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Abstract: The circadian clock matches various biological processes to diurnal environmental cycles,
such as light and temperature. Accumulating evidence shows that chromatin modification is crucial
for robust circadian oscillation in plants, although chromatin modifiers involved in regulating core
clock gene expression have been limitedly investigated. Here, we report that the Jumonji C domain-
containing histone demethylase JMJ29, which belongs to the JHDM2/KDM3 group, shapes rhythmic
changes in H3K4me3 histone marks at core clock loci in Arabidopsis. The evening-expressed JMJ29
protein interacts with the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). The
EC recruits JMJ29 to the CCA1 and PRR9 promoters to catalyze the H3K4me3 demethylation at the
cognate loci, maintaining a low-level expression during the evening time. Together, our findings
demonstrate that interaction of circadian components with chromatin-related proteins underlies
diurnal fluctuation of chromatin structures to maintain circadian waveforms in plants.
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1. Introduction

The circadian clock is an internal timekeeping mechanism that generates biological
rhythms with a period of ~24 h and synchronizes plant growth and development with
environmental cycles. Multiple transcriptional feedback loops establish the basic architec-
ture of the plant circadian clock. In Arabidopsis, the two morning-expressed single-MYB
transcription factors, CIRCADIAN CLOCK–ASSOCIATED 1 (CCA1) and LATE ELON-
GATED HYPOCOTYL (LHY), repress transcription of the evening-expressed TIMING
OF CAB EXPRESSION 1 (TOC1)/PSEUDO RESPONSE REGULATOR 1 (PRR1), that in
turn represses CCA1 and LHY expression, forming the central loop [1–4]. The central
loop is further interconnected with additional transcriptional loops. In the morning, a
subset of the PRR family, including PRR7 and PRR9, associate with the CCA1 and LHY
promoters to repress expression [5,6], and PRR5 also binds to the CCA1 promoter late in
the day [7]. Evening-expressed clock components, such as TOC1 and the Evening Complex
(EC), contribute to repressing the morning genes [8–10].

Additional layers of regulation add complexity to precise circadian oscillation. In
particular, the intimate association between chromatin modification and the circadian clock
is beginning to emerge [11]. Rhythmic expression of core clock genes is linked to the
diurnal changes in histone 3 acetylation (H3ac), e.g., H3K56ac and H3K9/14ac, and histone
3 lysine 4 trimethylation (H3K4me3) levels at the gene promoters in Arabidopsis [11–14].
The two active histone marks have different modes of action in clock gene control: tem-
poral H3ac deposition facilitates open chromatin formation to allow peak expression
of clock genes [15,16]; whereas the H3K4me3 mark blocks access of clock repressor at
the core clock gene promoters [16], shaping elaborate circadian waveforms. Despite the
molecular connection between chromatin modification and the circadian control, a lim-

Genes 2021, 12, 529. https://doi.org/10.3390/genes12040529 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-5499-3138
https://doi.org/10.3390/genes12040529
https://doi.org/10.3390/genes12040529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12040529
https://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/12/4/529?type=check_update&version=1


Genes 2021, 12, 529 2 of 15

ited number of chromatin modifiers responsible for circadian histone modification have
been demonstrated.

As for the diurnal accumulation of H3ac, HISTONE DEACETYLASE 9 (HDA9) reg-
ulates circadian oscillation by repressing TOC1 expression. HDA9 associates with an EC
component, ELF3, and the EC enables HDA9 to bind to the TOC1 promoter, stimulat-
ing H3 deacetylation to inhibit TOC1 expression [17]. The temporal binding of HDA9 is
defined by the EC that acts at nighttime, and thus, HDA9 facilitates declining phase of
TOC1 expression during the night period [17]. A couple of HDACs also participate in
circadian oscillation. PRR5, PRR7, and PRR9 interact with HDA6 and HDA19 to robustly
repress CCA1 and LHY [18,19]. In support, treatment with the potent HDAC inhibitor TSA
promotes CCA1 expression and possibly lengthens circadian period [19].

The H3K4me3 level at core clock genes is delicately regulated by antagonistic actions
of histone methyltransferases and histone demethylases. The SET DOMAIN GROUP 2
(SDG2)/ARABIDOPSIS TRITHORAX–RELATED 3 (ATXR3) protein globally deposits the
H3K4me3 mark at multiple clock-associated loci to increase gene expression [16,20]. The
SDG2/ATXR3-deficient mutants exhibit a reduced H3K4me3 accumulation, increased clock
repressor binding, and thereby a low-amplitude expression of core clock genes [20]. Several
Jumonji C (JmjC) domain-containing histone demethylases are known to counterbalance
clock gene expression. The dusk-expressed JMJ30/JMJD5 gene regulates expression of
CCA1 and LHY, which reciprocally repress JMJ30/JMJD5 [21]. Moreover, CCA1 and
LHY also form a feedback relationship with JMJ14 and SDG2, which facilitates rhythmic
H3K4me3 dynamics for the clock genes as well as their output genes [20].

