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Abstract: Minimum free energy prediction of RNA secondary structures is based on the Nearest
Neighbor Thermodynamics Model. While such predictions are typically good, the accuracy can vary
widely even for short sequences, and the branching thermodynamics are an important factor in this
variance. Recently, the simplest model for multiloop energetics—a linear function of the number of
branches and unpaired nucleotides—was found to be the best. Subsequently, a parametric analysis
demonstrated that per family accuracy can be improved by changing the weightings in this linear
function. However, the extent of improvement was not known due to the ad hoc method used to find
the new parameters. Here we develop a branch-and-bound algorithm that finds the set of optimal
parameters with the highest average accuracy for a given set of sequences. Our analysis shows
that the previous ad hoc parameters are nearly optimal for tRNA and 5S rRNA sequences on both
training and testing sets. Moreover, cross-family improvement is possible but more difficult because
competing parameter regions favor different families. The results also indicate that restricting the
unpaired nucleotide penalty to small values is warranted. This reduction makes analyzing longer
sequences using the present techniques more feasible.

Keywords: secondary structure; NNTM; multiloops; branching parameters

1. Introduction

Accurate prediction of RNA base pairings from sequence remains a fundamental prob-
lem in bioinformatics. While new methods continue to advance the ribonomics research
frontier [1-9], experimentalists still obtain useful functional insights from the classical min-
imum free energy (MFE) secondary structure predictions [10] under the Nearest Neighbor
Thermodynamic Model (NNTM). Given the on-going popularity of such predictions, we
focus here on characterizing accuracy improvements from one of the smallest possible
changes to this approach: modifying only three of over 8000 NNTM parameters [11]. As
will be explained, these three parameters govern the entropic cost of branching, which is
a critical aspect of the overall molecular configuration. Moreover, they are some of the
few not based on experimental data, and so are reasonable candidates for such a targeted
reevaluation. Here, we consider two families of RNA molecules: transfer RNA (tRNA) and
55 ribosomal RNA (rRNA). Their sequence lengths are amenable to our current methods,
while providing two different branching configurations to analyze. This enables us to
confirm the extent of accuracy improvement possible on a per family basis, while also
illustrating the challenges of obtaining such improvements simultaneously over two (or
more) families.

An RNA secondary structure is a set of intra-sequence base pairs. For thermodynamic
prediction purposes, the target pairings are typically canonical, i.e., Watson-Crick or wobble,
and pseudoknot-free. (Removing these constraints, especially the latter, are active areas
of research in the field.) Given a secondary structure, its free energy change from the
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unfolded sequence can be approximated under the NNTM; this model and the evolution of
its many parameters (nearly all of which are for the special cases of small internal loops) are
cataloged in an online database [11]. Under the NNTM, when given a sequence, an MFE
secondary structure can be computed efficiently using dynamic programming [12-15].

Historically, the prediction accuracy is high on average for sequences of length 700
nucleotides or less [16]. In particular, it was found that an average (with standard deviation)
of 83.0% (£22.2) of pairings in 484 transfer RNA (tRNA) secondary structures, totaling
10,018 base pairs (bp) and 37,502 nucleotides (nt), were predicted correctly. Likewise,
77.7% (£23.1) of pairings in 309 5S ribosomal RNA (rRNA) secondary structures, totaling
10,188 bp and 26,925 nt, were predicted correctly. While this clearly supports the value of
MEE predictions, it also highlights that even at this scale of sequence lengths, i.e., ~76 nt
for tRNA and ~120 for 55 rRNA, the prediction accuracy for an individual sequence can
be low.

Recent results have demonstrated that it is possible to obtain a statistically significant
increase in MFE prediction accuracy on a diverse training set of 50 tRNA sequences and
50 55 rRNA by changing the thermodynamic cost of branching [17]. Recall that an RNA
secondary structure is composed of different substructures, which are scored by different
components of the NNTM objective function. The substructures known as multiloops (or
branching junctions) have three or more helices which radiate out as branches. A tRNA
molecule has one central multiloop with four branches, while 55 rRNA has one with three.
Although these branching loops are a critical aspect of the overall molecular conformation,
they remain one of the most difficult aspects to predict accurately [18,19].

Previously, mathematical techniques from discrete optimization and geometric com-
binatorics were used to completely characterize all the secondary structures which were
optimal for all possible combinations of different branching parameters on the chosen
training sets [17]. It was found that 89% of tRNA and 90% of 55 rRNA predictions could be
improved by altering the branching parameters from the default values. (Those which did
not improve already had an accuracy well above average.) Critically, though, achieving
this improvement simultaneously, i.e., for the same set of new parameters, is not possible;
the intersection of all the “best possible” set of parameters for each sequence is empty.

At the time, an ad hoc combinatorial method was used to identify large combinations
of non-empty intersections among the individual “best possible” sets for a given collection
of training sequences. It was demonstrated that the branching parameters obtained in
this way yielded a statistically significant improvement in MFE prediction accuracy over
the existing values on tRNA, on 55 rRNA, and on the total 100 sequence training set,
respectively. However, a significant gap remained between the average (known to be
unobtainable) of the maximum attainable individual accuracies with modified branching
parameters, and the best ad hoc values found.

