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Abstract: ADP-ribosylation, is a reversible post-translational modification implicated in major
biological functions. Poly ADP-ribose polymerases (PARP) are specialized enzymes that catalyze the
addition of ADP ribose units from “nicotinamide adenine dinucleotide-donor molecules” to their
target substrates. This reaction known as PARylation modulates essential cellular processes including
DNA damage response, chromatin remodeling, DNA methylation and gene expression. Herein, we
discuss emerging roles of PARP1 in chromatin remodeling and epigenetic regulation, focusing on its
therapeutic implications for cancer treatment and beyond.
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1. Introduction

ADP-ribosylation (ADPr) is the most frequent protein post-translational modification
(PTM) in eukaryotes. ADPr is mediated by ADP-ribosyl transferases (ADPRT) that cova-
lently attach single or multiple ADP-ribose units from a “donor” molecule the nicotinamide
adenine dinucleotide (NAD) onto an “acceptor” substrate (i.e., proteins, nucleic acids or
other small molecules). Poly ADP-ribose polymerases (PARPs) are ADPRT producing
chains of ADP-ribose polymers (PAR) of variable sizes (from 2 to more than 200 units) and
structures (linear and branched) [1,2] through a process known as PARylation. PARylation is
involved in a plethora of biological processes that control the cell fate including: chromatin
remodeling, DNA methylation changes and gene expression [3–5]. The present review
discusses the multiple functions of PARP1 in normal and cancer cells [6], expanding on its
emerging role as a novel therapeutic target for clinical applications.

2. The PARP Family Members

The PARP family consists of seventeen enzymes categorized into four subfamilies and
classified according to their structures and domains a representative scheme is shown in
Figure 1.

The DNA-dependent PARPs include PARP1, PARP2, and PARP3. These are activated
by discontinuous DNA structures through their amino-terminal DNA-binding domains [7].
The tankyrase subfamily, comprised of tankyrase 1 (also known as PARP5A) and tankyrase
2 (also known as PARP5B), is characterized by ankyrin domain repeats. The ankyrin-
domain is a 33-residue motif consisting of two α helices separated by loops. It is responsible
for protein protein interactions [8]. The CCCH subfamily contains Cys-Cys-Cys-His zinc-
finger motifs that bind the RNA (PARP7, PARP12 and PARP13) and a WWE sequence,
consisting of Trp-Trp-Glu domains, possesses PAR-binding activity (PARP14, PARP7,
PARP12, PARP13, PARP11). The fourth and final subfamily, macro PARPs, possess ADP-
ribose-binding macro domain (PARP9, PARP14, PARP15).
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Of the PARP members, PARP1 has been extensively studied and is translated to clinical
use. Identified over 50 years ago, PARP1 is the most abundant PARP isoform, localized
predominantly in the nucleus [9,10]. The human PARP1 is a 113 KDa protein with a
modular structure composed of multiple independent domains: the DNA-binding domain
(DBD; residues 1–374), the auto-modification domain (residues 375–525), and the catalytic
domain (residues 526–1014). The DBD at the N-terminal end contains two zinc finger motifs
(Zn1 and Zn2) that are able to bind to DNA structures [11], nuclear localization signals [12],
and a caspase-3 cleavage site [13]. The auto-modification domain includes the typical
fold recurrent in DNA repair proteins—a BRCA1 C-terminus (BRCT) arrangement that
mediates protein protein interactions and recruits DNA repair enzymes [3]. The catalytic
domain of PARP1 at the C-terminal of the primary protein structure is highly conserved in
the PARP superfamily, particularly within the NAD binding region [14].
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Figure 1. PARP family members functional domains. The structures are schematized in colored bars and their specific
enzymatic activity including: Mono-, Poly-(ADP)ribose polymerases or Inactive is also reported.

3. Basic Notions of PARylation

PARPs catalyze the transfer of ADP-ribose units from NAD+ to specific target proteins,
modulating their biological functions. This process, known as PARylation, generates one
ADP-ribose and one nicotinamide per molecule of NAD converted. The ADP-ribose unit is
then attached on carboxyl group from Glu, Asp and/or Lys residues in the target protein
structure [15]. The bond formation between ADP-ribose units during PARylation occurs by
either elongation or branching a schematic of the reaction is shown in Figure 2.