The coordinated control of H3ac and H3K4me3 accumulation has also been demon-
strated in the regulation of circadian oscillation [11]. The morning-expressed CCA1 and
LHY transcription repressors interact with the protein complex containing the LYSINE-
SPECIFIC HISTONE DEMETHYLASE 1 HOMOLOG 1 (LDL1) and LDL2 H3K4 demethy-
lases and the HDA6 histone deacetylase [18]. The LDL1/2-HDA6 complex is recruited to
CCA1/LHY-target genes, such as TOC1 [18]. In the morning, the TOC1 gene is suppressed
synergistically by H3 deacetylation and H3K4 demethylation. By contrast, in the evening,
because CCA1 and LHY are expressed at a low level, the binding of LDL1/2-HDA6 complex
to the TOC1 promoter is impaired, increasing TOC1 expression [18]. Overall, interplays
between chromatin modifiers and core circadian clock components fine-tune circadian
oscillation and thereby plant growth and development.

Despite the advances in the understanding of epigenetic regulation of circadian oscil-
lation, chromatin modifiers contributing to the rhythms of chromatin structures and their
action mechanisms remain to be fully elucidated. Here, we report that JMJ29 participates
in the circadian regulation of morning-expressed CCA1 and PRR9 genes. JMJ29 physi-
cally associates with an EC component ELF3, and both EC and JMJ29 bind to the CCA1
and PRR9 promoters, maintaining their expression at a low level during evening time.
Our findings suggest that temporal regulation of histone methylation underlies robust
circadian rhythmicity.

2. Materials and Methods
2.1. Plant Growth Conditions

The Arabidopsis thaliana ecotype Col-0 was used. Plants were grown under neutral day
conditions (NDs; 12 h light/12 h dark cycles) with cool white fluorescence (120 µmol pho-
tons m−2 s−1) at 22–23 ◦C. The jmj29-1, elf3-1, pJMJ29:JMJ29-GFP/jmj29-1, and pELF3:ELF3-
MYC/elf3-1 mutants were previously described [22,23]. To investigate the biological func-
tion of JMJ29, T-DNA insertional jmj29-1 (Salk_021597) mutant seeds were obtained from
the Arabidopsis Biological Research Center.

2.2. RNA Extraction and Quantitative RT-PCR (RT-qPCR)

Total RNAs were isolated using TRI agent (TAKARA Bio, Singa, Japan). Two µg
of total RNAs were pretreated with an RNAse-free DNAse and then used to synthesize
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first-strand cDNA using Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase
(Dr. protein, Seoul, South Korea) and oligo (dT18). Synthesized cDNAs were used for
PCR amplification.

Quantitative RT-PCR reactions were conducted in 96-well blocks using the Step-One
Plus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The PCR primer
sequences used in this study are listed in Supplementary Table S1. EUKARYOTIC TRANS-
LATION INITIATION FACTOR 4A1 (eIF4A) gene (At3g13920) was used as a reference gene
for relative normalization. RT-qPCR was performed with SYBR Master Mix (Enzynomics,
Seoul, South Korea) using the44Ct method. The specificity of the RT-qPCR reactions was
determined by melt curve analysis of the amplified products using the standard method
installed in the system.

2.3. Yeast Two Hybrid (Y2H) Assays

The BD Matchmaker system (Clontech, Mountain View, CA, USA) was employed
to conduct Y2H assays. The pGADT7 vector was used for the GAL4 activation domain
(AD) fusion, and the pGBKT7 vector was used for GAL4 binding domain (BD) fusion.
PCR products were subcloned into the pGBKT7 and pGADT7 vectors. The recombinant
expression constructs were co-transformed into yeast pJG69-4A cells harboring the LacZ
and His reporter genes, and transformed cells were selected by incubating on SD/-Leu/-Trp
medium and SD/-Leu/-Trp/-His/-Ade.

2.4. Bimolecular fluorescence Complementation (BiFC) Assays

The full-size ELF3, ELF4, and LUX coding sequences were fused in-frame to the 5′

end of a gene sequence encoding the N-terminal half of EYFP in the pSATN-nEYFP-C1
vector (E3081). The JMJ29 gene was fused to the 3′ end of a gene sequence encoding the
C-terminal half of EYFP in the pSATN-cEYFP-N1 vector (E3084).

