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Abstract: Newcastle disease virus (NDV) causes a highly contagious and devastating disease in
poultry. ND causes heavy economic losses to the global poultry industry by decreasing the growth
rate, decrease in egg production high morbidity and mortality. Although significant advances have
been made in the vaccine development, outbreaks are reported in vaccinated birds. In this study,
we report the damage caused by NDV infection in the pancreatic tissues of vaccinated and specific-
pathogen-free chickens. The histopathological examination of the pancreas showed severe damage
in the form of partial depletion of zymogen granules, acinar cell vacuolization, necrosis, apoptosis,
congestion in the large and small vessels, sloughing of epithelial cells of the pancreatic duct, and
mild perivascular edema. Increased plasma levels of corticosterone and somatostatin were observed
in NDV-infected chicken at three- and five- days post infection (DPI). A slight decrease in the plasma
concentrations of insulin was noticed at 5 DPI. Significant changes were not observed in the plasma
levels of glucagon. Furthermore, NDV infection decreased the activity and mRNA expression of
amylase, lipase, and trypsin from the pancreas. Taken together, our findings highlight that NDV
induces extensive tissue damage in the pancreas, decreases the activity and expression of pancreatic
enzymes, and increases plasma corticosterone and somatostatin. These findings provide new insights
that a defective pancreas may be one of the reasons for decreased growth performance after NDV
infection in chickens.

Keywords: Newcastle disease virus; chicken; pancreas; hormone; enzymes; histopathology

1. Introduction

Newcastle disease (ND) is a highly infectious and one of the most distressing viral
diseases in poultry, leading to heavy economic losses to the global poultry industry [1]. ND
is caused by virulent strains of avian orthoavulavirus-1, also known as Newcastle disease
virus (NDV) [2]. NDV belongs to the order Mononegavirales, family Paramyxoviridae, and
genus Orthoavulavirus, containing a non-segmented, negative-sense, and single-stranded
RNA genome of around 15 kilobases (kb) in length [3]. The proteins encoded by the NDV
genome are nucleoprotein (NP), phosphoprotein (P), matrix (M), fusion (F), haemagglutinin-
neuraminidase (HN), and large polymerase (L) [4]. The RNA editing of the P protein can
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result in the production of additional nonstructural proteins V and possibly W in the virus-
infected cells [5,6]. From these proteins, F and HN are mainly involved in the NDV-induced
pathologies in poultry.

There are four pathotypes of NDV strains based on clinical signs: asymptomatic
enteric, lentogenic, mesogenic, and velogenic [7]. Mesogenic and velogenic strains of are
responsible for systemic infections in poultry and clinical manifestations of variable mor-
tality from subclinical infections to 100%. ND mainly affects the digestive, respiratory, and
nervous systems [8–11] but is not limited to these organs. NDV-induced pathologies and
replication have been noted in the spleen, liver, bursa of Fabricius, heart, and reproductive
system [12–16]. Previous outbreaks of NDV in vaccinated and nonvaccinated poultry
reported the involvement of the pancreas [15,17,18].

For the digestion of lipids, proteins, carbohydrates, and nucleic acids, different enzymes
are produced by the digestive system, including the salivary glands, intestine, liver, and
pancreas [19]; pancreatic enzymes such as trypsinogen, chymotrypsinogen, elastase, and procar-
boxypeptidase for the digestion of proteins; pancreatic amylase for the digestion of carbohy-
drates; phospholipase, lipase, and cholesterol esterase for the digestion of lipids; and two types
of nucleolytic enzymes, namely ribonuclease and deoxyribonuclease [19–22]. The endocrine
pancreatic tissue has clusters of cells known as islets of Langerhans that produce different hor-
mones, including insulin, glucagon, somatostatin, and avian pancreatic polypeptide (APP) [23].
These hormones regulate glucose homeostasis, glucose and amino acid transport, lipogenesis,
glycogenolysis, hypoglycemia, the level of plasma free fatty acid, the expression of lipogenic
enzymes, intestinal motility, and gallbladder secretions [23].