During elongation, adenine-proximal ribose units attach to the α (1 → 2) O-glycosidic
bond and produce a linear PAR chain. During branching, nicotinamide-proximal ribose
units induce the rising of collateral branches. Elongation reactions generate PAR-polymers
composed of more than 200 units. Branching reactions occur with less frequency, about
once for every 20 elongation reactions [16].

Not all PARP members are capable of carrying out PARylation. Those acting as
mono ADP-ribosyl transferases are generally referred as ADP-ribosyl-transferases (ARTDs).
Other PARP members lack enzymatic activity entirely. While PARP1, PARP2, vPARP (vault
PARP; also known as PARP4), PARP5A, and PARP5B catalyze PARylation, PARP3, PARP10,
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PARP14 and PARP15 are mono ADP-ribosyl transferases. PARP16 and 17 are catalytically
inactive, mediating ADP-ribosylation through interactions with specific yet often unknown
cofactors [17,18]. Although features of PARylation have been well defined for PARP1 and
PARP2, the variety of mechanisms of other PARP members remains poorly understood.
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4. Getting Closer to the Edge of Unexplained PARP Functions

Over the years, the role of PARP enzymes has been primarily investigated in DNA-
repair, providing a model to study changes of chromatin structure in response to genotoxic
stress. PARP proteins are as now proven targets for new therapeutic approaches in a
number of diseases including cancer [19]. Recent studies have clearly illustrated that
the range of action of PARP family members covers a plethora of biological processes,
including: chromatin and epigenetic remodeling, DNA methylation changes, PARylation-
dependent cross-talks and response to infectious diseases as summarized in Figure 3. Yet,
many of these mechanisms have remained poorly understood.
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increased by the activation of PARP1 during infections (i.e., COVID 19) [22].

5. Remodeling of Chromatin: Can Histones Be PARylated?

Is PARP1 able to induce chromatin structure modifications? The first attempt to answer
this question was made in 1983 by Aubin et al. [23]. Quenet et al. [24] later clarified that
PARP1-mediated PARylation can activate chromatin compaction and condensation. In vitro
evidence has shown that the histone core of nucleosomes (H2A, H2B, H3, and H4) as well as
the linker histone H1, could be PARylated by PARP1. This discovery led to hypothesize the
involvement of PARylation in chromatin decondensation [25]. However, the mechanism
of PARP1-induced histone chromatin rearrangement might be more sophisticated. From
a structural prospective, it is reasonable to assume that the addition of highly negatively
charged PARs, wrapped around chromatin proteins, should repel the nearby DNA thereby
inducing chromatin decondensation.

Few studies have focused on the interplay between PARP1, PARylation, and histones.
Kim et al. (2004) demonstrated that PARP1 binds to the linker DNA [26], and that this
particular site corresponds to the H1 localization. Consequently, PARP1 and H1 compete
for a binding to nucleosomes in vitro [25]. Further studies have proved that competition
between PARP1 and H1 to targeted gene promoters does contribute to the dynamic regula-
tion of gene expression [27,28]. However, while PARP1 preferentially associates with less
condensed chromatin, H1 mainly co-localizes with highly condensed chromatin.

In terms of DNA repair, PARP1 has been implicated in the removal of histones near
DNA lesions to allow for the translocation of DNA damage response (DDR) enzymes.
A 2020 study found that ADP-ribosylation was associated with histones removal from
DNA lesion sites. Consistently, treatment with a PARP inhibitor prevented the eviction of
histones at DNA lesion sites [29].

Interestingly, PARP1 was also found to interact with the H2A variants H2A.Z and
macro H2A. These interactions might lead to recruitment and integration of histone variants
to specific genomic sites and control PARP1 function [30,31]. The PARP1 automodification
domain seems to promote PARP1 release from DNA and/or convert PARP1 into a histone-
binding protein [32].

Consistent with this study, Gibbs-Seymour et al. discovered a novel protein, the
histone PARylation factor 1 (HPF1, or C4orf27) as a PARP1-interacting component of
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double strand break (DSB) repair. In human cells, HPF1 is capable of regulating the
PARP1 automodification domain, thus promoting ADP-ribosylation of the histones to
ensure genomic stability [33].

