may also help cells overcome immunodetection, although in many cases the exact
mechanism is not clear. One study found CIN initially increased tumor cell immunogenicity,
consistent with other reports [322,326], but continued evolution under immune selection
promotes the proliferation of aneuploid cells that are able to suppress MHC class I antigen
presentation and avoid immune detection [329]. A possible mechanism by which CIN
and karyotype changes can mediate immune evasion is arm-level or focal deletions on
chromosome 6 that result in human leukocyte antigen LOH, which was detected in about
40% of non-small cell lung cancers [330]. Cancer cells with human leukocyte antigen LOH
produce less neoantigens and are less susceptible to immune predation, giving them a
selective advantage in tumors [330]. Immune evasion, however, can also be achieved by
karyotype-independent means. For example, epigenetic silencing of mutated genes (which
can generate neoantigens and promote immune clearance of the cells harboring them) or
of genes involved in the MHC-I antigen presentation pathway can allow cells to escape
destruction by the immune system [329,331].

Immune pressure can dramatically influence clonal selection in tumors [332], leading
to the dominance of less immunogenic sub-clones with favorable genomic and epigenetic
alterations. Based on the apparent immunogenicity of aneuploid cells [322,323,326,329],
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it is tempting to speculate that the physiological consequences of aneuploidy, such as
inflammation and the recruitment of immune cells, create a hostile immune predatory en-
vironment at first, but through ongoing genomic and environmental evolution a beneficial,
immune suppressive TME and/or less immunogenic sub-clones emerge (Figure 3). Further
work is needed to elucidate these dynamics through rigorous experimental studies.

5.2.4. Increased Motility in Aneuploid and Polyploid Cells May Provide a Fitness
Advantage in Some Contexts

Under certain conditions, motile phenotypes may be advantageous for cells. Math-
ematical modeling of tumors has shown that there is often a fitness trade-off between
proliferation and motility (“go or grow” trade-off) and that it may be advantageous for a
cell to be highly motile in certain conditions [333,334]. For example, in rapidly proliferating
areas of a tumor, crowding and nutrient scarcity may make it advantageous for a cell to
be able to escape such an environment. Thus, karyotypic changes that lead to increased
motility could be selected for in or around these areas. Aneuploid cells have been found
to be more invasive than diploid counterparts in a protein matrix meant to mimic the
ECM [178]. Similarly, near-tetraploid cancer cells exhibited increased migratory and inva-
sive behaviors compared to near-diploid cells [251]. Aneuploidy was also found to play a
role in the phenotypic switch known as EMT. This phenotypic switch to the mesenchymal
state leads to increased motility and is associated with metastasis [335]. During sponta-
neous transformation of mouse epithelial cells, aneuploidy arose concurrently with gene
expression changes associated with EMT [336]. Another study found that EMT observed
in cultured cells was associated with specific, recurrent changes in chromosome content,
which affected the expression of ZEB1 and intercellular junction proteins central to the
EMT process [337]. There is also in vivo evidence linking aneuploidy to EMT. Across 27 tu-
mor types, the degree of aneuploidy positively correlated with the levels of EMT-related
gene expression across 27 tumor types [257]. In addition to aneuploidy per se, it has been
reported that chromosome missegregation can also induce EMT to promote invasive and
metastatic phenotypes via cGAS-STING activation if micronuclei rupture [338].

5.2.5. Effects of the TME on Karyotypically Abnormal Cells—Summary

Collectively, the findings discussed in this section demonstrate the principle that
aneuploidy can provide cells with fitness advantages in certain contexts. Nonetheless,
much remains to be uncovered about the interplay between aneuploidy and selective
conditions in the complex contexts of tumors. Characteristic patterns of aneuploidy have
been reported for different tumor types [339]. It has been proposed that these recurrent
aneuploidies might enhance fitness by reinforcing the active transcriptional pathways
specific to a given cell type [166,340]. It is also be possible, however, that these cancer-
specific aneuploidy patterns are influenced by physiological differences in the tissue
environment specific to the anatomical site. For example, a recent pan-cancer analysis of
chromosome arm aneuploidies revealed that 7p gain and 10q loss—two recurrent events in
primary brain tumors—were enriched in metastases to the brain relative to the primary
site [300], suggesting tissue-specific environments may exert selective pressure that define
the genomic evolution of tumors at their primary and metastatic sites. It will be important
to design organoid and xenograft models to understand how these genome-environment
relationships contribute to tumorigenesis.

6. Concluding Remarks

We have discussed how karyotype aberrations arise from cellular errors and envi-
ronmental conditions; we have also explored the balance of forces that determines the
extent of karyotype heterogeneity in a population, and the role of the bidirectional in-
teraction between karyotypically abnormal cancer cells and the environment in shaping
the TME and driving tumor evolution. While tremendous progress has been made in
understanding how genomic and environmental alterations individually contribute to
cancer, continued effort to integrate these fields has the potential to expand our knowledge
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of tumor progression. For instance, the role of niche construction in cancer is not well
understood, and particularly the role of aneuploidy in niche construction has not been
directly addressed to our knowledge. Therefore, many fundamental questions remain
open. For instance, does the accumulation of aneuploidy in tumors exacerbate changes in
the TME, diversifying tumor ecology across time and space? It seems plausible that the
eco-evolutionary interactions that we discuss in this review act in tumors as a feedback loop
that bolsters genomic and/or environmental heterogeneity, thereby driving tumor progres-
sion. How niche construction alters the spatial patterning of environmental niches and cell
populations in tumors, and the consequences of this for disease progression and treatment
response is unclear. Recognizing the parallels between species-environment dynamics in
natural ecosystems, researchers have begun studying cancer from an ecological perspec-
tive and taking systems-level approaches. By integrating data from in vitro and in vivo
systems, genomic and molecular analyses, bioinformatics, and mathematical modeling,
we hope that these important questions can be answered. Indeed, experimental methods
such as laser capture microdissection combined with single cell analyses (LCM-seq) are
already being used to gain better understanding of spatial and functional relationships
between different cells within a tumor and between cells and specific microenvironmental
niches [341]. Such multimodal analyses integrating genomic, transcriptomic, epigenomic,
and microenvironmental data are providing new insights into cancer biology [342,343].

Analysis of other complex systems has revealed various “leverage points” at which
manipulation leads to amplified effects in the system [344]. Thus, experimental and mathe-
matical analysis of niche construction and related ecological and evolutionary feedbacks
in tumors may help to identify the processes central to cancer development, determine
the best ways to disrupt the abnormal dynamics at play in cancerous tissue, and either
return the system to a less malignant state or push the tumor to the point of collapse.
Through a better understanding of the interactions and forces—genomic, environmental,
and others—that shape tumor ecosystems, we hope that potent new therapeutic strategies
will emerge.
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