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Abstract: Tomato (Solanum lycopersicum L.) is a model system for studying the molecular basis of
resistance in plants. The investigation of evolutionary dynamics of tomato resistance (R)-loci provides
unique opportunities for identifying factors that promote or constrain genome evolution. Nucleotide-
binding domain and leucine-rich repeat (NB-LRR) receptors belong to one of the most plastic and
diversified families. The vast amount of genomic data available for Solanaceae and wild tomato
relatives provides unprecedented insights into the patterns and mechanisms of evolution of NB-LRR
genes. Comparative analysis remarked a reshuffling of R-islands on chromosomes and a high degree
of adaptive diversification in key R-loci induced by species-specific pathogen pressure. Unveiling NB-
LRR natural variation in tomato and in other Solanaceae species offers the opportunity to effectively
exploit genetic diversity in genomic-driven breeding programs with the aim of identifying and
introducing new resistances in tomato cultivars. Within this motivating context, we reviewed the
repertoire of NB-LRR genes available for tomato improvement with a special focus on signatures of
adaptive processes. This issue is still relevant and not thoroughly investigated. We believe that the
discovery of mechanisms involved in the generation of a gene with new resistance functions will
bring great benefits to future breeding strategies.

Keywords: R-genes; gene clusters; NLR genes; evolutionary dynamics; genomic-driven breeding

1. Introduction

Tomato (Solanum lycopersicum L.) belongs to the large and diverse Solanaceae family,
also referred to as nightshade. Species in the Solanum section Lycopersicon originated in
the region that extends from Andean Highlands to the coast of Galapagos islands and
includes the domesticated tomato and its 12 closest wild relatives (S. arcanum, S. cheesmaniae,
S. chilense, S. chmielewskii, S. corneliomulleri, S. galapagense, S. habrochaites, S. huaylasense,
S. neorickii, S. pennellii, S. peruvianum and S. pimpinellifolium) [1].

The economical and nutritional importance places tomato among the most widely
studied crops, thus making it a model to understand the molecular processes related to
plant-pathogen interaction [2]. A wide range of biotic stresses impairs tomato yield, most of
which have been largely investigated to better understand which molecular mechanisms
are activated during diseases [3].

The tomato genome sequence has been released over eight years ago [4], totally
revolutionizing the pace of breeding activities. Scientists and breeders around the world
actively use the genome to investigate the tomato “sequence space” with different goals.
The first exhaustive annotation of tomato R-genes was released six years ago [5], and a
tomato R-gene functional map was published immediately after [6].

Wild tomato species are characterized by a wide genetic variability as they occupy
different habitats along a diversified climatic gradient [7]. By contrast, cultivated tomato
has faced several bottlenecks during its domestication history; this led to a drastic reduction
of its genetic diversity [8,9]. Therefore, it is necessary to recover the untapped variability
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of wild tomato relatives, as they represent the primary source of resistance for the culti-
vated tomato, being rich in genes conferring resistance to a large panel of pathogens [10].
The identification of suitable sources of new resistance is one of the most straightforward
strategies for obtaining pathogen-resistant tomato varieties. Therefore, the identification
and characterization of resistance (R)-genes in tomato wild relatives is definitely useful for
both classical and innovative breeding strategies.

As the amount of sequenced genomes increases, comparative genomics is becoming an
even more powerful method for identifying functionally important loci [11]. Comparative
approaches across Solanaceae species have proved particularly useful for gaining new
insights into the evolution and functional diversification of R-genes. Investigations on
R-gene families in other Solanaceae species (potato, pepper, and eggplant) have helped
to consolidate our knowledge on the processes that mediate disease resistance/tolerance
within Solanaceae and, more generally, within plants [12].