Interestingly, PARP1 is also able to directly PARylate DNA breaks by loading PAR
units to the terminal phosphates, as recently shown by Matta E. et al. [34].

6. PARP1 as an Effector of Chromatin Modifications

PARylation is implicated in modulating the activity of histone and chromatin modify-
ing enzymes at the different chromatin levels:

a. Constitutive heterochromatin, highly condensed regions of DNA that display species-
specific genomic coverage and variability ranging from 30% to 90%;

b. Facultative heterochromatin, regions of packaged DNA that can be reverted to eu-
chromatin upon specific conditions and histone modifications, accounting for 45% of
the genome;

c. Euchromatin, highly accessible and decondensed portions of the DNA that are tran-
scriptionally active.

a. Constitutive heterochromatin

H3 lysine 9 trimethylation (H3K9me3) is the hallmark of highly condensed chromatin.
Defects in PARylation are commonly associated with loss of the methylation marker at
the centromeric heterochromatin of pericentromeric regions. While the di-(me2) and tri-
methylation forms of H3K9 are enriched at the transcriptional start site (TSS) of silenced
genes, the mono-methylation variant (H3K9me1) marks promoters of actively transcribed
genes [35]. Although H3K9me3 aids the recruitment of chromatin enzymes involved in
the DDR, its presence impairs the DNA repairing process that requires a decondensed
state of chromatin to enable the action of the DNA-repair effectors [36]. PARylation of the
lysine-specific demethylase 4D (KDM4D) [37] at the C-terminal domain engages KDM4D
to the sites of DNA damage. By promoting the demethylation of H3K9, PARylation
reduces the degree of chromatin compaction, thus playing a key role in the propagation
of DDR in vivo [37,38]. A schematic outlining this molecular mechanism is shown in
Figure 4 (upper part). Further evidence show that in response to DNA damage when
the chromatin undergoes structural reorganization to ensure accurate DNA repair [3],
PARP1 not only promotes recruitment of proteins at the damaged site, but also acts as
a chromatin remodeler to facilitate the access of the DNA repair machinery. Indeed,
several studies have demonstrated that PARylation of the histones causes chromatin
decondensation [25,39].

For instance, by recruiting chromodomain helicase DNA binding protein 2 (CHD2)
at DSBs, PARP1 triggers deposition of the histone variant H3.3, and ultimately chromatin
relaxation thereby regulating the assembly of non-homologous end-joining (NHEJ) com-
plexes to rescue genomic integrity.

Therefore, PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition
to DNA repair by NEHJ. In the NHEJ pathway, PARP1 may also serve as a scaffold to
recruit at sites of DNA damage a number of transcription repression complexes, including
the nucleosome remodeler and deacetylase (NuRD), the complex proteins CHD4, the
metastasis-associated protein 1 (MTA1) [40,41], and members of Polycomb repressive
complex 1 (PRC1) [40].
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b. Facultative heterochromatin
A positional effect of PARylation has also been proposed in the context of facultative

heterochromatin as observed for the H3K9me3/2 demethylase KDM4D [42]. Indeed,
PARylation of KDM4D conserved N-terminal domain—the JmjN, that is a substrates for
PARP-1, inhibits its activity at the promoter of retinoic acid receptor (RAR)-dependent
genes thereby resulting in transcriptional repression [42]. Hence, whilst PARylation at
the C-terminal domain promotes KDM4D demethylase activity and reduces the degree
of chromatin compaction [37], PARylation at the N-terminal end results in an opposite
effect. Alternatively, a model wherein PARP1 cooperates in the establishment of the
heterochromatin landscape upon inhibition of KDM4D has also been proposed [42]. This
action of PARP1 can be reversed by poly-ADP-ribose glycohydrolase (PARG), the catabolic
enzyme that cleaves the ADP-ribose polymers synthesized by PARP1. PARG counteracts
the action of PARP1 and favors an open structure of the chromatin, promoting an active
transcriptional state [42].