The new method and associated results presented here eliminate that gap by giving
a branch-and-bound algorithm, and an effective implementation, for finding parameters
with the optimal MFE prediction accuracy across the given collection of RNA sequences.
Somewhat surprisingly, we find that the improvement in prediction accuracy between the
new branch-and-bound (BB) parameters and previous ad hoc (AH) ones is not statistically
significant. To test this conclusion, we computed the prediction accuracies for the different
branching parameters under consideration on a much larger set of 557 tRNA and 1283
55 rRNA sequences [20] from the Mathews Lab (U Rochester). We again saw no signifi-
cant difference between the AH and BB parameters in MFE prediction accuracy for the
testing sequences.

Moreover, we also confirmed that the new parameters give a statistically significant
improvement over the current ones on the type of testing sequences, i.e., tRNA, 55 rRNA,
or both, for which the parameters were trained. In conjunction, these results suggest
that there may be a relatively large set of branching parameters which yield equivalent
prediction accuracies that improve over the current ones. To move forward in identifying
the scope of these parameters, we confirm that the current empirical strategy of focusing
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on the trade-off between two of the three branching parameters is well-substantiated by
our analysis. This is especially useful as such a reduction in the dimension will enable the
approach to be applied to longer sequences than those considered here.

2. Materials and Methods

We briefly sketch some background in the parametric analysis of RNA branching
relevant to the current work before giving the new branch-and-bound algorithm. We
conclude with information about the training and testing sequences used.

2.1. Parametric Analysis of RNA Branching

An RNA secondary structure decomposes into well-defined substructures. Our focus
here is on the ones known as multiloops or branching junctions. Such a substructure has 3
or more helical arms which radiate out as branches. The classical tRNA cloverleaf has a
single multiloop with four branches, while the single 5S rRNA one has only three. A para-
metric analysis seeks to understand how the MFE prediction depends on the parameters
used in the thermodynamic optimization. Here we focus on the three which govern the
entropic cost of loop branching. The goal of this targeted reevaluation is to characterize the
impact that the branching parameters have on the prediction accuracy of the two families
considered, as well as highlight the interplay between optimizing for each family.

2.1.1. Branching Parameters

We use the term branching parameters to refer to the three (learnt) parameters (a, b, ¢)
in the initiation term in the multiloop scoring function:

AGipit = a+ b - [number of unpaired nucleotides] + c - [number of branching helices]. (1)

The initiation term, together with the "stacking" energies of adjacent single-stranded
nucleotides on base pairs in the loop, is used to approximate the multiloop stability under
the NNTM. The stacking energies are based on experimental measurements [16,21], but the
linear form of the initiation term was originally chosen for computation efficiency [21].
This simple entropy approximation has been shown to outperform other more complicated
models for multiloop scoring in MFE prediction accuracy [22]. In this work we focus on
possible improvements of the MFE prediction by changing the branching parameters.

2.1.2. Standard Branching Parameters

The NNTM has evolved over time, and the loop initiation parameters have changed
with each major revision. Here they will be denoted T89 [21], T99 [16], and T04 [22]as
in the tables in Section 3. On the two families considered, the T99 values were the most
accurate overall, so they will be the primary point of comparison for the results. The older
and newer values are also listed, and some trade-offs among the three will be addressed in
the discussion.

2.1.3. Precision of Branching Parameters

For technical reasons, the parametric analysis is performed over the rationals with
very high precision. However, all current thermodynamic optimization methods use rather
low precision by comparison. In particular, the branching parameters are specified to one
decimal place. For the presentation of results and discussion of their implications, the new
branching parameters used were first rounded to one decimal place.

2.1.4. Branching Polytopes

The focus here is on the NNTM branching parameters, but the building blocks of
our analysis are mathematical objects known as branching polytopes. The key point is
that once such a branching polytope is computed for a given RNA sequence, it competely
determines a division of the parameter space into regions where the (4, b, ¢) combinations
from each region yield the same MFE predictions.
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Branching polytopes were introduced in [23], and are the foundation of this para-
metric analysis of the NNTM branching parameters [17,24]. For a given RNA sequence,
its branching polytope is a 4D geometric object which encloses points, called branching
signatures, that correspond to all the different possible secondary structures. Since we
are concerned here with parameters rather than polytopes and signatures, we refer an
interested reader to [17] for a more complete description of the latter.

Through a duality from convex geometry, to the branching polytope we associate a
subdivision of the 3D parameter space into convex regions. These regions are of great signif-
icance to analyzing the effects of varying the branching parameters in the NNTM. Namely,
the branching parameters (a,b, c) from the same region yield the same MFE structures,
while for parameters from different regions the model produces different predictions.