Previous studies have shown the involvement of the pancreas in NDV infection, and
histopathological lesions were reported in chickens [15,17,24,25], ducks [2,26], geese [27],
and turkeys [28]. However, the disruption of the endocrine and exocrine functions of
the pancreas is not clear in NDV-infected chickens. Our hypothesis was that chickens
administered a smaller vaccine dose can suffer from pancreatitis, which may lead to a
decrease in the production of the digestive enzyme. Therefore, the present study planned to
investigate the pathophysiology of pancreatic functions in NDV-infected specific-pathogen-
free (SPF) and vaccinated, and then NDV-challenged, chickens.

2. Materials and Methods
2.1. Virus

A wild-type velogenic NDV isolate, ZJ1 (Goose/China/ZJ1/2000; GB AF431744.3),
was provided by Professor Xiufan Liu from Yangzhou University (Yangzhou, China). The
pathogenicity indices, including mean death time (MDT), intracerebral pathogenicity index
(ICPI), and intravenous pathogenicity index (IVPI), of the ZJ1 were 51.6, 1.89, and 2.7,
respectively [27,28]. The NDV lentogenic strain LaSota was obtained from the China
Institute of Veterinary Drug Control (Beijing, China). The virus stock was prepared by
growing the virus in 10-day-old SPF-embryonated chicken eggs, and harvested allantoic
fluid was subsequently stored at −80 ◦C until further use.

2.2. Chickens, Ethics Statement, and Experimental Design

All the animal experimental procedures were performed in strict accordance with
the recommendations in the Guide for the Care and Use of Laboratory Animals of Shang-
hai Veterinary Research Institute (SHVRI, Shanghai, China) of the Chinese Academy of
Agricultural Sciences (CAAS, Beijing, China). All protocols applied in this study were
approved by the Institutional Animal Care and Use Committee of SHVRI (Permission
Number: SHVI-RO-2018110123), CAAS, China.

Specific-pathogen-free embryonated chicken eggs were purchased from the Merial
Vital Laboratory Animal Technology Company (Beijing, China) and were incubated at the
laboratory facility of SHVRI, CAAS. The hatched-out SPF chicks were reared, vaccinated,
and challenged in positive-pressure isolators in a high containment facility. All the birds
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were provided with ad libitum access to feed and water throughout the experiment. At the
age of 9 weeks, chickens were randomly divided into three groups having 20 chickens each.

Birds in Group 3 (vaccinated challenged (VAC + CHA)) were vaccinated at the age of
9 weeks with 100 µL of La Sota at the dose rate of 103 embryo infective dose (EID50/0.1 mL)
via intranasal and eye drop routes, prepared in phosphate-buffered saline (PBS). After
2 weeks of vaccination of the VAC + CHA group, all the birds in Group 2 (CHA = non-
vaccinated challenged) and the VAC + CHA group were challenged with ZJ1 suspended
in PBS (stored at 4 ◦C overnight) having a titer of 106.5 EID50/0.1 mL per bird via the
right eye and a choanal slit at a 100 µL volume. Doses of the challenged and vaccinated
viruses were selected on the basis of the previous experiment of Cornax et al. [29]. Birds in
Group 1 (control (CON)) were given the same volume of PBS, via the same route, as the
mock infection.

2.3. Sampling

At 1, 3, and 5 days postinfection (DPI), blood was collected in EDTA-coated tubes
(Shijiazhuang Kang Weishi Medical Instrument Co., Ltd., Shijiazhuang, China), and the
chickens were euthanized by intravenous injection of sodium pentobarbital in the brachial
vein for the collection of tissue (pancreas) samples. Blood and tissue samples were collected
from four birds per group and immediately transferred to the laboratory, maintaining the
cold chain. To obtain the plasma, blood samples were centrifuged (2000× g) for 10 min at
4 ◦C and stored at −80 ◦C until further analysis. All the tissue samples were immediately
put in liquid nitrogen and stored at −80 ◦C until further analysis.

2.4. Plasma Hormones

Plasma levels of the somatostatin, insulin, and glucagon were determined using
chicken-specific commercial assay kits (Nanjing Jiancheng Bioengineering Institute (HO92-
SS; H183 GC; H203 Insulin), Nanjing, China). All samples were analyzed within a single
assay to avoid interassay variations. The absorbance of the microplates was determined
using the Epoch microplate spectrophotometer (BioTek Instruments, Inc., Winooski, VT,
USA) at the optical density value of 450 nm. The plasma levels of corticosterone (CORT)
were measured using a chicken-specific commercial ELISA kit (CSB-E11991C; Cusabio
Biotech. Co., Ltd., Wuhan, China). The standard curve was created using the CurveExpert
1.4. The limits of detection for the insulin and glucagon were 0.5 mIU/mL and 5 ng/L,
respectively. The inter- and intra-assay coefficient of variation was less than 10% and
12%, respectively.