In the attempt to further understand the PARP1 and PARylation conundrum, a
2015 study investigated the effects of PARP1 on global gene expression in a lymphoblas-
toid B cell line [43]. These data revealed that PARylation controls the methyltransferase
enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive
complex 2 (PRC2). PRC2 is responsible for the trimethylation of the lysine 27 on histone
3 (H3K27me3), which leads to chromatin compaction and gene silencing. A schematic
example of the molecular mechanism is presented in Figure 4 (middle part).
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Upon pharmacological inhibition of PARP and shRNA-mediated downregulation of
PARP1, EZH2 expression is induced, resulting in increased global H3K27me3 [43].

Furthermore, PARP activity is required for retaining PRC2, the supporting protein
suppressor of Zeste 12 (SUZ12) and the embryonic ectoderm development (EED), at the
site of DNA damage. Surprisingly, EZH2 is not recruited directly by single-strand breaks
or UV damage [44].

c. Euchromatin
Two methylation states of H3 lysine 4 (H3K4me2/me3) are enriched at the TSS of

actively transcribed genes and correspond to euchromatic regions in the genome. The
monomethylation state typically marks enhancers [45]. As shown in Figure 4 (bottom part),
PARylation impairs the enzymatic activity of KDM5B, a histone lysine demethylase of the
H3 trimethylated lysine 4, and the respective binding to H3 in in vitro assays. Consistently,
inhibition of PARylation in vivo results in increased levels of KDM5B at the TSS of active
genes and decreased levels of H3K4me3.

The interplay between PARP1 and KDM5B has been considered a regulatory mecha-
nism to control the chromatin state at the basal and signal-transcriptional level [27]. While
PARylation recruits KDM5B to DNA damaged sites, demethylation of H3K4me3 in proxim-
ity to DNA breaks helps to recruit proteins involved in the DNA-damage repair, including
BRCA1 [46]. Hence, PARylation of KDM5B could have a double effect on chromatin
association. Remodeling of the chromatin during DSB repair can include variation on
the usual mechanism observed in gene transcription, including the physical movement
of nucleosomes, histone variant exchange, and dynamic changes in histone acetylation
and methylation to create nucleosome-free regions that facilitate the entire repair pro-
cess [47]. A recent finding from Gong et al. using live imaging, revealed that PARP1 recruits
KDM5A through PAR chains at the damaged chromatin side, leading to rapid erasure of
H3K4me3 and promoting recruitment of a second repair protein, ZMYND8 [48]. Consistent
with these findings, loss of KDM5A attenuates the normal drop in local transcriptional
activity adjacent to DSBs, in line with loading of ZMYND8 (and loss of H3K4me3) acting
as a general transcriptional repressor [48].

Further, PARP1–3 proteins can directly PARylate DNA breaks by loading PAR units to
terminal phosphates. [34].

Finally, a 2019 study details a fascinating interplay between PARP1, chromatin, and
RNA polymerase II (RNAPII). It was found that RNAPII pauses elongation when it en-
counters PARP1 bound to chromatin. Knockout of the PARP1 gene prevented this pause
from occurring, implicating that PARP1 plays a regulatory role in chromatin changes and
transcription [49].

