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Abstract: SARS-CoV-2 is a recently emerged, novel human coronavirus responsible for the currently
ongoing COVID-19 pandemic. Recombination is a well-known evolutionary strategy of coron-
aviruses, which may frequently result in significant genetic alterations, such as deletions throughout
the genome. In this study we identified a co-infection with two genetically different SARS-CoV-2
viruses within a single patient sample via amplicon-based next generation sequencing in Hungary.
The recessive strain contained an 84 base pair deletion in the receptor binding domain of the Spike
protein gene and was found to be gradually displaced by a dominant non-deleterious variant over-
time. We have identified the region of the RBD that is affected by the mutation, created homology
models of the RBD∆84 mutant, and based on the available experimental data and calculations, we
propose that the mutation has a deteriorating effect on the binding of RBD to the ACE2 receptor,
which results in the negative selection of this variant. Extending the sequencing capacity toward the
discovery of emerging recombinant or deleterious strains may facilitate the early recognition of novel
strains with altered phenotypic attributes and understand key elements of Spike protein evolution.
Such studies may greatly contribute to future therapeutic research and general understanding of
genomic processes of the virus.

Keywords: selection; evolution; spike-mutant; deletion; attenuated; recessive

1. Introduction

Following the emergence of the novel SARS-CoV-2 virus in late 2019 in China [1], the
first cases were confirmed in Europe in January from France and a recent report presented
the first known emergence in December, Italy [2]. Nevertheless, the imported cases first
evolved into epidemic situations in Lombardy region, Italy. Following the Italian outbreak,
novel regions were seriously affected by the virus, mostly in Western European countries.
During the first 11 months of the pandemic more than 60 million people have been infected,
with 1.5 million fatalities [3].

SARS-CoV-2 is the seventh known human coronavirus and the third highly pathogenic
human coronavirus species. HCoV-229E, -NL63, -OC43, and HKU1 are endemic human
coronaviruses and known as common agents of mild upper and lower respiratory tract
infections. Other human coronaviruses, the Middle Eastern Respiratory Syndrome (MERS),
the Severe Acute Respiratory Syndrome viruses (SARS) and the recently emerged SARS-
CoV-2 virus, can cause severe disease. In 2002–2003 there was an outbreak of viral pneu-

Genes 2021, 12, 194. https://doi.org/10.3390/genes12020194 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-9775-3065
https://orcid.org/0000-0003-1300-2374
https://doi.org/10.3390/genes12020194
https://doi.org/10.3390/genes12020194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12020194
https://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/12/2/194?type=check_update&version=3


Genes 2021, 12, 194 2 of 10

monia which affected at least 8000 individuals and the case fatality rate was approximately
10%. Since its emergence, SARS disappeared with no known natural infection to date.
Whereas, in 2012, the MERS-CoV was fortuitously discovered in Saudi Arabia when a
fatal human case of pneumonia occurred. The evolutionary origin was traced back to bats,
whilst it is now widely established in dromedaries which are known as the intermediate
host for its emergence. Sporadic spillover events from dromedaries to humans and further
human-to-human transmission events are occurring to date [4].

The newly emerged betacoronavirus, namely SARS-CoV-2, belongs to the sarbecovirus
subgenus along with SARS-CoV and bat SARS-like coronaviruses. Its +ssRNA genome
length ranges between 29.8 kb to 29.9 kb. It has a typical CoV genome organization. With
both capped 5′ end and polyadenylated 3′ end it acts directly as an mRNA. At the 5′ the
orf1ab occupy more than the two third of the genome and encodes 16 nonstructural proteins,
whereas, genes encoding the four structural proteins englobing surface (S), envelope (E),
membrane (M), and nucleocapsid (N) proteins. In addition, six accessory proteins encoded
respectively by the ORF3a, ORF6, ORF7a, ORF7b, and ORF8 genes are located at the 3′

end [5].
The surface of the virus is covered with the glycosylated Spike proteins (S), which