2.5. Digestive Enzyme Activities in the Pancreas

To determine the activity of the pancreatic enzymes, a small portion (approximately
1 mg) of the pancreatic tissue was homogenized in 9 volumes (w/v) of ice-cold phosphate-
buffered saline (PBS) using a Tissuelyser-24 (Jingxin Technology, Shanghai, China) at 20 Hz
for 2 min. The homogenate was instantly centrifuged at 3000× g at 4 ◦C for 10 min, and
the supernatant was collected for the determination of digestive enzyme activities. To
determine the activity of trypsin (A080), lipase (A054), and amylase (C016) by calorimetric
methods, commercial kits were used (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China). Pre-experimental standardizations were performed for each of the targeted
enzymes to determine the optimum dilution for the measurement of enzymes. Protein con-
centrations of the supernatants were determined using the kits from Beyotime, (Beyotime,
Nanjing, China; P0010).

2.6. Quantitative Real-Time PCR

Quantitative real-time PCR (qRT-PCR) was performed to measure the mRNA expres-
sions of pancreatic digestive enzymes, including amylase, lipase, and trypsin genes. The
chicken glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal
control. The primers used in the present study are described in Table S1. Total RNA of the
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pancreatic tissue was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and
resuspended in RNase-free water. Reverse transcription was performed using HiScript II
(Catalog Number: R233; Vazyme Biotech Co., Ltd., Nanjing, China), according to the man-
ufacturer’s instructions. Expression of target genes was measured by performing qRT-PCR
on the CFX96 Touch Real-Time PCR Detection System (BioRad, Hercules, CA, USA) using
SYBR Premix (Dongsheng Biotech, Guangzhou, China), and data were normalized with
GAPDH (internal control). qRT-PCR was performed with a final volume of 20 µL. The PCR
cycles are as follows: 94 ◦C for 3 min, followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 15 s
and 72 ◦C for 20 s (For primer sequence see Table S1). All the amplifications generated
expected amplicons with single, sharp fusion curves. All experiments were carried out in
triplicate. The changes of mRNAs were presented as fold expression and calculated using
the 2−∆∆CT method [30].

2.7. Viral Loads in the Pancreas

The virus copy numbers were detected from the pancreas, as described previously [12].
Briefly, the ZJ1 strain was grown in 10-day-old SPF-embryonated eggs, and allantoic fluid
was collected after 60 h of infection. The TRIzol (Invitrogen, Carlsbad, CA, USA) reagent
was used to extract the viral RNA from the allantoic fluid as per the manufacturer’s
instructions. The ZJ1 M gene was amplified using the primers mentioned in Table S1, and
the size (1095 base pair) of the fragment was confirmed by electrophoresis. The HiPure
Gel Pure DNA Mini Kit (AnGen Biotech, Guangzhou, China) was used to purify the PCR
product and cloned into a plasmid vector to construct a standard curve. The pancreatic
tissue from the chickens was homogenized, and RNA was extracted as mentioned above.
About 1 µg RNA extracted from the pancreas samples was reverse transcribed to cDNA
with HiScript II (Catalog Number: R233; Vazyme Biotech Co., Ltd., China), and quantitative
PCR was performed with the SYBR Premix (Dongsheng Biotech, China). Virus copy
numbers were calculated using the standard curve [12].

2.8. Histopathology

Samples of the pancreatic tissue were collected from the middle region and fixed
in 10% neutral-buffered formalin, embedded in paraffin, and 5 µm thick sections were
obtained. The sections were stained with hematoxylin and eosin (H&E) following the stan-
dard procedures [31]. The slides were digitalized using Pannoramic SCAN (3DHISTECH
Ltd., Budapest, Hungary), and histological lesions were studied using CaseViewer 2.2
(3DHISTECH Ltd., Hungary) [32].