Basically, to defend themselves, plants have developed a complex defense system
to quickly recognize invading pathogens and transmit the message of attack [13,14].
The innate immunity system of plants has evolved in two recognition layers (PTI: PAMP
(pathogen-associated molecular pattern)-triggered immunity and ETI: effector-triggered
immunity). Plants’ own numerous non-self-recognition receptors are able to identify enemy
molecules and induce a set of pathways and signaling cascades to repel attacks [15,16].
In ETI, immunity is mainly activated through the recognition of pathogen effectors via
plant disease R-proteins. The major class of R-genes is represented by members of the
nucleotide-binding site and leucine-rich repeat (NB-LRR or NLR) gene family [17]. The ac-
tivation of NB-LRRs, during ETI response, induces programmed cell death, known as
hypersensitive response (HR) [18,19]. Historically, NB-LRRs are divided into two sub-
classes, namely TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) [20]. In addition to their role
in pathogen recognition, some NB-LRR proteins contribute to signal transduction and/or
amplification. Recent studies described a novel NB-LRR subclass, tagged as RPW8-NB-
LRR (RNL, also known as helpers), whose protein members carry the RPW8 (resistance
to powdery mildew 8) domain at the N terminal. RNLs mediate the immune response by
interacting with NB-LRR “sensor” proteins involved in the detection of pathogens [21].
Additional NB-LRR helpers, which belong to a separate CNL subclass and exhibit high
sequence similarity with NRC1 (NB-LRR protein required for HR-associated cell death 1),
are required for cell death mediated by NB-LRR sensors [22]. NB-LRR helpers turned out
to be essential in tomato, not only to support the activity of NB-LRR sensors, but also to
counteract plant pathogens that evolve quickly, thus increasing the robustness of the innate
immune system [23,24].

In this work, we present the tomato model system for studying the molecular basis of
immunity activation in plant. The tomato NB-LRR repertoire was revised in the light of all
the adaptive processes that have shaped it. The evolutionary dynamics of tomato R-loci
were reviewed to reveal the main forces that shaped genome evolution. The information
on R-genes gathered so far in major Solanaceae crops and wild tomato relatives set the
stage to develop innovative genomic-driven breeding strategies, aimed to furnish novel
resistance sources.

2. The Genome-Wide Arrangement of Tomato NB-LRR Genes

NB-LRR genes belong to a protein family with a very variable number of members
among plants, ranging from about 50 to over 1000 [25]. A total of 294 NB-LRR genes
were automatically identified and characterized by Andolfo et al. [5] and later revisited
by Chandraprakash and Thomas [26] starting from the gene annotation released by the
international Tomato Annotation Group (iTAG). However, that process failed to iden-
tify few genes, so the tomato NB-LRR complement was fully re-annotate by using the
RenSeq method [3].

S. lycopersicum harbors approximately 320 NB-LRR-encoding genes arranged on all
12 chromosomes, whose genome-wide distribution is not random [3]. The largest number
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of NB-LRR genes is on chromosomes 4, 5, and 11 (~45%), whilst the smallest number
is on chromosome 3 (9 genes), as found in other Solanaceae [12]. Some chromosomes
predominantly host members of specific subclasses. Chromosomes 4 and 5 are particularly
rich in CNLs. The largest number of TNLs (43%) is on chromosome 1, while chromosomes
3, 6, and 10 do not have them. Full-length RNL genes are only on chromosomes 2 and 4 [25],
and are orthologous of the Arabidopsis thaliana NRG1 (N requirement gene 1) and Nicotiana
benthamiana ADR1 (Activated Disease Resistance 1) R-gene helpers [27,28]; while tomato
NRC1-homologs were located on chromosomes 2 and 10 [22].

The tomato NB-LRR repertoire includes also about 100 proteins that lack the full
complement of domains that characterize genes within the NB-LRR subclasses. These in-
clude 14 CC-NB (CN) and three TIR-NBS (TN) proteins that have no LRR domain [3].
The majority of incomplete NB-LRR genes (~80%) only own a single domain and their
function is still unknown, although it has been speculated they could act as adaptors or
regulators of NB-LRR proteins with proven resistance activity [29]. In tomato the number
of incomplete NB-LRR genes with evidence of expression is higher than observed in other
plant species [3].