For protoplast isolation, 14-day-old seedlings grown under the ND conditions were
harvested in 20 mL 0.5 M mannitol solution (90Φ plate) and incubated for 1 h at room
temperature (RT). Then, the 0.5 M mannitol solution was replaced with 20 mL enzyme
solution (2% Viscozyme L, 1% Celluclast 1.5 L, 1% Pectinex Ultra SP-L in MMC, adjusted
to pH 5.8 by NaOH and sterilized through a 0.2 µm syringe filtering) and incubated in
the dark for 12–14 h at RT. The protoplasts were collected by centrifugation at 100 g for
7 min and washed twice with the W5 solution (0.1% glucose, 0.08% KCl, 0.9% NaCl,
1.84% CaCl2, and 2 mM MES, adjusted to pH 5.7). For BiFC assays, 10 µg nYFP- and
10 µg cYFP-fusion plasmid DNAs were used to transfect 1.2 × 106 protoplasts in 300 µL
MMg solution (4 mM MES containing 0.4 M D-mannitol and 15 mM MgCl2, adjusted to
pH 5.7 with 2 M NaOH). The recombinant plasmids were co-transfected with a nuclear
marker (mCherry-NLS plasmid). After 14 h incubation, the protoplasts were harvested
and observed using Confocal Quantitative Image Cytometer CQ1 (YOKOGAWA).

2.5. Co-Immunoprecipitation Assays

35S:ELF3-HA and 35S:JMJ29-GFP constructs were co-transfected into protoplasts iso-
lated from 14-day-old Arabidopsis seedlings, and the transfected protoplasts were incubated
in the dark for 16 h at RT. The protoplasts were collected by centrifugation at 300 g for 5 min.
About 2× 106 protoplasts were homogenized in IP buffer (25 mM Tris-HCl, 150 mM NaCl,
0.5 % Triton X-100, 1 mM EDTA, and 1 % protease inhibitor, adjusted to pH 7.5), incubated
for 30 min on ice, and centrifuged at 15,000 g for 10 min at 4 ◦C to collect supernatant. Then,
50 µL of Protein A/G Agarose Beads (SC-2003, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) were added, and the mixture was incubated for 3 h at 4 ◦C with gentle shaking
(50 rpm). The beads were removed by centrifugation at 14,000 g for 5 min at 4 ◦C, and
antibodies were then added to the supernatant. After overnight incubation at 4 ◦C, 50 µL
of protein A-Sepharose (P9424, Sigma-Aldrich, USA) was added and incubated for an
additional 6 h at 4 ◦C. The beads were collected by centrifugation at 100 g for 3 min at 4 ◦C
and washed five times with IP buffer. The proteins were eluted by boiling in SDS-PAGE
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sample buffer for 5 min and subjected to western blot analysis. The anti-HA (ab9110,
Abcam, Cambridge, UK) and anti-GFP (ab290, Abcam, Cambridge, UK) were used for
immunoprecipitation and western blot analyses.

2.6. Chromatin Immunoprecipitation (ChIP) Assays

The pJMJ29:JMJ29-GFP/jmj29-1, pELF3:ELF3-MYC/elf3-1, jmj29-1, and elf3-1 plants [22,23]
were used for ChIP assays. Plant materials used for the experiments were grown under
NDs for 2 weeks. Harvested plant materials were fixed in 1% formaldehyde for 20 min with
vacuum infiltration and ground in liquid nitrogen. Chromatin solubilized by the nuclei
lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0, 1% SDS, 1 mM PMSF, and 1× PIs)
was sonicated at 4 ◦C to generate ~500 bp fragments using a Bioruptor Pico (Diagenode).
The chromatin solutions were ultrasonicated for 10 cycles (30 s ON and 30 s OFF for each
cycle on full power). The antibodies, including anti-GFP (ab290, Abcam, Cambridge,
UK), anti-MYC (05-724, Millipore, Billerica, USA), anti-H3 (04-928, Millipore, Billerica,
MA, USA), anti-H3K4me3 (07-473, Millipore, Billerica, USA), and anti-H3K9me2 (ab1220,
Abcam, Cambridge. UK), and agarose A/G beads (SC-2003, Santa Cruz Biotechnology,
Santa Cruz, CA, USA) were used for ChIP. The fragmented DNAs were purified using a
DNA elution kit. Precipitated DNA level was quantified by quantitative real-time PCR
using specific primer sets listed in Supplementary Table S2. ChIP-qPCR values were
normalized as a percentage of the input DNA.

2.7. Transient Gene Expression Assays

For transient expression assays using Arabidopsis protoplasts, reporter and effec-
tor plasmids were employed [17,24,25]. The reporter plasmid contained a minimal 35S
promoter sequence as well as the GUS gene [26]. The core elements on the CCA1 and
PRR9 promoters were subcloned into the reporter plasmid. To construct the p35S:JMJ29,
p35S:ELF3, p35S:ELF4, and p35S:LUX effector plasmids, coding regions were subcloned into
the effector vector containing the CaMV 35S promoter. Recombinant reporter and effector
plasmids were co-expressed into Arabidopsis protoplasts by a polyethylene glycol (PEG)
method [27]. GUS activities were measured based on the fluorometric method. A CaMV
35S promoter-luciferase construct was also co-transformed as an internal control to normal-
ize GUS activity. The luciferase assay was performed using the D-luciferin (BT11-1000Na,
BioThema, Handen, Sweden).