mediate both virus binding and cell entry. After its attachment to the host cell receptor,
namely angiotensin-converting enzyme 2 (ACE2), the S protein is cleaved to S1 and S2 by
the host type 2 TM serine protease (TMPRSS2) and thus enhances the viral cell entry. It
consists of 1273 aa and comprises a signal peptide at the N-terminal (aa 1–13) followed by
the S1 (aa 14–685) and S2 (aa 686–1273) subunits. These subunits are in charge of receptor
binding and membrane fusion, respectively. The N-terminal domain (NTD, aa 14–305) and
the receptor-binding domain (RBD, aa 319–541) constitute the S1 subunit. On the other
hand, the S2 subunit encompasses the fusion peptide (FP, aa 788–806), the heptapeptide re-
peat sequence 1 (HR1, aa 919–984), the heptapeptide repeat sequence 2 (HR2, aa 1163–1213),
transmembrane domain (TM, aa 1213–1237) and cytoplasmic domain [6].

Spike protein is of particular interest for immunogenicity, therefore any changes in
this gene may result in altered variants in terms of immune response or infectivity as
novel Spike variants are increasingly recognized worldwide. A recently emerged variant
in the United Kingdom raised the alarm, since this particular variant accumulated several
mutations in an accelerated rate [7]. A remarkable example of Spike-mutants is the D614G
variant, which emerged during the early phase of the pandemic and is now dominant
in most parts of the world. Based on in vitro and also in vivo animal studies along with
epidemiological data analysis, there is a growing concern for the modified phenotype of
this variant coupled with elevated transmissibility and infectivity [8–10].

In the present study, we describe a recessive, deleterious Spike-protein mutant SARS-
CoV-2 strain. We describe the co-infection with two different strains in a single patient,
including the deleterious variant. We performed in silico protein analysis with the Spike
RBD region, which includes the deletion. These results may support the general under-
standing of natural genomic processes of SARS-CoV-2. The complete genomic sequence of
this variant may also facilitate future research activities where natural attenuated strains
are essential.

2. Materials and Methods
2.1. Sample Collection, Andsequencing

Prior to the Nanopore sequencing (Oxford Nanopore Technologies, Oxford, UK),
oropharyngeal swab were directly collected into viral transport medium (from the second
and third timepoint 30 March 2020, 6 April 2020) and were stored at −80 ◦C. 200 µL of
sample were used for nucleic acid extraction with the usage of Direct-zol RNA Miniprep
(Zymo Research, Irvine, CA, USA) following the manufacturers recommendation. The RNA
preparation for Nanopore sequencing were carried out by the ARTIC version 2 protocol
with nCoV-2019 V3 primer set [11,12]. The sequencing of the amplicon libraries were
performed MinION flow cell version 9.4.1 (Oxford Nanopore Technologies, Oxford, UK).
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The generated sequence data were processed by the ARTIC bioinformatic pipeline with
minimum coverage cutoff value, which was 20 × [13].

In order to verify the deletion, we conducted an end-point PCR with the 76 ampli-
con primers of ARTIC nCoV-2019 V3 sequencing primer set [12] (nCoV-2019_76_LEFT:
5′- AGGGCAAACTGGAAAGATTGCT -3′, nCoV-2019_76_RIGHT 5′- ACACCTGTGC
CTGTTAAACCAT-3′) which embrace the questionable genomic region. PCR reaction was
performed with Q5 (New England Biolabs) with the following cycling conditions: 98 ◦C for
30 s then 40 cycles of denaturation at 98 ◦C for 15 s, annealing at 61 ◦C for 30 s, elongation
at 72 ◦C for 1 min, and final elongation at 72 ◦C for 5 min. We used 4150 Tapestation
system (Agilent) with High Sensitivity DNA ScreenTape for quality check. The generated
amplicons were separated with gelelectrophoresis on 2% SeaKem LE (Lonza) agarose gel.
The dividual bands were purified with Monarch DNA Gel Extraction Kit (NEB) and bidi-
rectionally sequenced on ABI Prism 310 genetic analyzer platform (Applied Biosystems)
with the BigDye Terminator v1.1 CycleSequencing Kit (Applied Biosystems, Foster City,
CA, USA).

Visualization of Figure 1 and data management of raw sequence reads was performed
in Geneious Prime 2020 software.