2.9. TUNEL Assay

For the detection of apoptotic cells, 5 mm thick tissue sections of the pancreatic tissue
were subjected to the transferase dUTP nick-end labeling (TUNEL) assay according to
the manufacturer’s instructions (Roche Diagnostics GmbH, Mannheim, Germany). Tissue
sections were deparaffinized and rehydrated by the graded levels of xylene and ethanol.
Tissue sections were treated with proteinase K and incubated at 37 ◦C for 25 min. The
activity of the endogenous peroxidase activity was blocked with hydrogen peroxide. The
sections were incubated at 37 ◦C with the terminal TdT nucleotide mixture for 2 h. Nu-
clei were counterstained with 3 µg/mL 4′ and 6′-diamidine-2-phenylindole (DAPI) and
visualized by fluorescence microscopy. Slides were then digitalized using Pannoramic
SCAN (3DHISTECH Ltd., Hungary) and studied using CaseViewer 2.2 (3DHISTECH
Ltd., Hungary). Five different high power fields (HPFs) were selected to count the num-
ber of apoptotic cells using Image-Pro Plus software (version 6.0 for Windows) (Media
Cybernetics, Rockville, MD, USA).

2.10. Statistical Analysis

The data were analyzed by a two-way ANOVA test, with challenge and time points as
the main effects [33]. The graphical results were expressed as mean ± standard deviation
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(M ± SD). Results with p < 0.05 were considered statistically significant. When a significant
main effect was observed, Tukey’s test was used to compare the differences among groups.
Graph Pad Prism 6.0 software (GraphPad Software, Inc., San Diego, CA, USA) was used to
generate the graphs.

3. Results
3.1. Viral Load in the Pancreas

The transcriptional level of the NDV-M gene was determined to examine the viral
load in the pancreas using the qRT-PCR assay at 3 and 5 DPI. The viral copy numbers
per µL are shown in Figure 1. There was no significant difference in the viral load of the
VAC + NDV and CHA groups at 3 DPI. The viral copy numbers were significantly less
at 3 DPI compared to 5 DPI in the CHA and VAC + CHA groups. Maximum viral load
observed in the CHA group at 5 DPI was significantly higher compared to the VAC + NDV
group. The negative control group remained negative for NDV.
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Figure 1. Relative quantity of the NDV-M gene in the pancreas of chicken. The bars represent the
standard deviation of the mean. Columns without a common superscript letter differ significantly
(p < 0.05) in the figure. CON, control; CHA, Newcastle disease virus challenged; VAC + CHA,
vaccinated with LaSota and challenged with virulent Newcastle diseases virus after 2 weeks of
vaccination. The NDV-M gene was not detected in the control group.

3.2. Histopathology

There were no significant changes observed in the control group. At certain locations,
the presence of intranuclear eosinophilic material could be nuclear edema or nuclear
invagination or an incidental finding. In the CHA group, at 1 DPI, the pancreas was
intact. Multifocal lymphoid nodules in the proximity of branches of the pancreatic ducts
and, occasionally, hyperplasia in the endocrine pancreas were seen. Rarely, cells in the
acinar tissue had an eosinophilic intranuclear material. This was only observed in the
endocrine tissues. There was mild perivascular edema. Rare multifocal apoptotic cells
(rounded, hypereosinophilic with pyknotic nuclei) were noticed. At 3 DPI, in the CHA
group, eosinophilic intranuclear material was noticed in the endocrine pancreas. Multifocal
to diffusely, there was partial depletion of zymogen granules from the exocrine pancreas.
Acinar cells had occasional single to multiple vacuoles in the apical portion of the cell.
Multifocally, there was mild perivascular edema and, occasionally, the individualization
of acinar cells. Few acinar cells underwent single-cell necrosis/apoptosis, and other cells
had mild cytoplasmic vacuolation. No significant changes were observed in the endocrine
pancreas. Occasionally, there was lymphocytic infiltration in the exocrine tissue. Rarely,
there were eosinophilic intranuclear inclusion bodies in the endocrine tissue (Figure 2E). At
5 DPI, in the CHA group, exocrine cells had a complete loss of zymogen granules, which
rounded off and separated from neighboring cells. The exocrine and endocrine tissues
lost their original structure, and cells were individualized. There was severe congestion
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in the large and small vessels. The epithelial cells of the pancreatic duct were sloughed
and also lost nuclear detail. There was mild perivascular edema. Occasionally, there was
single-cell necrosis (Figure 2H). There was cytoplasmic vacuolation of acinar cells in the
exocrine tissue and partial depletion of zymogen granules.