2.8. Bioluminescence Assays

Seeds were sown in 1/2 MS-solid medium and stratified in darkness at 4 ◦C for 3 days,
and germinated seedlings were entrained for 3 weeks under ND conditions at 22–23 ◦C.
To examine circadian oscillations in protoplasts, mesophyll protoplasts were isolated from
the lower epidermal layer of 3-week-old Arabidopsis seedlings. Whole seedlings were
soaked in 10 mL of an enzyme solution (400 mM mannitol, 20 mM KCl, 20 mM MES-KOH
[pH 5.7], 10 mM CaCl2, 1% Cellulase R10, 0.5% Macerozyme R10, and 0.1% bovine serum
albumin) for 16 h in the dark. The isolated protoplasts were filtered through sterile 100 mm
stainless mesh and resuspended in W5 solution. The pCCA1:LUC and p35S:ELF3 plasmids
were prepared by PEG purification. Then, the recombinant constructs were transiently
introduced into Arabidopsis protoplasts via PEG-mediated transformation [23].

Luminescence rhythms were monitored using the Tristar2 LB 942 Multimode Mi-
croplate Reader (Berthold Technologies, Wildbad, Germany). The circadian period was
estimated using the Fast Fourier Transform-Nonlinear Least Squares (FFT-NLLS) suite of
programs available in the Biodare2 software.

3. Results
3.1. Altered Circadian Oscillation in jmj29 Mutant

Accumulating evidence has supported that histone demethylase activity is impor-
tant for the rhythmic oscillation of histone methylation at the core clock promoters [16].
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Although several JMJ proteins have been characterized as crucial regulators of circadian
oscillation [20,21,28], we wanted to identify additional catalytic enzymes responsible for
the H3K4me3 dynamics. Among others, we noticed the JMJ29 gene, which encodes the
JHDM2/KDM3 group Jumonji-C domain-containing histone demethylase [22,29], because
JMJ29 expression displayed circadian rhythm with a peak at dusk (Figure 1A) [30].
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Figure 1. Circadian regulation of JMJ29. (A) Analysis of JMJ29 circadian expression. Seedlings grown
under neutral day conditions (ND) for 14 days were transferred to continuous light conditions (LL) at
Zeitgeber Time 0 (ZT0). (B) Altered circadian oscillation in jmj29-1. Two-week-old seedlings grown
under ND were transferred to LL at ZT0. Whole seedlings (n > 15) were harvested from ZT24 to ZT116
to analyze transcript levels of CCA1 and PRR9. Period estimates were calculated using FFT-NLLS
(Biodare2). Statistical significance was determined by Student’s t-test (* p < 0.05). In (A) and (B), two
independent experiments were averaged. Gene expression values were normalized relative to eIF4A
expression and represented as n-fold relative to the value of the ZT24. Bars indicate the standard
error of the mean. The white and gray boxes indicate the subjective day and night, respectively.



Genes 2021, 12, 529 6 of 15

We then obtained a JMJ29-deficient jmj29-1 mutant [22] and analyzed rhythmic ex-
pression of the core clock oscillator genes, CCA1 and PRR9 (Figure 1B). Quantitative
real-time RT-PCR (RT-qPCR) analysis revealed that jmj29-1 mutation led to alterations in
circadian oscillation. Circadian period of clock gene expression was shortened in jmj29-1
mutants, compared with wild type (Figure 1B). Consistently, expression of a circadian
output gene, COLD, CIRCADIAN RHYTHM, AND RNA BINDING (CCR2), also displayed
advanced rhythmic phase, possibly due to a period shortening (Supplementary Figure S1).
These results suggest that JMJ29 is involved in sustaining circadian oscillation under
free-running conditions.

3.2. JMJ29 Binds to the CCA1 and PRR9 Promoters

We then asked whether JMJ29 regulates circadian clock activity through direct binding
to the core clock genes. To this end, we performed chromatin immunoprecipitation (ChIP)
assays using the pJMJ29:JMJ29-GFP/jmj29-1 transgenic plants [16,20,21]. ChIP enrichment
analysis in the promoter regions of core clock genes, which include key clock-related
cis-elements, such as E-boxes and LUX-binding sites (LBSs) [8,9] (Figure 2A), showed
that JMJ29 was associated specifically at the CCA1 and PRR9 promoters (Figure 2B and
Supplementary Figure S2), and none of the other examined regions were targeted by JMJ29
(Figure 2B). We further explored whether JMJ29 rhythmically bound to the CCA1 and PRR9
promoters. The JMJ29 protein accumulation was likely to be correlated with the oscillation
pattern of JMJ29 transcripts (Figure 1A), and consistently, binding of JMJ29 to the CCA1
and PRR9 loci was observed preferentially at dusk (Figure 2B), when expression of the two
morning genes was low [2,3,14].