7. PARP1 Modulates the Delicate Balance of DNA Methylation

DNA methylation is the major epigenetic modification in eukaryotic genomes. It
occurs at position 5 of cytosine when followed by guanosine (CpG) in mammals. In the hu-
man genome, methylated cytosines (5mC) are mainly clustered in discrete regions termed
CpG islands (CGIs), which account for 1% of the whole genome. CGIs are located in the
vicinity of TSSs in the majority (~70%) of protein coding genes. While the bulk of genome
is methylated at 70–80% of its CpGs, CGIs are mostly unmethylated in somatic cells and
are transcriptionally permissive [50]. DNA methylation is catalyzed by three DNA methyl-
transferases which have different roles in maintenance (DNMT1), and de novo methylation
(DNMT3a and DNMT3b). DNMT1, the main mammalian DNA methyltransferase, is
localized in the replication foci and is responsible for copying methylation patterns after
DNA replication [51]. The DNA methylation profile is established during cell development
and differentiation. Its importance is proven by the lethal phenotypes resulting from
DNMTs’ knock-out in vivo models (Manzo et al., Embo J, 2017) [52]. Furthermore, aberrant
DNA methylation remains a hallmark of cancer progression [53] and silencing of tumor
suppressor genes [54,55].
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The interactions with various proteins or molecules may alter DNMTs’ activity. Over
the past decades, Caiafa et al. have provided evidence linking PARylation to DNA methy-
lation. Their data indicate that blockage of PARylation increases DNA methylation levels
in vivo, while activation of PARylation is responsible for maintaining the unmethylated
status of specific CpGs [56–58]. The authors demonstrated that ADP-ribosylated PARP1 iso-
form is associated with DNMT1 in vivo [20,59,60], which suggests a connection between
PARylation and changes in the DNA methylation profile [5,60]. Therefore, the estab-
lishment of an epigenetic mark, such as DNA methylation, in normal and cancer cells
might occur through PARP1’s regulation. Interestingly, the effects of PARP1 on DNA
methylation may be modulated by CCCTC-binding factor (CTCF), which promotes the
auto-modification of PARP1 [58,61,62] and is responsible for the cross-talk between PARy-
lated PARP1 and DNMT1 [58,63]. It has also been demonstrated that PARP1 maintains the
unmethylated status of specific CTCF-bound CpGs by inhibiting DNMT1’s activity [58].
Genome-wide association studies in breast cancer cell lines showed that PARP1 correlates
with other epigenetic elements such as active histone marks [28]. This association is mu-
tually exclusive with DNA methylation and pharmacological inhibition of PARP1 leads
to changes in the DNA methylation profile, thus proving a functional interplay between
PARP1 and DNA methylation [64].

A role for PARP1 in DNA methylation events involved in cell reprogramming and
induced-pluripotent stem cells (iPSCs) has recently emerged. Somatic cells can be re-
programmed into iPSCs by means of four pluripotent transcription factors: Oct4, Klf4,
Sox2, and c-Myc, altogether referred to as OSKM [65,66]. PARP1 plays a key role in this
mechanism. Four days after OSKM’s transduction, PARP1, together with the ten-eleven
translocation-2 methyl-cytosine dioxygenase (Tet2), is recruited at specific loci promoting
early epigenetic modifications that are essential for cells reprogramming [67]. That would
also explain the high levels of PARs associated with the global demethylation process
during reprogramming towards totipotency or pluripotency [68].

8. A PARP1 RNA Interplay

The role in RNA biology is emerging as a novel and intriguing function of PARP1. Far
from being well understood, PARP1 has been implicated in maintaining ribosomal DNA
(rDNA) across cell division. During S phase, PARP1 binds to TTF-1-interacting protein-5
(TIP5), which is part of the nucleolar remodeling complex (NoRC). Promoter-associated
RNAs (pRNAs) also bind to this TIP5-PARP1 complex, and the TIP5-PARP1-pRNA complex
binds to rDNA. pRNA activates PARP1 enzymatic activity, causing it to PARylate itself,
histones, and TIP5 (cite 22617384). This PARylation ensures silenced transcription and the
formation of silent rDNA [21].

Although it is known that PARP1 does bind to transcripts originating from an RNA
polymerase I (Pol I) promoter located 2 kb upstream of the pre-rRNA transcription start site
termed pRNA [69,70], the mechanism of the interaction is mostly unknown. A 2017 study
found that PARP1 preferentially binds to RNAs with GC rich regions. The study also found
that removal of the Zn1 and Zn2 domains of PARP1 causes the protein to preferentially
bind to RNA instead of DNA [71].

PARP1 interaction with long noncoding RNAs (lncRNAs) seems to play a role in
pediatric neuroblastomas. For instance, Forkhead box D3 antisense RNA 1 (FOXD3-AS1) is
a lncRNA downregulated in neuroblastomas. In the nucleus, FOXD3-AS1 inhibits PARy-
lation by PARP1, causing increased expression of various tumor suppressor genes [72].
FOXD3-AS1 expression is reduced in neuroblastomas, thus causing a decreased expres-
sion of tumor suppressor genes by a PARP1-dependent mechanism. Administration of
FOXD3-AS1 in neuroblastoma cells results in re-expression of tumor suppressor genes and
improved outcomes in murine studies [72].