2.2. Branch-and-Bound Algorithm

We fix an ordering of the testing sequences and for each of them, we order the regions
of the associated subdivision of the parameter space. The average number of regions
for the training data is: 517 for tRNA and 2109 for 5S rRNA. We use Reg(i, j) to denote
the j-th region for the i-th sequence. The part of the parameter space that contains the
optimal parameters for the training set can be found by considering all the intersections
that can be formed by taking one region from each sequence. Due to size, exhaustive
search for the optimal region is not feasible - we use a branch-and-bound algorithm instead.
We first present the basic idea behind the algorithm and how the merging and pruning
steps are performed for two sequences. Then we explain how this idea can be extended
to a larger training set. The straightforward extension, however, is not efficient for 50
sequences, so we perform merges along a binary tree. We also explain how performing
certain pre-processing steps which require initial overhead time significantly improve the
total running time.

2.2.1. Basic Idea behind the Algorithm

Suppose we are optimizing the parameters for the first two RNA sequences. In this
case, we are interested in all the pairwise intersections Reg(1, j1) N Reg(2, j2) of the regions
that correspond to the two training sequences. Most of the intersections are empty and
should thus be discarded. However, checking for nonempty intersections is computa-
tionally expensive. Therefore, before we compute intersections, we check whether the
intersection could possibly provide an improvement in the prediction.

The inputs for the algorithm are the polytope for each sequence, the optimal structures
that correspond to the vertices of each of the polytopes, and a lower bound L for the best
average accuracy. Better lower bounds improve the running time - we used the accuracy
we knew we could achieve with the ad hoc parameters. For i = 1,2, let Acc;(Reg(i,}))
denote the prediction accuracy for sequence i when parameters from its j-th region are
used. This value can be computed from the input by exhaustive search through the
possible optimal structures. We order the regions for each sequence by decreasing accuracy.
Let U; = Acc;(Reg(i,1)) be the maximal attainable accuracy for sequence i. The region
Reg(1, ) can be discarded from consideration in the search for optimal parameters unless

Acci(Reg(1,j)) + Uz > 2L, ©)

If (2) is satisfied, we say Reg(1, j) passes the pruning test. Note that since the regions
for the first sequence are listed by accuracy, once j is large enough so that the pruning test
fails, we can conclude that it would fail for all remaining regions for that sequence and we
remove them from future consideration.

If Reg(1,]) passes the pruning test, in the next step we consider which of its in-
tersections Reg(1,j) N Reg(2, k) with regions from the second sequence are nonempty
and yield accuracy better then L. We consider these candidate regions starting with the
lowest j and, for a fixed j, we check for k in increasing order. The first nonempty inter-
section found, say Reg(1, jo) N Reg(2, ko), is a region for which the average accuracy is
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(Accy(Reg(1,jo)) + Accp(Reg(2,ko))) /2, so we update our lower bound L. Since the re-
gions of the second sequence are listed by accuracy, we start checking for the next value of
j. Then before we compute other candidate regions Reg(1, j) N Reg(2, k), we check whether

Acci(Reg(1,])) + Acca(Reg(2,k)) > 2L

and only do polytope calculations if this inequality is satisfied. Each time we find a new
nonempty intersection, the value L is updated as before. At the end, the value L is the best
attainable accuracy and the last nonempty intersection that was computed is the part of
the parameter space that yields this accuracy.

Note that the time spent at the beginning for ordering the regions according to accuracy
saves time in performing polytope intersections later.

2.2.2. Extending to N Sequences

When we have more than two sequences, the intersections of interest can be formed
by sequentially intersecting all the regions of the first sequence with all the regions of the
second sequence, then taking all the nonempty pairwise intersections and intersecting
them with the regions of the third sequence, etc. Figure 1 is an illustration of the linear
order in which these intersections can be formed in the simplest version of the algorithm.

1 2 3 4 5 6 7 8

AN

Figure 1. Order of merges under the basic branch-and-bound algorithm.

12 123 1234 —— 12345 — 123456 — 1234567 - 12345678

When checking which regions from the first sequence should be considered in forming
the intersections, the criterion (2) is replaced with

N
Accy (Reg(1,/)) + )_ U; > NL, )
=2

where U(i) is the maximal attainable accuracy for the i-th sequence, computed from the
input data.

In the first merge illustrated in Figure 1, for each Reg(1, j) which passes this pruning
test, we consider regions Reg(2, k) from the second sequence. If

N
Accy(Reg(1,j)) + Acca(Regy, k) + ) U; > NL, 4)
i=3

we check whether Reg(1,j) N Reg(2,k) is nonempty, and if so we consider it in the
next merge, etc. In the final merge, similarly to the case of 2 sequences, we can exploit
the fact that we know that the accuracy for a nonempty intersection NY,Reg(i, j;) is
YN | Acci(Reg(i, j;)) /N, so each time we find a nonempty intersection, we update the
value of L and use this new value to prune some of the remaining candidates before we
actually perform polytope calculations.

In fact, the polytope calculations being the most time consuming part of the process,
it turns out that it pays off to invest time in finding better upper bounds to replace the
U;’s in the pruning steps. Therefore, before we start the merges, we compute the maximal
attainable accuracy for sequence i for each region Reg(1, j), denoted by Max;(Reg(1,f)).
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In order to do this, we identify which intersections Reg(1, j) N Reg(i, k) are nonempty and
take the maximal Acc;(Reg(i, k)). The pruning test (3) is then replaced by

N
Accy(Reg(1,/)) + )_ Max;(Reg(1,)) > NL, (5)
i=2
while (4) is replaced by
N
Accy(Reg(1,j)) + Accp(Reg(2,k)) + )~ Max;(Reg(1,j)) > NL, (6)
i=3

etc.