JMJ29 that belongs to the JHDM2/KDM3 group is known to primarily catalyze H3K9
demethylation [22]. However, circadian expression of CCA1 and PRR9 is known to be
independent of H3K9me1/2 levels [12]. Further, JMJ29 did not significantly influence
H3K9me2 accumulation at the CCA1 and PRR9 loci (Supplementary Figure S3). Thus, we
suspected that JMJ29 might contribute to changes in H3K4me3 accumulation locally at
the CCA1 and PRR9 promoters. ChIP assays with an anti-H3K4me3 antibody showed
that, in wild-type seedlings, reduction of H3K4me3 accumulation at the CCA1 and PRR9
loci occurred around dusk (Figure 2C) when JMJ29 was actively expressed (Figure 1A).
However, the reduction of H3K4me3 levels at dusk was diminished in the jmj29-1 mutant
(Figure 2C). Although histone modification at the CCA1 and PRR9 loci was altered in jmj29-
1, their expression was not immediately changed (Figure 1B), possibly due to extensive
transcriptional feedback loops. Thus, the JMJ29 protein promotes H3K4me3 demethylation
at the CCA1 and PRR9 loci and subsequently influences their expression at later stages of
free running.

Since H3K4me3 is responsible for gene activation [16,31], JMJ29 most likely inhibits
the expression of CCA1 and PRR9. To test this hypothesis, we carried out transient ex-
pression assays using Arabidopsis protoplasts. The CCA1 and PRR9 promoters were fused
to the 35S minimal promoter in the reporter plasmid. The recombinant reporter plasmid
and the effector construct expressing the JMJ29 gene were co-transfected into Arabidopsis
protoplasts (Figure 2D). Co-expression of these constructs repressed the GUS activity by
~50% (Figure 2D). Although regulation of CCA1 and PRR9 expression by JMJ29 was not im-
mediately observed in wild-type seedlings (Figure 1B), overexpression of JMJ29 clearly led
to the repression of CCA1 and PRR9 (Figure 2D). These results indicate that dusk-expressed
JMJ29 is recruited to the CCA1 and PRR9 promoters and represses expression by promoting
H3K4me3 demethylation.
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Figure 2. Binding of JMJ29 to the CCA1 and PRR9 promoters. (A) Promoter analysis of core clock genes. Underbars
represent the regions of PCR amplification after chromatin immunoprecipitation (ChIP). E-boxes and LBSs are represented
by red and blue lines, respectively. (B) Binding of JMJ29 to clock gene promoters. Two-week-old seedlings grown under
ND condition were subjected to LL at ZT0. Plants were harvested at ZT24 and ZT36 for ChIP with anti-GFP antibody,
and statistical significance of the measurements was analyzed with Student’s t-test (* p < 0.05; difference between Col-0
and pJMJ29:JMJ29-GFP/jmj29-1 transgenic plants). (C) H3K4me3 levels at the CCA1 and PRR9 loci in jmj29-1 mutant.
Two-week-old seedlings grown in ND condition were subjected to LL at ZT0. Plants were harvested at ZT24 and ZT36
for ChIP with anti-H3 and anti-H3K4me3 antibodies, and H3K4me3 levels were normalized to total histone H3 protein
levels. Statistical significance of the measurements was analyzed by one-way ANOVA with Fisher’s post hoc test, * p <
0.05. (D) Transient expression assays. The recombinant reporter and effector constructs were co-expressed transiently in
Arabidopsis protoplasts. The GUS activity was determined fluorometrically. Statistical significance of the measurements
was determined by Student’s t-test (* p < 0.05). In (B), (C), and (D), biological triplicates were averaged. Bars indicate the
standard error of the mean. Min 35S, minimal 35S promoter; CaMV, Cauliflower mosaic virus; Nos-T, nopaline synthase
terminator.

3.3. Protein–Protein Interaction between JMJ29 and ELF3

Given that JMJ29 has no selective DNA-binding domain responsible for the recogni-
tion of specific cis-elements like other JMJ proteins [22], we hypothesized that additional
molecular component(s) were required for JMJ29 regulation of CCA1 and PRR9 expression.
To examine this hypothesis, we conducted yeast-two-hybrid assays and tested whether
JMJ29 interacts with core clock proteins. The JMJ29-GAL4 DNA BD fusion construct was
co-expressed with a construct expressing a core clock protein fused to GAL4 AD in yeast
cells. As a result, JMJ29 specifically interacted with ELF3 (Figure 3A), but none of the other
clock proteins were associated (Figure 3A).
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Figure 3. Interaction of ELF3 with JMJ29. (A) Yeast-two-hybrid (Y2H) assays. Y2H assays were
performed with the JMJ29 protein fused to the GAL4 BD, and clock proteins fused to the GAL4
AD. -LWHA represents Leu, Trp, His, and Ade drop-out plates. -LW represents Leu and Trp drop-
out plates. GAL4 was used as a positive control. The experiments were repeated three times
with similar results, and one representative experiment is shown. (B) Bimolecular fluorescence
complementation (BiFC) assays. Partial YFP fragment fusion constructs containing either JMJ29 or
ELF3 were transiently co-expressed in Arabidopsis protoplasts. The mCherry-NLS construct was
used as a positive control of nuclear localization. The number of protoplast cells yielding detectable
fluorescent signals was counted, and the representative image is shown only when we observed
positive interactions over negative controls. Scale bars = 20 µm. (C) Coimmunoprecipitation (Co-
IP) assays. 35S:ELF3-HA and 35S:JMJ29-GFP constructs are transiently co-expressed in Arabidopsis
protoplasts. Epitope-tagged proteins were detected immunologically using corresponding antibodies.
The experiments were repeated three times with similar results, and one representative experiment is
shown. IP, immunoprecipitation.