2.2. Clinical History and Other Details

A 59-year-old female patient without any known underlying disease or risk factors
(i.e., smoking) tested positive for SARS-CoV-2 on 20 March 2020. She was working in Tirol,
Austria till 15 March 2020 and travelled to Hungary on 17 March 2020. Given her travelling
history, she had to be quarantined at home for 2 weeks. Her symptoms and PCR tests are
summarized in Table 1. The first negative PCR test was obtained on 16 April, 2020. The
loss of smell persisted for another month and weak numbness of the hands has remained
as a residual symptom.

Table 1. Summary of the clinical history for the patient.

Date PCR Diagnostic Result Symptoms and Test

18 March 2020 n/a Tiredness, headache, fever (38.3 ◦C)

19 March 2020 n/a Loss of taste and smell, sore throat, fever

20 March 2020 Positive Tiredness, limb weakness, subfebrility (37.5
◦C), Charlson Comorbidity index (CCI): 1

22 March 2020 n/a severe numbness in the limbs and tongue

30 March 2020 Positive asymptomatic

6 April 2020 Positive asymptomatic

16 April 2020 Negative asymptomatic

2.3. In Vitro Isolation

We used Vero E6 kidney cells (ATCC®CRL-1586™) for isolation which were previously
reported to be highly susceptible to SARS-CoV-2 infection [14]. The cells were maintained
in DMEM (Lonza, Switzerland) supplemented with 1% Penicillin-Streptomycin (Lonza,
Switzerland) and 10% Fetal Bovine Serum (Biosera, Nuaillé, France) at 37 ◦C with 5%
CO2 until 70% confluency in a T25 flask. For inoculation we used 200 µL of sample
completed with 800 µl of DMEM. Cells were incubated for one hour at 37 ◦C with 5%
CO2. After incubation, we replaced the inoculum with fresh DMEM (Lonza, Switzerland)
supplemented with 1% Penicillin-Streptomycin (Lonza, Switzerland) and 2% Fetal Bovine
Serum (Biosera, Nuaillé, France) and cells were monitored for cytopathogenic effect. All
manipulations of infective virus isolate were conducted at the BSL-4 laboratory of the
Szentágothai Research Centre, National Laboratory of Virology.
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Figure 1. Representation of the deletion and its position within the SARS-CoV-2 genome, along with raw NGS sequencing
data of the region of interest. The figure highlights the deleterious region and provides the quantitative ratio of the two
variants during co-infection. Wild-type variant refers to the non-deleterious, whilst RBD∆84 to the deletOrious variant.
Visualization was partially performed in Geneious Prime 2020 software.

2.4. In Silico Protein Analysis

The homology model of the RBD∆84 mutant was prepared with Prime [15], based on
the structure of the wild-type protein [16]. We have applied the knowledge-based modeling
algorithm of Prime and kept the best five resulting homology models for each monomer
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(chain E and chain F of PDB structure 6M17). Despite the length of the deleted loop,
modeling requires a relatively small modification of the conformation of the remaining
loop elements, since the two end-points (N460 and C488) are relatively close to each other.
The resulting models were refined with the Protein Preparation Wizard of Schrödinger,
by optimizing their H-bond networks (PROPKA) and subjecting them to a restrained
minimization (with heavy atom movements restricted to and RMSD value of 0.3 Å) [17].
Protein-protein contact surfaces were calculated with Schrödinger Maestro for the ACE2
residues whose distances from the RBD are at most 3Å (averages and standard deviations
were calculated for two wild-type structures and ten refined RBD∆84 homology models).
To explore the conformational space of the shortened loop of the RBD∆84 mutant, the best
homology model (according to the Prime energy) was subjected to 50 ns of equilibrium
MD simulations with Desmond [18] (five simulations with different initial velocities,
10 ns each), with large harmonic restraints (100 kcal/mol) on the positions of all backbone
atoms, except for the residues of the shortened loop (positions 455–491, nine residues in
total). The structure of the ACE2- RBD∆84 complex was placed in an orthorhombic box,
solvated in TIP3P water [19], and neutralized by adding sixteen sodium ions. The salt
concentration was adjusted to 0.15 M by the addition of further 95 sodium and 95 chloride
ions. The terminal residues of the proteins were capped with acetyl and N-methyl groups,
respectively. The system was equilibrated with the default protocol of Desmond, and
submitted to five independent, 10 ns-long production runs (with different initial velocities)
with the OPLS3 [20] force field, in the NPT ensemble at 310 K, using a Nosé-Hoover
thermostat [21,22] and a Martyna-Tobias-Klein barostat [23]. The trajectories were merged
and clustered with the affinity propagation algorithm [24], and the representative structure
of the largest cluster was included in Figure 2 as the average structure of the simulation.
Figure 2 was rendered with Pymol [25].
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Figure 2. Interface of the ACE2 receptor (light blue) with the SARS-CoV-2 Spike protein receptor-binding domain (tan),
visualized based on PDB structure 6M17. Amino acids that were identified as part of the three interaction segments are
included as sticks and highlighted in the three insets. In the modeled RBD∆84 mutant, an extended loop (amino acids
460–488, light red/salmon) is replaced by a compact turn (dark red, average structure of the MD simulation), removing the
C-terminal interaction segment (red inset) and resulting in a significantly smaller contact surface with the ACE2 receptor
(779 ± 31 Å2 for RBD∆84 vs. 921 ± 3 Å2 for the wild-type protein). This, in turn, should result in weakened ACE2 binding.
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3. Results
3.1. Sequence Analysis