In addition, other PARPs family members also play interesting roles in RNA regulation.
Cellular stress causes the buildup of RNA-rich granules in the cytoplasm. These granules
contain six PARPs (PARP5a, PARP12, PARP13.1, PARP13.2, PARP14, and PARP15) and
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PARs, which regulate mRNA stability and translation [73]. Lastly, RNA-binding PARPs
can directly modulate transcription, and PARylation of RNA-modulating enzymes can
affect RNA localization, binding, and activity during stress and non-stress conditions [74].

These findings are revealing a critical and fascinating role for PARP1 and other PARPs
in RNA biology, that remains to be investigated.

9. Mechanisms and Clinical Applications of PARP Inhibitors

PARP enzymes have been shown to play a significant role in DDR by recruiting and
PARylating various enzymes. PARP inhibitors are nicotinamide analogs that function by
competitively binding to the NAD+ binding site on both PARP1 and PARP2 [75] A list
of PARP inhibitors is reported in Table 1. Due to PARP’s role in DDR, these inhibitors
can find clinical application to increase cytotoxicity in malignant cells by decreasing their
ability to repair damaged DNA [76]. PARP inhibitors have been particularly successful in
treating germline BRCA mutated cancers [75]. As of January 2021, there are four Food and
Drug Administration (FDA) approved PARP inhibitors recommended for the treatment of
various cancers (Table 1). A fifth drug, veliparib, is currently in Phase III clinical trials and
is showing promising results [75].

Table 1. PARP inhibitors and their clinical uses.

Name Description Reference

Olaparib

In HER-2 negative metastatic breast cancer patients with a
germline BRCA mutation, olaparib has been shown to be

very effective. Response rate of 59.9% compared to 28.8% in
the standard therapy group.

[77].

Niraparib

In patients with platinum sensitive recurrent ovarian cancer,
niraparib greatly enhanced progression-free survival as

compared to placebo. These results were consistent
regardless of a germline BRCA mutation or homologous

recombination deficiency (HRD) status.

[78]

Rucaparib

Rucaparib is generally a third (or later) line treatment used
in patients with BRCA mutated ovarian cancer and as

maintenance therapy for patients with recurrent or relapsed
platinum sensitive ovarian cancer. Analysis has revealed an

objective response rate of 54%.

[79]

Talazoparib

Used in patients with advanced breast cancer and germline
BRCA mutations. Talazoparib has shown a significantly

higher likelihood of progression-free survival (62.6%
compared to 27.2% in the standard therapy group).

[80]

PARP inhibitors are most often used in combination with other targeted therapies and
chemotherapy. Rucaparib, for example, is commonly used as a maintenance therapeutic
alongside platinum-based chemotherapy (cite 30830551). A January 2021 study found that
olaparib treatment coupled with stimulator of interferon genes (STING) agonism induces
more significant STING activation than STING agonism alone [81]. By increasing cytotoxic
T cell response, this combined therapy improved anti-tumor effects significantly [81].
Furthermore, this effect is more significant when also coupled with checkpoint inhibitors
that block PD-1 [82].

Similarly, olaparib is used in accordance with chemotherapy and radiation. Interest-
ingly, olaparib’s cytotoxic effects potentiate the effects of chemo and radiation therapy [83].
PARP inhibition is far more cytotoxic than simple knockout of PARP genes [84]. This
increase in cytotoxicity can be explained via a process known as “trapping”. Through an
unknown mechanism, PARP inhibitors lock PARP1 and PARP2 at the site of the damaged
DNA [84]. These trapped enzymes further prevent other DDR enzymes from translocating
to the damaged DNA, further increasing cytotoxicity. Alongside the decrease in catalytic
activity, PARP inhibitors exhibit a two-sided attack on malignant cells.
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These effects also make the targeted cells more susceptible to chemotherapy and radi-
ation therapy. Alongside the decrease in catalytic activity, PARP inhibitors exhibit a main-
tenance of heterochromatin throughout cell divisions by controlling UHRF1-DNMT1 in-
terplay and by directing DNMT1 to euchromatin regions and hemi-methylated CpG
dyads [79]. The interaction of UHRF1-PARP1 seems also essential for cell viability, as recent
findings suggest its involvement in response to DNA damage [80].