To support the in vivo interaction of JMJ29 with ELF3, we conducted bimolecular fluo-
rescence complementation (BiFC) analysis in Arabidopsis protoplasts. The JMJ29 gene was
fused to the sequence encoding the C-terminal half of YFP (cYFP), and the ELF3 gene was
fused to the sequence encoding the N-terminal half of YFP (nYFP). The fusion constructs
were then transiently co-expressed in Arabidopsis protoplasts. Co-expression of the JMJ29-
ELF3 combination generated yellow fluorescence exclusively in the nucleus (Figure 3B),
while expression with empty vectors did not show visible fluorescence (Figure 3B). Con-
sistent with the fact that ELF3 is a component of the EC [32,33], JMJ29 also physically
associated with other EC components, ELF4 and LUX (Supplementary Figure S4). The
discrepancy of interactions between JMJ29 and EC components in yeast and plant cells
might be due to the requirement of plant-specific molecular factors in the protein-protein
interactions. We also confirmed in planta interactions of JMJ29 and ELF3 (Figure 3C). These
results indicated that JMJ29 interacts with the EC to directly repress CCA1 and PRR9.
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3.4. The EC Facilitates Transcriptional Repression of CCA1 and PRR9

Considering that the JMJ29 protein is involved in the temporal regulation of CCA1
and PRR9, we needed to confirm whether the EC function is also relevant in rhythmic
H3K4me3 accumulation at the CCA1 and PRR9 promoters. We first employed pELF3:ELF3-
MYC/elf3-1 transgenic plants [23] and performed ChIP assays using an anti-MYC antibody.
In agreement with the temporal association of JMJ29 to the CCA1 and PRR9 loci (Figure 2B),
ELF3 also bound to the CCA1 and PRR9 promoters in the regions where JMJ29 was recruited,
preferentially at dusk (Figure 2A, 2B, and Figure 4A).
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Figure 4. Repression of CCA1 and PRR9 expression by EC via H3K4me3 demethylation. (A) Binding
of ELF3 to the CCA1 and PRR9 promoters. Two-week-old plants grown in ND condition were
subjected to LL at ZT0. Plants were harvested at ZT24 and ZT36 for ChIP assays. Enrichment of
target chromatin regions was analyzed by ChIP-qPCR with the primer sets shown in Figure 2A.
Biological triplicates were averaged and statistically analyzed with Student’s t-test (* p < 0.05).
(B) H3K4me3 levels at the CCA1 and PRR9 loci in elf3-1 mutant. Plants were harvested at ZT24 and
ZT36 for ChIP with anti-H3 and anti-H3K4me3 antibodies, and H3K4me3 levels were normalized to
total histone H3 protein levels. Biological triplicates were averaged, and statistical significance of the
measurements was analyzed by one-way ANOVA with Fisher’s post hoc test (p < 0.05). (C) Transcript
levels of CCA1 and PRR9 in elf3-1 mutant. Two-week-old seedlings grown under ND were transferred
to LL at ZT0. Whole seedlings (n > 15) were harvested from ZT96 to ZT116. Gene expression values
were normalized to the eIF4A expression. Two technical replicates were averaged and statistically
analyzed with Student’s t-test (*p < 0.05). Bars indicate the standard error of the mean. The white
and gray boxes indicate the subjective day and night.
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Since the EC recruits JMJ29 to repress gene expression via H3K4me3 demethylation,
we analyzed H3K4me3 levels at the CCA1 and PRR9 loci in the elf3-1 mutant. ChIP-qPCR
analysis for H3K4me3 accumulation revealed that the reduction of H3K4me3 levels at the
CCA1 and PRR9 loci around dusk was impaired in elf3-1 (Figure 4B), similar to that in
jmj29-1 (Figure 2C). We also examined expression of CCA1 and PRR9 in elf3-1 and found
that their expression was arrhythmic and increased around dusk (Figure 4C), when JMJ29
and EC were active (Figure 1A) [33]. The expression amplitude of CCA1 and PRR9 in elf3-1
was a bit different from previous reports [8,34], probably because of our growth conditions.