2.2.3. Binary Merge

When merging regions for k tRNA sequences, we need to consider intersections of k
regions, so it is important that we maximize the number of those that can get pruned before
any polytope calculations are performed. Therefore, in our implementation we replace the
linear merge from Figure 1 by a binary merge order, illustrated in Figure 2. Each node of
the tree represents a step in which intersections of regions from two sets of sequences are
being considered.

1 2 3 4 5 6 7 8
12 34 56 78
| S
1234 5678
\
12345678

Figure 2. Improved merging order.

The improved upper bounds that we compute at the beginning in order to have
more efficient pruning are Max(Reg(i, j)) - the maximal accuracy for sequence k under
parameters from the region Reg(i, j). While it may seem like each of these values requires
intersecting with each region of the k-th sequence, here we exploit the fact that the regions
are ordered by accuracy, thereby significantly reducing the computing time. Namely,
we consider intersections Reg(k,!) N Reg(i, j) ordered by increasing I and when the first
nonempty intersection is found, we can take Maxy (Reg(i,j)) = Acci(Reg(k,1)) .

In fact, the values Max;(Reg(k,j)) computed can be used before merges start to
reduce the number of regions we consider for each sequence (After this step, for L = 0.74,
the average number of regions to be considered for each of tRNA sequence is 12 and the
total running time for tRNA on a machine with Intel® Core™ i9-9900K, 32 GB SDRAM
(Santa Clara, CA, USA), is 2.5 h. For L = 0.76, the average number of regions to be
considered for each tRNA sequence is 9 and the total running time is 1.5 h). This is another
instance where we pay slight overhead at the beginning in order to save time on calculating
polytope intersections later. Namely, in a pre-processing step at the beginning, right
after the values Max;(Reg(k, j)) are calculated, region Reg(i, j) is discarded from future
consideration unless

N
Y Max(Reg(i,j)) > NL. )
k=1
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During merges, when the regions from sequences i € I are being merged, the intersec-
tion N;cyReg(i, k;) is not computed unless it passes the pruning test

Y Acci(Reg(i ki) + ZmiPMaxj(Reg(i, ki)) > NL. 8)
iel il '€

If the intersection passes the test, then we check that it is nonempty before we save it
to be considered in future merges. However, when training on 100 sequences this still leads
to checking a prohibitively large number of intersections of a large number of polytopes.
For that reason, when the number of sequences being merged is at least ten, we use an
additional test before we verify that N;c/Reg(i, k;) is nonempty. Namely, suppose the
merge | comes from two branches, I = I; U I. Then, by construction, Njc, Reg(i, k;) and
Nic,Reg(i, k;) are both nonempty. However, Reg(iy, k;,) N Reg(iz, k;,) = @ implies that
the whole intersection is empty, even though the opposite is not true. Therefore, we verify
which pairwise intersections Reg(i1, k;, ) N Reg(ia, ki, ), for iy € Iy, iy € I, are nonempty
for all the regions Reg(i1, k;, ), Reg(i1, k;,) that appear in the two lists of intersections for
the sequences from the sets I and I, respectively, that are being merged at this step. We
then check whether N;c/Reg(i, k;) can be declared empty based on this information, and if
not, then we compute the intersection. Most pairwise intersections considered here are
empty, and when || > 10, the number of regions to be considered is small enough that the
overhead time used to compute the pairwise intersections at the beginning of the merge
is a good trade-off for the time saved in checking the nonempty intersections when the
pruning test is passed.

2.3. Data Analysis

Parameters obtained from the new branch-and-bound algorithm were trained on
sequences from the previous study and tested on a much larger set available from the
Mathews Lab (U Rochester) to determine the extent of possible improvement in MFE
prediction accuracy by modifying the branching parameters.

2.3.1. Accuracy Measure

To determine the accuracy of a prediction we compare with a pseudoknot-free native
secondary structure S from which the noncanonical base pairings have been excluded.
For an MFE prediction S’ for that RNA sequence, we score the accuracy as the F;-measure:

SnY|
F(s,S) = 2|7,
M) =26 s
where |S| and |S’| are the number of base pairs in S and S/, respectively, and |S N /| is
the number of true positive base pairs common to both structures. The minimum value 0
means no accurately predicted base pairs, while 1 means perfect prediction. The accuracy
of a multiloop initiation parameter triple for a sequence is the average over all possible
MEFE secondary structures for that fixed (a, b, c).

2.3.2. Testing and Training Sequences

Two sets of sequences were used in this study, one for training and one for testing.
Both consisted of tRNA and 55 rRNA sequences. These are two of the best characterized
RNA families structurally while also having good diversity in MFE accuracy and other
sequence characteristics. As will be discussed, sequence length was also an important factor
due to computational limitations in the original polytope calculations. We note, however,
that both have well-documented factors, such as post-translational modifications for tRNA
and protein-binding for 5S rRNA, affecting the structure but which are not included in
the NNTM. Despite these caveats, it is possible to improve their MFE prediction accuracy
simply by modifying the three NNTM branching parameters.