A SARS-CoV-2 PCR positive sample from a 59 years old female patient was subjected
to Nanopore sequencing, using the ARTIC protocol as a part of a molecular epidemiological
surveillance program in Hungary. For the data analysis we used the ARTIC bioinformatic
pipeline [13]. 32,584 reads were mapped to the reference genome (Accesion number:
MN908947.3) which resulted in 469,5-fold mean coverage (min: 34, max: 1919) across the
genome. The generated consense sequence contained 5 mutations at position 241(C -> T),
3037(C -> T), 14,408(C -> T), 23,403(A -> G), 24,862(A -> G) across the genome and a 84 base
pair long deletion between position 22,941 and 23,024.

Amplicon number 76 of the ARTIC library preparation setup was affected by this
deletion so we filtered and extracted these reads. This deletion had 286 X coverage and
60.13% (172) of the reads contained the deletion while the remaining 39.87% (114) were
identical with the wild type reference genome, suggesting a co-infection with two variants.
Details are summarized in Figure 1.

3.2. In Vitro Isolation

Isolation efforts on VeroE6 cell line resulted with no success. We were unable to
establish an infectious isolate from the available samples of this strain.

3.3. Protein Modelling Results

We have used the online translator tool of ExPASy to translate the DNA sequence to
an amino acid sequence [26]. From the three possible solutions (starting the reading frame
from either the first, second, or third nucleotide), the third solution perfectly corresponds
to positions 461–487 of the amino acid sequence of the RBD (Uniprot entry P0DTC2) [27],
highlighted in bold:

NLKPFERDISTEIYQAGSTPCNGVEGFNC
However, since the reading frame starts from the third nucleotide, the deletion also

affects the two neighboring amino acids of the sequence (N460 and C488 coded by the
aat and tgt codons, respectively). Consequently, amino acids corresponding to a total of
87 base pairs are affected (see above, full sequence). The deletion leaves the residual DNA
sequence agt, to be translated into a serine residue. Therefore, the overall effect of the
RBD∆84 mutation is the replacement of the above 29 amino acid long sequence with a
single serine residue.

Next, we have checked the recently published structure of the Spike RBD-ACE2
complex for an assessment of the structural effects of this mutation [16]. Also, we have
produced homology models of the RBD∆84 mutant (based on the wild-type structure) for
a basis of comparison. To explore the conformational space of the shortened loop of the
RBD∆84 mutant, the best model was subjected to 50 ns of equilibrium MD simulations,
with restraints on the backbone atom positions of the rest of the complex. Figure 2 shows
the interface of SARS-CoV-2-RBD and ACE2, which entails the α1 helix of the ACE2
peptidase domain and an extended loop region of the RBD that includes the deleted
sequence. The RBD arches over the α1 helix in a bridge-like structure with three main
interaction segments [16]. The RBD∆84 mutation essentially removes one of the interacting
segments (as visualized by the average structure from the MD simulations in Figure 2),
resulting in a significantly smaller contact surface with the ACE2 receptor (779 ± 31 Å2 for
RBD∆84 vs. 921 ± 3 Å2 for the wild-type protein). This is in line with the weakened ACE2
binding, as proposed.