Genes 2021, 12, x FOR PEER REVIEW 6 of 13 
 

 

Few acinar cells underwent single-cell necrosis/apoptosis, and other cells had mild cyto-
plasmic vacuolation. No significant changes were observed in the endocrine pancreas. 
Occasionally, there was lymphocytic infiltration in the exocrine tissue. Rarely, there were 
eosinophilic intranuclear inclusion bodies in the endocrine tissue (Figure 2E). At 5 DPI, in 
the CHA group, exocrine cells had a complete loss of zymogen granules, which rounded 
off and separated from neighboring cells. The exocrine and endocrine tissues lost their 
original structure, and cells were individualized. There was severe congestion in the large 
and small vessels. The epithelial cells of the pancreatic duct were sloughed and also lost 
nuclear detail. There was mild perivascular edema. Occasionally, there was single-cell ne-
crosis (Figure 2H). There was cytoplasmic vacuolation of acinar cells in the exocrine tissue 
and partial depletion of zymogen granules. 

 
Figure 2. Histopathological changes induced by the Newcastle disease virus (ZJ1) in the pancreas of specific-pathogen-
free (SPF) and vaccinated chicken. Panels (A–C), (D–F), and (G–I) show the histopathology of the control, NDV-infected 
(CHA), and vaccine + NDV (VAC + CHA)-infected groups at 1-, 3-, and 5-days post infection (DPI), respectively. Histo-
pathological changes were not found from the control group. Severe histopathological changes were induced by the NDV 
infection in SPF chickens, including (B) single-cell, (E) cytoplasmic vacuolation, and single-cell necrosis (arrow) and (H) 
single-cell necrosis (black arrow) and perivascular lymphocytic infiltration (blue arrows). However, in vaccinated chick-
ens, histopathological changes induced by the NDV challenge include (C) individualized shrunken cells. (F) The black 
arrow shows single-cell necrosis, and the blue arrow shows individualized and shrunken cells and (I) mild perivascular 
edema at 5 DPI. Panels in the control group do not show any pathological changes, and unaffected endocrine pancreatic 
cells from the control group (G) are marked with arrowheads. 

In the VAC + CHA group, at 1 DPI, the pancreatic tissues had, multifocal, partial to 
complete depletion of zymogen granules, cytoplasmic vacuolation (degeneration), and 
sometimes necrosis of individual acinar cells of the pancreas. At 3 DPI, the acinar cells 
underwent a spectrum of changes that ranged from degeneration, with the loss of zymo-
gen granules and cytoplasmic vacuolation, and swelling of the cells, to single-cell necrosis, 
with cells becoming individualized and shrunken with pyknotic nuclei. There were mul-
tifocal, randomly distributed lymphoid nodules, whereas, at 5 DPI, partial or complete 
depletion of zymogen granules was observed. Frequently, cytoplasmic vacuolation with 

Figure 2. Histopathological changes induced by the Newcastle disease virus (ZJ1) in the pancreas of specific-pathogen-free
(SPF) and vaccinated chicken. Panels (A–C), (D–F), and (G–I) show the histopathology of the control, NDV-infected (CHA),
and vaccine + NDV (VAC + CHA)-infected groups at 1-, 3-, and 5-days post infection (DPI), respectively. Histopathological
changes were not found from the control group. Severe histopathological changes were induced by the NDV infection in SPF
chickens, including (B) single-cell, (E) cytoplasmic vacuolation, and single-cell necrosis (arrow) and (H) single-cell necrosis
(black arrow) and perivascular lymphocytic infiltration (blue arrows). However, in vaccinated chickens, histopathological
changes induced by the NDV challenge include (C) individualized shrunken cells. (F) The black arrow shows single-cell
necrosis, and the blue arrow shows individualized and shrunken cells and (I) mild perivascular edema at 5 DPI. Panels in
the control group do not show any pathological changes, and unaffected endocrine pancreatic cells from the control group
(G) are marked with arrowheads.