The training set consisted of the 50 tRNA and 50 55 rRNA sequences from the previous
study [17]. (A complete list with Accession number is given in the Supplementary data
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of the previous paper.) These sequences were obtained from the Comparative RNA Web
(CRW) Site [25]. By design, they were chosen so that their MFE prediction accuracies and
GC content are as uniformly distributed as reasonably possible. The GC content was used
to ensure that sequences with very similar MFE accuracies were sufficiently different to
generate a diverse training set.

The second set was used for testing, and consisted of the 557 tRNA and 1283 55 rRNA
sequences from a larger benchmarking set first used in [20,22], which supersedes previous
ones [16]. Summary statistics for some characteristics like sequence length, MFE accuracy
under the Turner99 branching parameters, GC content, and number of native base pairs
(bp) for both data sets broken down by family are given in Table 1. Per family differences
in means between the training and testing data sets for each sequence characteristic were
evaluated by a t-test. While the differences in sequence length between the training and
testing data were significant for both families (tRNA: p = 0.0003, 55 rRNA: p < 0.0001),
the differences in MFE accuracy were not (tRNA: p = 0.0846, 55 rRNA: p = 0.2659).
Differences in both GC content and number of base pairs were mixed; the former had
p = 0.0018 for tRNA but p = 0.0883 for 5S rRNA, whereas the latter was p = 0.2707 and
p < 0.0001. As will be seen in the results section, the training data seemed to represent
well the testing sequences despite any differences in the composition of the sets.

Table 1. Per family characteristics of the training and testing data sets.

Type Family Num  SeqLength MFE Accuracy GC Content Native bp
avg std avg std avg std avg std

Training tRNA 50 7438 189 052 030  0.59 0.08  20.36 1.21
Training 55 rRNA 50 121.38 3.62  0.63 024  0.58 0.06  35.18 3.04

Testing tRNA 557 7710 5.21 0.58 024 054 011 20.55 1.15
Testing 55 rRNA 1283 11871 349  0.59 024 057 005 3361 2.38

3. Results

We first address the extent of improvement possible when the branching parameters
are trained on a specific family, either tRNA or 55 rRNA. We then consider the improvement
possible across both training families simultaneously. The training results are tested against
amuch larger set of 1840 sequences, and the conclusions are found to hold. Importantly, this
demonstrates that the method is not overfitted to the training data. Finally, the relevance
of parameter precision to the results is addressed.

3.1. Improving per Family Prediction Accuracy

Previously [17], mathematical methods were used to find the best of all possible combi-
nations of branching parameters (a, b, ¢) for each individual training sequence. Averaging
these per sequence accuracies over their family, or the whole training set, yields the “max”
accuracy listed in Table 2. These numbers are an upper bound on the improvement possible
by modifying the branching parameters for MFE prediction accuracy on these training
(sub)sets. We note that the upper bound is known not to be achievable, since the common
intersection (even within a family) of the best per sequence parameter values is empty.

A lower bound on the improvement was established [17] by ad hoc means, that is
by identifying large sets of sequences from each family which did have such a common
intersection. Seven such large sets were found for tRNA and four for 55 rRNA. These
combinations of possible parameters were considered for each family, and the one with
best average accuracy over the whole family was reported. We refer to these parameter
combinations here as AHt and AHs, for the tRNA and 55 rRNA families respectively. It
was found that the AHt and AHs accuracy on their respective family, listed in Table 2, was
a statistically significant improvement over the T99 parameters.
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Table 2. Parameter values and MFE prediction for the 50 tRNA training sequences and the 50 5S
rRNA, as well as over both families.

Parameters tRNA 5S rRNA Both

a b c avg std avg std avg std

T89 4.6 0.4 0.1 0.41 0.25 0.69 0.24 0.55 0.28

T99 3.4 0 0.4 0.52 0.30 0.63 0.24 0.58 0.27

T04 9.3 0 -0.6 0.45 0.28 0.64 0.24 0.54 0.28

max n/a n/a n/a 0.91 0.10 0.81 0.09 0.86 0.11
AHt 10.9 -0.1 —-2.6 0.74 0.24 0.52 0.21 0.63 0.25
AHs -85 0.3 45 0.36 0.18 0.71 0.22 0.53 0.27
BBt 17 -0.3 —45 0.75 0.22 0.45 0.17 0.60 0.25

BBs -57 0.2 35 0.37 0.19 0.73 0.21 0.55 0.27

AHb 12.2 0.2 -2.9 0.71 0.27 0.62 0.21 0.66 0.25
BBb 9.3 -0.1 -1.7 0.73 0.25 0.59 0.23 0.66 0.25

However, there was a sizable gap between the upper and lower bounds for the
potential accuracy improvements for each family considered. The branch-and-bound
algorithm presented here was implemented to determine where in this range the best
possible per family accuracy lay. The new parameters are listed in Table 2 as BBt and BBs
along with the corresponding accuracies.