The RBD∆84 mutant lacks the residues Q474 and F486, forming key interactions in
the RBD-ACE2 complex [16]. Furthermore, a recent full single-point mutational scan of the
RBD [28] revealed that the ∆84 region contains a number of positions (L461, D467, Y473,
C480, N487 and C488) whose mutations significantly deteriorate ACE2 binding. Based
on these data it is reasonable to assert that the much larger perturbation observed in the
RBD∆84 mutant does have a deteriorating effect.
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4. Discussion

Viral genomic surveillance has several advantages during an outbreak situation from
direct assistance for public health decisions to the identification whether nucleotide changes
in the viral genome may affect diagnostic of therapeutic practices [7,29,30]. Regarding RNA
virus evolution, single nucleotide polymorphism and point mutations frequently occur.
In case of coronaviruses, the most significant evolutionary driving force is recombination,
which may result in insertions and deletions in the viral genome [4].

There is an increasing number of studies in association with the emergence of novel
mutations within the SARS-CoV-2 genome. Compared to reports about mutations with
amino-acid changes, there are few studies related to deleterious changes in the genome.
Interestingly, the conserved genes of ORF3a and ORF7a were found to be affected by
deletions. These genes regulate a wide range of functions during infection, such as ac-
tivation of chemokine production, RNS silencing suppression, NLRP3 inflammasome
activation, etc. [30–33]. Such deletion variants are hypothesized to manage milder disease
manifestation in patients, however, to support this theory extensive investigations are
necessary [34]. Other genomic regions were also reported with selective mutations, such as
the ORF8 [34,35] and an additional twelve deletion site was discovered apart from ORF8,
Spike and ORF7a [36].

Spike mutations are of special interest due to their possible role in the emergence
of variants with modified antigenicity. This altered antigenicity may bypass vaccine
effectiveness, monoclonal therapeutic options, and several others. A recent study revealed
a 0.75% prevalence for Spike deleterious variants by analyzing 146,795 genome sequences.
These deletions were mostly positioned within the N-terminal domain [37]. There are
several identified Spike mutants rapidly spreading, such as the D614G which is now
considered as a prevalent SARS-CoV-2 variant all around the world [38]. Sequential
rounds of evolution in the context of an outbreak situation with an emerging virus was
previously reported in case of SARS-CoV and during the West African Ebola outbreak. It is
considered as an adaptation to the new human host and may lead to significant increase in
the prevalence of certain variants [39,40].

Dominant mutations may drive the main scenario of an outbreak [7,10], but recessive
mutations are also present, although the identification of the latter is highly challenging.
The general understanding of SARS-CoV-2 evolution during the current pandemic situation
may reveal future scenarios and can facilitate therapeutic research directions and strategies.

We identified a major deletion in the RBD of the Spike protein and verified an altered
receptor binding capacity via in silico methods. The variant presented in this study lacks
a major part of the RBD along with several important AA positions for ACE2 binding.
We therefore hypothesized a weaker receptor binding capacity. The occurrence of such a
mutation in a natural infection and the recessive nature of this deleterious variant revealed
a scenario for evolutionary adaptation of the virus within a single host. The identification
of this strain may be of high interest in future studies, involving attenuated strains and
thereby it may facilitate therapeutic advances.

A limitation of our study is the lack of infectious isolate, since the virus isolation
efforts failed to retrive infectious isolate in vitro. It is possibly due to the condition of the
sample after multiple freeze-thaw cycles or even due to the lower specificity to VeroE6 cell
line of this particular deleterious strain. Reverse genetics may be used in future studies for
in vitro experiments with this deleterious variant to verify in silico data and to examine
in vitro characteristics [41].

5. Conclusions

The most important take-home message of our study is that we need more studies to
understand main genomic-evolutionary mechanisms of circulating SARS-CoV-2 viruses
regarding their most powerful evolutionary tool, the recombination. Sequencing efforts
therefore need to be focused on the surveillance of emerging recombinant variants, not
only tracking nucleotide changes in the genome. Here, we present a naturally occurring
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recessive RBD deleterious SARS-CoV-2 variant. Strains with altered receptor-binding
capacity may be of special interest in future studies in relation to vaccine development,
therapeutic options or simply for the general understanding of evolutionary mechanisms
regarding the COVID-19 pandemic.
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