In the VAC + CHA group, at 1 DPI, the pancreatic tissues had, multifocal, partial to
complete depletion of zymogen granules, cytoplasmic vacuolation (degeneration), and
sometimes necrosis of individual acinar cells of the pancreas. At 3 DPI, the acinar cells
underwent a spectrum of changes that ranged from degeneration, with the loss of zymogen
granules and cytoplasmic vacuolation, and swelling of the cells, to single-cell necrosis, with
cells becoming individualized and shrunken with pyknotic nuclei. There were multifocal,
randomly distributed lymphoid nodules, whereas, at 5 DPI, partial or complete depletion
of zymogen granules was observed. Frequently, cytoplasmic vacuolation with eosinophilic
hyaline inclusion in acinar cells of the pancreas was seen throughout the exocrine part.
There were multifocal lymphoid nodules throughout the exocrine pancreas. There was
a marked increase in the cytoplasmic vacuolation and single-cell necrosis of acinar cells,
and due to the partial depletion of zymogen granules, acinar cells looked ductless. There
was mild to moderate interstitial edema in the exocrine portion of the pancreas and the
separation of acinar cells from neighboring cells. One focal area of lymphocytic infiltration
in the peripancreatic duct branch, perivascular edema, was observed. Persistently, scattered
lymphocytes were observed throughout the exocrine pancreas. Most of the observed lesions
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were perivascular in this slide (Figure 2I). Individualized round acinar cells with dark
pyknotic nuclei showed severe single-cell necrosis throughout the exocrine tissue. There
was a distortion of the acinar cells and separation from the neighboring cells. Diffusely, the
areas of cytoplasmic vacuolation of acinar cells are seen.

3.3. Apoptosis in the Pancreas

To estimate NDV-induced apoptosis in the chickens’ pancreatic tissue, TUNEL-positive
cells were counted (Figure 3). The apoptotic cells had green-stained nuclei. As presented in
Figure 3a, the number of apoptotic-positive cells in the pancreas was similar between the
CON- and NDV-infected groups at 1 DPI. In the NDV-challenged groups, the number of
apoptotic cells was significantly increased compared to CON at 3 DPI. The increase in the
number of apoptotic cells was less evident in the VAC + NDV group compared to CHA;
however, it remained significantly higher than the CON group (Figure 3b) at 5 DPI.
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Panels (A,D,G) represent the control (CON) group at 1-, 3- and 5-days post infection (DPI). Panels (B,E,H) represent the 
NDV-challenged (CHA) SPF chickens. Panel (C,F,I) represent the vaccinated and NDV (VAC + CHA) challenge birds. 
Apoptotic cells show green nuclei, whereas the nuclei in the normal cells are shown in blue color. (b) The graphical rep-
resentation of TUNEL positive cells in different groups. The green, red, and blue columns represent control, nonvac-
cinated challenged, and vaccinated challenged groups, respectively. The bars represent the standard deviation of the 
mean and lower-case letters show statistical significance (p < 0.05) among different groups. CON, control; CHA, Newcas-
tle disease virus challenged; VAC + CHA, vaccinated with LaSota and challenged with virulent Newcastle diseases virus 
after 2 weeks of vaccination. 

3.4. Plasma Concentrations of Hormones 
The plasma concentrations of CORT were significantly elevated (p < 0.05) in the CHA 

group compared to CON at 3 DPI. A significant difference was not found in the concen-
trations of CORT in CON and VAC + CHA (Figure 4A). However, at 5 DPI, the plasma 
CORT level in the CHA and VAC + CHA groups was significantly higher compared to 
the CON group. 

Plasma concentrations of glucagon and insulin are represented in Figure 4B, C, re-
spectively. Statistically, no significant effect of NDV challenge on glucagon was observed 

Figure 3. (a) T Fluorescent micrographs of chicken pancreas infected with NDV and stained by TUNEL assay technique.
Panels (A,D,G) represent the control (CON) group at 1-, 3- and 5-days post infection (DPI). Panels (B,E,H) represent the NDV-
challenged (CHA) SPF chickens. Panel (C,F,I) represent the vaccinated and NDV (VAC + CHA) challenge birds. Apoptotic
cells show green nuclei, whereas the nuclei in the normal cells are shown in blue color. (b) The graphical representation of
TUNEL positive cells in different groups. The green, red, and blue columns represent control, nonvaccinated challenged,
and vaccinated challenged groups, respectively. The bars represent the standard deviation of the mean and lower-case letters
show statistical significance (p < 0.05) among different groups. CON, control; CHA, Newcastle disease virus challenged;
VAC + CHA, vaccinated with LaSota and challenged with virulent Newcastle diseases virus after 2 weeks of vaccination.