Generally, NB-LRR-encoding genes are clustered, as result of both segmental and
tandem duplications [12,16]. Over 65% of tomato NB-LRRs are gathered in small genomic
regions spanning 200 kb or less. One third of NB-LRRs (107 genes) are concentrated in
20 clusters [12]. This specific organization reflects genomic hotspots for diversification.
The largest tomato cluster harbors 14 CNL genes in a region of ~110-kb in size on the short
arm of chromosome 4. All members of this cluster share high sequence similarity with the
wild potato derived R-genes R2, Rpi-blb3, and Rpi-abpt [30]. It is likely that functional
R-genes, which have not yet been identified, are in this rapidly evolving cluster.

In tomato, several NB-LRR clusters comprised genes encoding proteins with high
similarity to known and well-characterized R-genes [5]. Deciphering the evolutionary
history of a gene cluster is essential not only to discover the functional specificity of each
cluster-related allele, but also to provide insights into genome diversification by species.
The increasing amount of cloned R-genes (Table 1) over the last two decades paved the
way for the investigation of the evolutionary dynamics that generate novel resistance,
which arise to match the changing patterns of pathogen virulence [31].

Tomato NB-LRR loci are preferentially located in recombination hotspots, where mei-
otic crossovers are more frequent. Interestingly, all tomato cloned NB-LRR resistance genes,
but not Tm22 and Prf conferring a fairly durable resistance [32,33], lie in regions exhibiting
high/medium rates of recombination. The choice to retain the resistance loci into hot or
cold recombination regions may reflect a different evolutionary state of pathogen-plant in-
teractions. Recombination may be favorable in gene families controlling resistance to highly
variable pathogens but unfavorable in families that control resistance to pathogens with
low genetic plasticity [34]. The knowledge on the potential effects of crossover frequency
on the tomato genome is prerequisite to predict R-gene haplotypes emerging following
hybridization events.

The recombination density can increase the drift of genes in large clusters, such as
I2 and Mi, which are in adaptive evolutionary state and have shown a frequency of
recombination that is twice the average [35]. These two super-clusters, which include the
R-genes Mi and I-2 [36,37], conferring resistance to Meloidogyne incognita and Fusarium
oxysporum f. sp. Lycopersici respectively, have been extensively studied. The I2 super-
cluster comprises seven NB-LRR genes gathered in a region of 390 kb on chromosome
11. The I-2 homolog genes were grouped in two sub-clusters of 54 kb and 28 kb in size.
Similarly, six CNLs are in the Mi super-cluster, which is split into two sub-groups on
chromosome 6. A region of approximately 400 kb was involved in the intra-chromosomal
duplications and generated the Mi super-cluster [5]. In several plant genomes, the NB-LRR-
encoding genes have been amplified, thus resulting in species-specific sub-families [16].
The diversification of tomato R-gene arsenal was mediated by duplication events of distinct
NB-LRR paralogs (Figure 1). Forty-five out of ~320 NB-LRR sequences in tomato are more
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similar to each other than to any other non-Solanaceae sequences. Indeed, large gene
expansions (more than 15 copies), involving unknown NB-LRRs—as well as Prf /R1,
Hero/Mi 1.2, Gro1-4/N members—were observed.

Table 1. List of cloned NB-LRR resistance genes in tomato and its wild relatives. Gene name, protein class, chromosome
number and source of resistance for each R-gene were reported.

Gene Name Protein Class Chromosome Pathogen/Insect Source of Resistance Reference

Bs4 TNL 5 Xanthomonas campestris pv. vesicatoria S. lycopersicum Ballvora et al. [38]
Hero CNL 4 Globodera rostochiensis S. pimpinellifolium Ernst et al. [39]
I-2 CNL 11 Fusarium oxysporum f. sp. Lycopersici S. pimpinellifolium Simons et al. [37]

Mi-1.2 CNL 6 Melaydogyne spp.; Macrosiphum euphorbiae;
Bemisia tabaci S. peruvianum Rossi et al. [36]

Mahfouze et al. [40]
Mi-9 CNL 6 Meloidogyne spp. S. arcanum Jablonska et al. [41]
Prf CNL 5 Pseudomonas syringae S. pimpinellifolium Salmeron et al. [42]