The transcriptional repression of CCA1 and PRR9 by EC was also confirmed by
transient expression assays (Supplementary Figure S5). The recombinant reporter plasmid
containing the CCA1 or PRR9 promoter and the effector construct expressing ELF3, ELF4, or
LUX were co-transfected into Arabidopsis protoplasts. GUS activity measurement showed
that the EC components could bind to the CCA1 and PRR9 promoters and repressed
expression (Supplementary Figure S5). These results indicate that the EC is responsible for
the H3K4me3-dependent regulation of CCA1 and PRR9.

3.5. The EC and JMJ29 Are Interdependent in Regulating CCA1 and PRR9 Expression

Our results demonstrated that the EC and JMJ29 act together in the repression of CCA1
and PRR9. We thus asked whether ELF3 repression of CCA1 and PRR9 required JMJ29. The
importance of EC function for JMJ29 binding to the CCA1 and PRR9 promoters was tested
using wild-type and elf3-1 mutant protoplasts transiently expressing 35S:JMJ29-GFP. ChIP
analysis with the anti-GFP antibody showed that JMJ29 binding to the CCA1 and PRR9 loci
was reduced in the elf3-1 mutant background compared with the wild-type background
(Figure 5A). Since JMJ29 protein catalyzes H3K4me3 demethylation at the cognate regions
(Figure 2C), H3K4me3 levels at the CCA1 and PRR9 loci were also measured in wild-
type and jmj29-1 protoplasts transiently expressing 35S:ELF3-HA. H3K4me3 levels were
reduced by overexpression of ELF3 in wild-type protoplasts, but ELF3-induced H3K4me3
demethylation was compromised in the jmj29-1 mutant protoplasts (Figure 5B).

We also performed transient gene expression assays using Arabidopsis protoplasts.
Reporter GUS activity measurement indicated that ELF3 significantly repressed CCA1 and
PRR9 promoter activities in wild-type protoplasts, but the ELF3 function disappeared in
the jmj29-1 mutant (Figure 5C). The impaired ELF3 function was restored by complemen-
tation of JMJ29 (Figure 5C). In further support, overexpression of ELF3 led to prolonged
circadian period in wild-type protoplasts, but the ELF3 function was impaired in jmj29-1
mutant protoplasts (Figure 5D). These results demonstrate that both EC and JMJ29 are
simultaneously involved in repressing CCA1 and PRR9 expression in circadian cycles.

In summary, the CCA1 and PRR9 genes are regulated by rhythmic changes in H3K4me3
levels. SDG2 is possibly responsible for the raising phase of their expression [20]. After
peak expression, JMJ29 is recruited via the interaction with ELF3, a component of the EC.
The EC-JMJ29 induces H3K4me3 demethylation at the CCA1 and PRR9 loci to reach their
basal expression during evening time (Figure 6).
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Figure 5. Interdependency of EC and JMJ29 in repression of CCA1 and PRR9. (A) Binding of JMJ29 to the CCA1 and
PRR9 loci in elf3-1. 35S:JMJ29-GFP construct was transfected in protoplasts isolated from two-week-old seedlings grown
under NDs. The protoplasts were harvested at ZT36 for ChIP using anti-GFP antibody. (B) H3K4me3 levels in 35S:ELF3-
HA/jmj29-1. 35S:ELF3-HA construct was transfected in protoplasts isolated from two-week-old seedlings grown under NDs.
The protoplasts were harvested at ZT36 for ChIP using anti-H3K4me3 antibody. In (A) and (B), the indicated genomic
regions (see Figure 2A) were analyzed by ChIP-qPCR. Biological triplicates were averaged and statistically analyzed with
Student’s t-test (* p < 0.05). Bars indicate the standard error of the mean. (C) Transient expression assays using Arabidopsis
protoplasts. The recombinant reporter and effector constructs were co-expressed transiently in Arabidopsis protoplasts, and
then GUS activity was determined fluorometrically. Biological triplicates were averaged, and statistical significance of the
measurements was analyzed by one-way ANOVA with Fisher’s post hoc test (p < 0.05). Bars indicate the standard error of the
mean. Min 35S, minimal 35S promoter; CaMV, Cauliflower mosaic virus; Nos-T, nopaline synthase terminator. (D) Impact
of ELF3 overexpression in circadian period. The 35S:ELF3 effector plasmid was transfected into wild-type and jmj29-1
mutant protoplasts. Biological triplicates were averaged, and statistical significance of the measurements was analyzed by
one-way ANOVA (p < 0.05). Bars indicate the standard error of the mean.
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Figure 6. Proposed working model of the EC-JMJ29 complex in circadian control. Circadian expres-
sion of CCA1 and PRR9 are associated with H3K4me3 levels. SDG2 possibly catalyzes the H3K4me3
deposition at the CCA1 and PRR9 promoters at dawn, facilitating raising phase of gene expression.
After peak expression, the declining phase of CCA1 and PRR9 is shaped by the Evening Complex
(EC) and JMJ29. The EC recruits JMJ29 to the CCA1 and PRR9 promoters and removes H3K4me3 at
dusk, maintaining low levels of expression during evening time.