3.4. Plasma Concentrations of Hormones

The plasma concentrations of CORT were significantly elevated (p < 0.05) in the
CHA group compared to CON at 3 DPI. A significant difference was not found in the
concentrations of CORT in CON and VAC + CHA (Figure 4A). However, at 5 DPI, the
plasma CORT level in the CHA and VAC + CHA groups was significantly higher compared
to the CON group.
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Figure 4. Mean levels of the plasma corticosterone (A), glucagon (B), insulin (C), and somatostatin (D) at 3 DPI and 5 DPI
in vaccinated and nonvaccinated chickens challenged with NDV (ZJ1). The green, red, and blue columns represent control,
nonvaccinated challenged, and vaccinated challenged groups, respectively. The bars represent the standard deviation of the
mean and lower-case letters show statistical significance (p < 0.05) among different groups. CON, control; CHA, Newcastle
disease virus challenged; VAC + CHA, vaccinated with LaSota and challenged with virulent Newcastle diseases virus after
2 weeks of vaccination.

Plasma concentrations of glucagon and insulin are represented in Figure 4B, C, re-
spectively. Statistically, no significant effect of NDV challenge on glucagon was observed
at 3 and 5 DPI, but numerically, a slight decrease in the plasma levels of NDV-infected
birds was noticed compared to the CON group. The plasma levels of insulin remained
unaffected at 3 DPI, but a significant decrease was observed in CHA group compared to
the control at 5 DPI (Figure 4C).

The plasma concentration of the somatostatin is presented in Figure 4D. The plasma
concentrations of the somatostatin were significantly increased (p < 0.05) in the CHA (from
261114c) group, but this increase was not significant in the CON and VAC + CHA groups, at
3 DPI. Birds in the CHA group tend to have a higher concentration (p < 0.05) of somatostatin
at 5 DPI compared to the CON and VAC + CHA groups.

3.5. Activity and Expression of Pancreatic Enzymes

The results for amylase activity and expression are presented in Figure 5A,B. At 3 DPI,
chickens in the CHA group showed decreased activity of amylase (p < 0.05), compared to
the CON group. However, amylase activity in the pancreas of the VAC + CHA group of
chickens was similar to that observed in the CON group at 3DPI. More drastically a decrease
in the activity and expression of amylase in the pancreas of the CHA groups of chickens
was observed at 5 DPI compared to the CON and VAC + CHA groups. Furthermore,
the activity of amylase in the VAC + CHA group was significantly less than the control
and more than the CHA group. The expression of amylase at 5 DPI from the CHA and
VAC + CHA groups was significantly (p < 0.05) less than the CON group.
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Figure 5. Mean level of activity and relative expression of the genes of pancreatic enzymes; Amylase
(A,B), lipase (C,D) and trypsin (E,F) at 3 and 5 DPI in vaccinated and nonvaccinated chickens
challenged with NDV (ZJ1). The green, red, and blue columns represent control, nonvaccinated
challenged, and vaccinated challenged groups, respectively. The bars represent the standard deviation
of the mean, and the lower-case letters show statistical significance (p < 0.05) among the different
groups. CON, control; CHA, Newcastle disease virus challenged; VAC + CHA, vaccinated with
LaSota and challenged with virulent Newcastle diseases virus after 2 weeks of vaccination.

There was no significant difference in the activity of lipase at 3 DPI (Figure 5C). NDV
infection in SPF chickens resulted in the decreased activity of lipase compared to chickens
in the CON and VAC + CHA groups. Lipase mRNA expression in the pancreas significantly
decreased in NDV-infected birds (p < 0.05) compared to CON at 3 and 5 DPI (Figure 5D).