As a technical aside, the best possible (a,b,c) region for 5S is unbounded in the
(—3,0,1) direction. The BBs parameters reported are the centroid of the finite 2D face. We
also considered a strictly interior point BBs+(—3,0,1) = (—8.7,0.2,4.5), which gave nearly
identical accuracy for tRNA. Interestingly, this new point is very close to AHs, with a
distance of (0.2, 0.1, 0).

It is worth noting that the signs of these family-optimal parameters are consistent
within the family between the ad hoc and branch-and-bound combinations, but reversed
between the two families. This suggests that (a, b, c) combinations which are optimal for
different configurations, i.e., a tRNA cloverleaf versus a 5S rRNA Y-shape, may occupy
different parts of the 3D parameter space. It is also relevant to future analyses that the
range of the b parameters is very narrow (from —0.3 to 0.3) and distributed fairly evenly
around 0.

As evaluated by a two-sample t-test, the differences between the ad hoc and branch-
and-bound parameter accuracies within the family on which the parameters were opti-
mized are not significant, with p = 0.7699 for tRNA and p = 0.7021 for 55 rRNA. In
other words, the maximum possible accuracy per family over the training set sequences
is essentially the best ad hoc accuracy, and far from the average over the per sequence
maximums. This closes the gap from the previous analysis, while opening the door to new
questions as discussed in the next section.

3.2. Improving cross Family Prediction Accuracy

It was observed before that the accuracy of the new AHt and AHs parameters on
the other family is clearly worse than the Turner parameters. Consequently, a “best both”
combination, denoted here AHb, was also identified from among the 11 possible ad hoc
ones considered, 7 for tRNA and 4 for 55 rRNA. As evaluated by a two-sample ¢-test, the
improvement over the T99 parameters on the whole training set accuracy is significant
(p = 0.0200). This is due entirely to tRNA; the AHb parameters raise the tRNA accuracy
by an amount statistically indistinguishable (t-test p = 0.5243) from AHt, while the AHb
accuracy for the 55 rRNA training sequences was indistinguishable (t-test p = 0.7308) from
T99. This is interesting because it demonstrates that, in terms of trade-offs in prediction
accuracy between tRNA and 55 rRNA, the former can be improved without negatively
affecting the latter. We note that only per family ad hoc parameters were considered at the
time, so it seemed plausible that a better parameter combination could be found when both
tRNA and 55 rRNA were considered concurrently.
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However, this turned out not to be the case when the branch-and-bound algorithm
was run on the full 100 sequence training set. The parallelization is implemented in such a
way that three combinations of “near optimal” parameters were detected, along with the
absolute best one. When the parameters are rounded to 1 decimal precision, 3 of the 4 com-
binations give identical 0.66 average accuracy when rounded to 2 decimal places, and the
fourth is only 0.02 less. Given this, we report as the BBb parameters the combination
with 0.66 average accuracy which was most dissimilar to AHb. The other 2 combinations
were AHb +(—0.3,0,0.1) and +(—0.1,0,0), although AHb was originally optimized for
tRNA and not the full training set. The fourth was more similar to BBb but the combina-
tion (9.7, —0.2, —1.8) was noticeably worse for 55 by 0.05 with only a 0.01 improvement
for tRNA.

These results illustrate that, while it is possible to improve over the current T99
prediction accuracy by a statistically significant amount, doing so simultaneously over two
different families is more challenging than improving the per family accuracy. Additionally,
the best possible accuracy over the full training set is the same as the previous ad hoc one.

3.3. Results for Testing Data

We note that the summary statistics for “Both” families in Table 3 were computed as
a weighted average and standard deviation, so that each family contributed 50% to the
statistic although there were more than twice as many 55 rRNA as tRNA sequences in the
testing set. With a total of 1840 sequences, the difference in accuracy over the whole data
set for the T99 parameters versus the AHb or BBb is significant; the Tukey HSD Post-hoc
Test following an ANOVA were both p < 0.0001 while the differences between AHb and
BBb were not (p = 0.5957). The AHb and BBb parameters performed just as well on the
tRNA testing sequences as on the training ones (ANOVA p = 0.9008), although the 55
accuracy was less good (ANOVA p = 0.0051). A Tukey HSD Post-hoc Test found significant
differences between the AHD training accuracy and the testing one (p = 0.0420) as well as
the BBb testing one (p = 0.0156) for the 5S family, but the other four pairwise comparisons
were indistinguishable. We also note that the parameters trained on 5S sequences have
lower accuracy on the testing data.

Table 3. MFE prediction accuracies for testing data set from Mathews Lab (U Rochester) with 557
tRNA sequences and 1283 55 rRNA. Table 2 parameters repeated for completeness.