4. Discussion

Rhythmic transcriptional regulation of core clock genes is intimately connected with
chromatin status, which is under the extensive control of DNA methylation, histone modi-
fications, and histone variant exchange [35–38]. To date, changes in histone modifications,
such as H3K56ac, H3K9/14ac, and H3K4me3, at clock gene promoters are known to be
particularly important for circadian dynamics in Arabidopsis [13,16]. Notably, the circadian
accumulation of H3K4me3 at core clock gene loci is mediated by antagonistic actions of
histone methyltransferases and histone demethylases. The SDG2/ATXR3 histone methyl-
transferase deposits H3K4me3 globally at core clock gene loci [20]. After peak expression,
multiple histone demethylases, which belong to the KDM1/LSD1 or JmjC family [39], reg-
ulate a specific subset of clock genes, returning to the basal expression level of their target
genes [39]. For example, LDL1, LDL2, JMJ14, and JMJ30 allow the diurnal repression of
CCA1 and LHY, possibly through controlling rhythmic H3K4me3 accumulation [20,21,39].
Here, we show that JMJ29 regulates circadian oscillations by repressing CCA1 and PRR9
expression. JMJ29 interacts with the EC component ELF3, and the EC rhythmically recruits
JMJ29 to the CCA1 and PRR9 promoters at dusk, when EC and JMJ29 are active. Then, the
JMJ29 protein catalyzes H3K4me3 demethylation to maintain low levels of CCA1 and PRR9
expression during evening time.

However, several questions remain to be elucidated. Although JMJ29 is a member of
the JHDM2/KDM3 group JmjC domain-containing histone demethylases [29], which were
identified to predominantly catalyze the H3K9me1/2 demethylation in eukaryotes [40–43],
our results showed that JMJ29 was also able to remove H3K4me3, especially at core clock
gene loci. JMJ29 most likely has a pervasive role in H3K9me1/2 demethylation to activate
gene expression, but the JMJ29 protein is also relevant in transcriptional repression locally
at certain chromatin regions via H3K4me3 demethylation. It is currently unclear what
structural and biochemical features of JMJ29 enable it to have the dual functions. It is also
a reasonable question, to determine which catalytic activity of JMJ29 is predominant at a
given sequence context. Additionally, even though EC has a broader spectrum of clock gene
binding, binding of JMJ29 is limited to the CCA1 and PRR9 promoters. EC also interacts
with various chromatin modifiers and remodelers, in addition to JMJ29. While H3K4me3
demethylation at the core clock genes by ELF3 was dependent on JMJ29, regulation of
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circadian gene expression by ELF3 was further elaborated by additional epigenetic and
molecular factors [17,44,45]. Thus, detailed molecular mechanisms should be elucidated to
give a comprehensive view of circadian-chromatin networks.

In addition to circadian oscillation, the JMJ29 protein was also implicated in plant
growth and development. For instance, JMJ29 participates in trichrome development.
JMJ29 directly binds to the GLABRA 3 (GL3) promoter and activates gene expression via
H3K9me2 demethylation [22]. JMJ29 may also indirectly affect expression of GL1 and
GL2 [22]. Consistently, the trichome density on leaves and inflorescent stems were reduced
in jmj29 mutants with a low expression of GL1, GL2, and GL3 [22]. Based on our study, it is
likely that trichome development might be under the circadian control, and JMJ29 relays
diurnal cues to induce proper developmental processes. Altogether, the JMJ29 protein
is likely to integrate temporal information into circadian oscillation programs and also a
variety of output processes optimizing plant growth and development.

5. Conclusions

Diurnal changes in H3K4me3 levels shape the rhythmic oscillation of core clock gene
expression. The global deposition of H3K4me3 at the clock gene loci is known to be
catalyzed by SDG2/ATXR3. The removal of H3K4me3 at core clock genes is mediated
by multiple histone demethylases, each of which has a limited target gene spectrum. The
JMJ29 protein interacts with the EC, and the EC-JMJ29 complex is able to associate the
CCA1 and PRR9 promoters at dusk. The JMJ29 protein promotes H3K4me3 demethylation
and maintains their expression at low levels during evening time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12040529/s1, Figure S1: Circadian expression of CCR2 in jmj29-1. Figure S2: Binding
of JMJ29 to coding regions of CCA1 and PRR9. Figure S3: H3K9me2 accumulation at the CCA1 and
PRR9 loci. Figure S4: Interaction of JMJ29 with ELF4 and LUX. Figure S5: Transient expression assays
using Arabidopsis protoplasts. Table S1: List of primers used in this study. Table S2: List of primers
used in chromatin immunoprecipitation (ChIP) assays.
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