Though extremely effective, PARP inhibitor resistance is common and arises via a
multitude of mechanisms. BRCA deficient malignancies develop resistance via restoration
of homologous recombination (HR) repair [85]. Resistance can also develop through
stabilization of replication forks [85]. In the case of rucaparib, sensitivity to the drug in
high-grade serous ovarian carcinoma (HGSOC) is determined by the methylation of the
BRCA gene. Homozygous methylation predicts improved response to the drug, whereas
hemizygous methylation correlates to resistance [86].

10. Other Cross-Talks in the Complex Network Created by PARP1

PARPs are involved in several cross-talks with nuclear proteins; however, the way
in which many of these interactions occur remains unknown. PARP1 and PARP2 have
nuclear and nucleolar localization signals which allow them to localize in both nucleus and
nucleolus, respectively. In the nucleolus, through their N-terminal domain, PARPs interact
with nucleophosmin 1 (NPM1, also known as B23), a shuttling protein mainly confined
inside the nucleolus and involved in ribosomal RNA biogenesis [87,88]. Mutations at
PARP’s N-terminal domain prevent the interaction with NPM1. The lack of said interaction
does not impair either proteins’ functions [89]. However, it is not clear yet how the PARP-
NPM1 complex may act within the cell.

The presence of a hexanucleotide-repeat expansion, composed of 4 guanines and
2 cytosines (GGGGCC), [90,91] within the C9orf72 locus in amyotrophic lateral sclerosis
(ALS) has been shown to induce nucleolar stress and DNA damage in motor neurons.
PARPs and NPM1 are both involved in DDR by maintaining DNA integrity and recruiting
proteins of the DNA base excision repair (BER) system. Given NPM1 is a histone chaperone
induced by DNA damage [92], the presence of both PARP1 and NPM1 might be necessary
for DNA repair mechanisms. In fact, motor neurons from ALS patients show an up-
regulation of DDR markers, including the phosphorylated form of histone 2AX (γ-H2AX)
and ataxia telangiectasia mutated gene (p-ATM), the cleaved PARP1, the tumor suppressor
p53-binding protein (53BP1) and other hallmarks of DDR [93]. In this scenario, NPM1 plays
a pivotal role in DDR and its overexpression inhibits apoptosis and restores the structure
of the nucleolus.

Although poorly characterized, the interplay between PARP1 and NPM1 was shown
to be functional for treatment of acute myeloid leukemia. Inhibition of PARP proteins might
exert a lethal effect on AML cell lines by interfering with the PARP1/NPM1 interaction [94].
Another interesting aspect of PARylation involves the tumor suppressor 53BP1. 53BP1 has
a major role in the NHEJ pathway of DNA repair. When human cells age however the
recruitment of the protein to the site of damage is impaired [95]. Recent findings have now
revealed that ADP-ribosylation of 53BP1B which is increased in response to DNA damage,
is targeted by a PAR-binding E3 ubiquitin ligase, RNF146, leading to 53BP1 ubiquitination
and degradation, thus preventing the recruitment of 53BP1B to the DNA damage site.
Removal of ADP-ribosylation by the Nudix hydrolase NUDT16 from 53BP, improves
53BP1 stability, prevents the protein degradation and restores localization at the DSBs [96].