Parameters tRNA 5S rRNA Both
a b c avg std avg std w-avg  w-std
T89 4.6 0.4 0.1 0.48 0.22 0.65 0.26 0.56 0.26
T99 3.4 0 0.4 0.58 0.24 0.59 0.24 0.59 0.24
T04 9.3 0 —0.6 0.53 0.25 0.62 0.25 0.57 0.25
AHt 10.9 —0.1 —2.6 0.74 0.22 0.47 0.20 0.61 0.25
AHs —8.5 0.3 4.5 0.43 0.17 0.66 0.26 0.54 0.25
BBt 17 -0.3 —4.5 0.72 0.20 0.40 0.11 0.56 0.23
BBs —5.7 0.2 3.5 0.45 0.17 0.66 0.25 0.56 0.24
AHb 12.2 0.2 -29 0.73 0.22 0.53 0.24 0.63 0.25
BBb 9.3 —0.1 -17 0.73 0.23 0.52 0.22 0.62 0.25

Other than this lower accuracy for 5S rRNA, several patterns observed in Table 2 also
hold in Table 3. First, parameters which were trained on one family are markedly less
accurate on the other one. When appropriately combined to weigh each family equally, this
yields overall accuracies comparable to the Turner values. However, parameters chosen
to raise the overall accuracy can achieve a statistically significant improvement over T99.
Finally, branch-and-bound and ad hoc accuracies are remarkably similar over the families
on which they were trained.
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3.4. Sensitivity to Parameter Precision

As discussed in Section 2, the accuracy computations here focused on branching pa-
rameters specified to one decimal precision. We note that the “exact” parameters computed,
that is ones specified as a rational number to the maximum precision allowable by the
size of an integer in the computer algebra system used, always gave higher accuracy on
the training (sub)set used. The largest difference seen was less that 0.035, which is not a
statistically significant difference over data sets of this size with this amount of variance in
the accuracy means.

4. Discussion

Previous results [17] demonstrated that it was possible to achieve a statistically signifi-
cant improvement in MFE prediction accuracy by altering the three NNTM parameters
which govern the entropic cost of loop branching. This was shown on a set of 50 tRNA
sequences, on another of 50 55 rRNA, and on the full training set of both families combined.
However, the extent of the possible improvement was unknown, although a lower bound
was given by the ad hoc parameters identified— listed as AHt, AHs, and AHb respectively
in Table 2. The “max” upper bound, known not to be attainable, was provided by the
average maximimum accuracy (over any combination of parameters) for each individiual
training sequence. Hence, the open questions was to establish the maximum simultaneous
improvement over these training sets.

Here we provide a branch-and-bound algorithm which takes as input a set of RNA
branching polytopes [23] and finds the parameters with the best possible accuracy over the
entire set. We describe implementation details needed to insure that the basic algorithm
runs efficiently enough to be useful in practice, and give results on our original training set
as well as a much larger testing set available from the Mathews Lab (U Rochester) with
557 tRNA and 1283 5S rRNA. The differences in MFE accuracy under the standard T99
parameters between the training and testings sequences are not significant, and we find
that the general trends observed in the training data are borne out by the testing results.

First, and most surprising, we find that the branch-and-bound parameters do not
improve on the ad hoc ones in any significant way. Hence, we now know that the best
possible MFE prediction accuracy for the tRNA training sequences is 0.75 on average and
0.73 for 55 rRNA. The testing data achieves a comparable accuracy for tRNA, although the
ad hoc AHt parameters are actually slightly better than the branch-and-bound BBt. The
AHs and BBs accuracies for the 5S rRNA testing sequences are equivalent, if lower than
the training ones (but not by a statistically significant amount).

Overall, the average MFE prediction accuracy for the 55 rRNA testing sequences is
consistently lower, by ~5%, than the training accuracy for all parameter combinations
considered. It is not obvious why this should be the case, since the GC content is equivalent
and the length and number of native base pairs were actually lower on average for the
testing sequences. In the future, it may be worthwhile to investigate what other sequence
and/or structural characteristics might correlate with this training versus testing trend for
55 rRNA.

Returning to the accuracy improvement question, the branch-and-bound results for
each family establish a much more realistic upper bound than the previous “max” values
from Table 2. However, we also know that achieving this level of accuracy simultaneously
across the two families is not possible. The testing data reinforces the point that parameters
which are optimized only for one family perform much less well for the other. For the
family-specific parameters, i.e., AHt, AHs, BBt, and BBs, this yields combined accuracies
over both families which are on par with the Turner parameters for both training and
testing data. In the case of the AHt paramaters, the improvement over T99 for the full
testing set is statistically significant (p = 0.0187) but not for the training set (p = 0.1395).

In contrast, when the parameters are chosen to maximize the accuracy of both fam-
ilies, a statistically significant improvement over T99—which has the highest combined
accuracy over the three Turner parameter sets—is achieved for both testing and training
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data. As described for the training results, there are multiple different parameter com-
binations that achieve essentially the same accuracy over both families. This conclusion
holds true for the testing data as well. Such stability in the maximum combined accuracy
strongly suggest that future studies should focus on “near optimal” parameter combina-
tions. This is particularly appropriate when the parameters are commonly specified to 1
decimal precision.