The NDV challenge significantly affected the activity and expression of pancreatic
trypsin (Figure 5E,F). The activity of trypsin was significantly decreased in the NDV-
challenged groups compared to CON, and this decrease was more obvious at 5 DPI.
The mRNA expression of trypsin was significantly higher in the pancreas of CON birds
(p < 0.05) compared to the CHA and VAC + CHA groups.
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4. Discussion

The present study comprehensively reported the effect of NDV infection on the
pancreas in vaccinated and SPF chickens. We persuasively demonstrated the replication
of NDV in the pancreas of vaccinated and SPF chickens. In the study, chickens were
vaccinated with 103 EID50 of the La Sota and challenged with 106.5 EID50 of the ZJ1 after
two weeks of vaccination because, at this dose of vaccine and challenge, the pathogenic
virus can replicate and cause conjunctivitis and mild depression [29]. Histological studies
of the chickens in the current experiment advocate severe damage caused by NDV in the
pancreas. NDV infection caused the partial depletion to complete loss of zymogen granules
from the exocrine pancreas, cytoplasmic vacuolation, and necrosis of acinar cells, and
eosinophilic intranuclear material was noticed in the endocrine pancreas, but these were
less evident at 3 DPI compared to 5 DPI. The histopathological results of the present study
are in agreement with previous studies [15,17,24–26].

NDV infection in vaccinated and SPF chickens resulted in a significant decrease
in the activities and expressions of pancreatic enzymes. These decreased activities and
expressions of amylase, lipase, and trypsin may be related to extensive damage caused by
NDV to the exocrine portion of the pancreas in the infected birds. These decreased activities
of the pancreatic enzymes may be among the reasons for the poor feed conversion ratio in
NDV-infected vaccinated birds [34]. Decreased activities of the digestive enzyme may be
related to poor production performance after NDV outbreaks in commercial poultry.

It is well studied that the hypothalamic–pituitary–adrenal axis is involved in acute
stress and regulates the inflammatory response to an infectious challenge. Stress is strongly
correlated with the exacerbation of many viral infections [35,36]. In this study, increased
plasma levels of corticosterone were found in NDV-infected chicken. Increased levels of
corticosterone have been related to a decreased growth rate, decreased antibody response,
decreased number of lymphocytes, and reduced size of lymphoid organs [37]. Corticos-
terone decreases insulin sensitivity in chickens [38]. In this study, a slight decrease in the
plasma levels of insulin and glucagon was noted at 5 DPI in NDV-infected chickens. This
may be due to fewer structural and morphological changes in the endocrine pancreas
after NDV infection, as noted in the histopathology results. The avian pancreas has higher
levels of glutathione, which exhibits protective effects on the β cells [39]. This increased
level of glutathione may be related to less pathogenicity in the endocrine pancreas because
decreased levels of glutathione were observed in the plasma and intestines of NDV-infected
chickens [9,40].

Previous studies have suggested the production of somatostatin (SS) from endocrine
cells in the proventriculus, small intestine [41], and pancreas [42], as well as expression
in the testis [43]. There are two forms of chicken somatostatin, somatostatin-14 and
somatostatin-28, which are encoded by the same gene (PSS1), but another variant ex-
ists that is expressed in the brain and pancreatic islets [23,44]. The somatostatin inhibits
the production of many hormones, including insulin, glucagon, growth hormone, gas-
trin, vasoactive intestinal peptide, and thyroid-stimulating hormone [45]. In the present
study, increased plasma levels of SS were found in NDV-challenged birds. Increased
somatostatin mRNA expression has been described after stimulation with cytokines in
murine macrophages [46]. Similarly, the increased plasma concentration of somatostatin
in endotoxin-injected sheep [47], septic pigs [48], and simian immunodeficiency virus-
infected macaque, then infected with the Mycobacterium avium [49], increased expression
in the rabies-virus-infected brain [50] and secreted by human adipocytes after stimulation
with activated macrophages, LPS, and IL-1β [51]. The increased plasma concentrations of
somatostatin may be involved to counter the inflammation caused by infection. The SS has
been described as anti-inflammatory and immunosuppressive, and its analogs have been
used as potential treatments for inflammation [52,53].
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5. Conclusions

In summary, the present study suggests that the pancreas could be a potential target
of NDV infection. Evidently, the exocrine pancreas is more severely affected by NDV
compared to the endocrine pancreas. NDV infection leads to a decrease in the production
and activity of digestive enzymes from the pancreas, even in vaccinated chickens. Similarly,
NDV infection also led to increased levels of corticosterone and somatostatin and decreased
production of insulin, as evident from the plasma levels. These pathologies of the pancreas
may be the leading cause of the decreased production performance of NDV-infected
vaccinated birds.
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