Another partner of PARP1 is the E3 ubiquitin-protein ligase UHRF1 [97]. UHRF1 is
a DNMT1-interacting protein involved in maintenance of CpG methylation. PARP1 me-
diates stabilization of the DNMT1-UHRF1 complex. PARylation seems to be required
for the maintenance of heterochromatin throughout cell divisions by controlling UHFR1-
DNMT1 interplay and by directing DNMT1 to euchromatin regions and hemi-methylated
CpG dyads [97]. The interaction of UHRF1-PARP1 seems also essential for cell viability, as
recent findings suggest its involvement in response to DNA damage [98].
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Cytosolic PARylation catalyzed by some members of the PARP family still remains a
largely unexplored mechanism. A hypothesized function foresees the recruitment of RNA-
binding proteins to specific loci in the cytoplasm, such as the stress granules (SGs) [73].
Indeed, five out of seventeen PARPs have been identified in SGs including tankyrase
PARP-5a, RNA-binding PARP12, PARP13.1 and isoform-13.2, PARP-15. This mechanism
resembles the role of pADPr in other cell compartments, such as the recruitment of DNA
repair proteins at DNA damage sites into the nucleus or acid-binding proteins for chromatin
remodeling [99,100]. Other stress granule proteins including Ago2, G3BP1, and TIA-1 are
modified by PARPs and such alterations increases upon cell stress [73]. In light of these
data, PARylation may act as a PTM involved in the assembly of cytoplasmic stress granules
that accumulates RNA-binding proteins involved in the translation and stability of mRNAs
upon stress. In this sense, poly ADP-ribosylation could emerge as a key regulator factor of
post-transcriptional gene expression in the cytoplasm [101,102]

11. Beyond Cancer Treatment: A Novel Target for COVID-19?

While COVID-19 has been spreading rapidly throughout the world, some research
groups are now exploring PARP1 as a possible target for therapeutics. It has been known for
over 20 years that PARP1 becomes activated during acute lung injury (ALI), that resembles
one of the major complications caused by SARS-CoV-2 [103]. This upregulation is caused
by the aryl hydrocarbon receptor (AhR), which is overexpressed in coronaviruses. The AhR
regulates PARP1 gene expression, implying that upregulation of PARP1 is likely to result
from coronavirus infection [22]. Activation of PARP1 leads to cell death by consuming large
amounts of NAD+ and ATP; this is even more likely to happen during an infected state [104].
In this state of depleted nutrients, cell death leads to further recruitment and activation
of immune cells. This vicious cycle of nutrient depletion and inflammation worsens ALI
significantly. Thus, inhibiting PARP1 may be a viable treatment for ALI patients with
COVID-19. Murine and early clinical trials have found that PARP1 inhibitors decrease
levels of IL-1, IL-6, and TNF-α, which are key interleukins in the cytokine storm caused by
COVID-19. Reduction of these interleukins alleviates post-infection lung fibrosis. Evidence
also suggests that PARP1 inhibition causes macrophages to become more tolerogenic,
further decreasing inflammation [105].At this time, the aforementioned PARP inhibitors
have been approved only for cancer therapy and not for pulmonary damage caused by
infection. However, it is believed that any of these inhibitors could be effective in treating
ALI caused by COVID-19.

PARP1 is not the only targeted PARP for COVID-19 treatment. PARP 7, PARP10,
PARP12, and PARP14 are also potential therapeutic targets [105]. As we learn more about
the virus, its infection, and lasting consequences, PARP enzymes may provide effective
treatment opportunities.

12. Conclusions

More than 50 years of research demonstrated that PARP inhibitors are efficient an-
ticancer agents for ovarian and breast cancers. Accumulating evidence suggests that
PARP1-mediated PARylation plays a fundamental role in major epigenetic pathways rang-
ing from histone modifications and rearrangements to DNA methylation changes. Yet, a
detail characterization of the PARP1-related molecular mechanisms engaged in epigenetic
pathways is far from being completely understood.

Recent studies have been trying to dissect the “modus operandi” of PARP1 in normal
and diseased cells. It has become evident that activation of PARP1 is not solely triggered
by DNA damage response in BRCA-1 and BRCA-2 mutated tumors but a number of
proteins intervene at different levels by stimulating or inhibiting PARP1 catalytic activity
and targeting PAR length. Thus, PARylation should not only be addressed as a target for
diseased conditions, but as an important mediator of molecular mechanisms that secure
the proper configuration of epigenetic marks.
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The present review provides an integrated perspective of underexplored cross-talks
between PARP1 and other interacting proteins, critical in the dynamic changes of chromatin
conformation, histone PARylation and DNA methylation.

In summary, the many roles of PARP1 poses a plethora of opportunities for targeted
therapeutics. Herein, we reviewed details of the latest knowledge in PARP1 research. From
cancers to respiratory diseases, PARP1 offers alternative approaches for the development
of novel therapeutic strategies.
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