In general, we find that the AHb and BBb parameters are better for tRNA than for 55
rRNA, relative to the family-specific parameters. It is interesting to note that the Turner
parameters with the highest 55 rRNA accuracy are the earliest ones which had b = 0.4,
whereas the T99 and T04 parameters both have b = 0. The parameters trained only on
55 rRNA which produce the highest accuracy on that family, i.e., AHs and BBs, both had
b > 0 while the opposite was true for tRNA. However, it was possible to achieve the same
accuracy (to two decimal places) over the entire 100 sequences training set with either
b =0.2o0rb = —0.1, and essentially the same for the 1840 sequence testing set.

Over all the new parameter combinations considered, we found a small range of b
values, roughly centered around 0. Furthermore, previous results [17] had found that the
thermodynamic optimization was most sensitive in the b direction. In future work, we
expect to specialize the b value in our parametric analysis to better focus on the a and ¢
trade-offs. We have preliminary results which indicate that this is not too detrimental to
the overall accuracy, and this reduction in complexity will certainly improve the time and
memory needed to compute the branching polytopes.

Recall that a weighs the number of multiloops while ¢ scores the total number of
branching helices. In terms of trade-offs between them, we note that the most recent Turner
parameters have a significant increase in 4 and a ¢ < 0 for the first time. All six new
parameter combinations have opposite sign for a and ¢ suggesting that there may be an
important reward /penalty balance to be achieved. Not only did the 5S-specific parameters
have b > 0 but they also both have 2 < 0 and ¢ > 0, whereas the tRNA-specific had
the exact opposite signs. Although the same accuracy could be achieved over the whole
training data set with b either positive or negative, there were no “near optimal” parameter
combinations found which had 2 < 0 and ¢ > 0. Hence, it seems that there may be a
greater range of (4, c¢) combinations which produce an acceptable 5S rRNA accuracy than
there is for tRNA. In fact, BBb is quite close to T04, with a difference of (0, —0.1, —1.1).
This small change produces a considerable improvement in tRNA accuracy, with a smaller
corresponding decrease for 55 rRNA.

In conjunction, these results suggest that there may be a relatively large set of branch-
ing parameters which yield equivalent prediction accuracies that improve over the current
ones. To make progress on identifying the scope of these parameters, we confirm that the
current empirical strategy of focusing on the trade-off between the a and c parameters is
well-substantiated by this analysis. Moving forward, the goal is to expand the training set
to include other RNA families, but this requires new algorithmic approaches to computing
the branching polytopes. To date, the longest sequence attempted (an RNase P of length
354 nt) took more than 2 months. However, focusing on the a,c trade-offs only should
reduce the complexity substantially, yielding further insights into the advances possible
and limitation faced when improving RNA branching predictions.

5. Conclusions

We conclude by putting the results reported here into a broader context. In demon-
strating that a targeted reevaluation of the NNTM branching parameters can improve
MEE prediction accuracy, we also highlight the challenges of doing so across more than
one family simultaneously. This is relevant not only to thermodynamic methods for RNA
secondary structure prediction, but also to machine learning approaches which require
large enough training sets to parameterize all the new structural features proposed. It has
been demonstrated that the risk of overfitting to the training data is real [26], but also that
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using thermodynamic information in a machine learning method can reduce the problem
while still improving prediction accuracy [27].

While the importance of training across different RNA families is well-known, to the
best of our knowledge, this is the first time that the resulting parameters have been explicitly
compared when trained on one family versus another, and then on both. In this way, we are
able to characterize the effect on the maximum possible per family accuracy—which is now
known—when optimizing the branching parameters over both of our training families. By
focusing only on two families, this interplay can be clearly analyzed. We see an explicit
trade-off between tRNA and 5S rRNA, and this suggests that it may be worthwhile to
consider the trade-offs being made by other methods. In doing so, it is important that the
training and testing data sets be balanced, i.e., where each family contributes equally to the
accuracy. Otherwise, improvements in the dominant family will disproportionally affect
the combined statistic.

Moving forward, we plan to extend this approach to analyze the trade-offs in branch-
ing parameters among additional families. As a first step in that direction, we did consider
the prediction accuracy under the ad hoc and branch-and-bound parameters for each of
the other eight families from the Mathews data set [20,22,28]. For half of these families
(small subunit ribosomal RNA domains, large subunit ribosomal RNA domains, group I
self-splicing introns, and group II self-splicing introns), an ANOVA on the average family
accuracy found no significant differences among T99, T04, AHb, and BBb. Hence, even
though the new parameters were trained on two entirely different families, this did not
negatively affect the accuracy. In the four families where there was a significant change
(p < 0.05) in the ANOVA, two improved while two worsened—again highlighting the
trade-offs in branching parameters between families. Interestingly, the former (RNase P
and tmRNA) were “tRNA-like” in the sense that they performed as well under the AHt
parameters (although not the BBt) whereas the latter (signal recognition particle RNA and
telomerase RNA) were “55 rRNA-like” in the sense that they performed as well on AHs
and BBs as on T99 and T04.

In summary, analyzing the trade-offs in MFE prediction accuracy improvements
possibly by modifying the NNTM branching parameters may yield improvements more
generally. At the very least, it will characterize why obtaining such improvements simulta-
neously over different RNA families with distinct branching configurations has remained
a challenge.
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