Ph-3 CNL 9 Phitophthora infestans S. pimpinellifolium Zhang et al. [43]
Sw-5 CNL 9 Tomato spotted wilt virus S. peruvianum Brommonschenkel et al. [44]
Tm-1 CNL 2 Tomato mosaic virus S. habrochaites Ishibashi et al. [45]
Tm-2 CNL 9 Tobacco mosaic virus S. habrochaites Lanfermeijer et al. [46]
Tm-2a CNL 9 Tobacco mosaic virus S. peruvianum Lanfermeijer et al. [47]
Ty 2 CNL 11 Tomato leaf curly yellow virus S. habrochaites Yang et al. [48]
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Figure 1. The tomato defense arsenal. (A) The full R-gene repertoire was displayed with respect to
the NB-LRR subclasses (TNL in blue; CNL in orange and RNL in green). The total number of CNLs,
TNLs, and RNLs was shown in brackets. (B) The NB-LRR paralogs identified by OrthoMCL with
default settings were grouped (annular segments) and the amount of members in each group was
specified. (C) For each group of paralogs, the well-characterized R-gene homolog was indicated
(Table S1), when available.
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3. Resistance Sources in Wild Tomato Relatives

Wild tomato species are characterized by a wide genetic variability and phenotypic
diversity. As they harbor genes involved in resistance to diseases and tolerance to abiotic
stresses, they have long been used as donor of genes/alleles, thus playing a key role
in the improvement of cultivated varieties. Indeed, domestication, early breeding and
artificial selection led to the loss of some important features in cultivated tomato, including
resistances to diseases and pests. Exploring natural biodiversity in wild tomato relatives is
key to discovering new genetic sources of resistance.

The inclination of plant species to survive over evolutionary time depends on their
ability to usefully generate and maintain diversity at resistance loci. Over the past decades,
a continue effort to identify novel resistance genes, including NB-LRRs, was conducted in
wild tomato species from diverse habitats. Comparative genomics revealed the huge poten-
tial of wild R-gene diversity. NB-LRR genes in S. pimpinellifolium, S. pennellii, and S. chilense
are mainly located in S. lycopersicum corresponding loci. However, gene repertories reveal
important amplification and contraction in specific NB-LRR subfamilies [49–51]. Natural
variation that occurs in several wild tomato species show that the evolutionary history
is characterized by lineage sorting of the polymorphisms and that the generation of new
variants events have shaped R-gene diversity after speciation. Patterns of evolution from
wild to cultivated species were largely unexplored, but useful insights have recently been
gained from genomic studies [10,52,53]. Nucleotide variation in specific positions have dra-
matic effects on the intra- or inter-molecular activity of R-proteins and, hence, in resistance
response to pathogens and pests [54]. In addition, signatures of adaptation to different
habitats are more marked in sensor-NBS-LRRs than in helper genes [10]. The centrality
of NB-LRRs in gene networks does not impair their evolution, and new mutations in key
genes (hubs) of the network are important for R-gene adaptation during colonization of
different habitats. Recently, NB-LRR genes of 15 wild tomato accessions belonging to
5 species (S. cheesmaniae, S. chmielewskii, S. galapagense, S. neorickii and S. pimpinellifolium)
were identified by combining RenSeq with single-molecule real time (SMRT) sequenc-
ing [55]. Seong et al. [55] reported that the amount of NB-LRR genes ranged from 332 to
264, in S. galapagense and S. neorickii respectively. Comparative genomic analysis revealed
how evolution has reshaped R-gene clusters in close wild tomato relatives. The large
helper-sensor networks have been shown to be one of the major drivers of NB-LRR evo-
lution in tomato, as they are highly variable in number in different wild tomato species
and display changing evolutionary patterns determined by the peculiar interaction with
pathogens [55]. All these findings enhance our understanding of the dynamic evolution of
NB-LRRs and provide insights and a solid foundation for future breeding and molecular
engineering for disease resistance.

4. Evolution of R-Type Defense Genes within Solanaceae

Distinct patterns of evolution shaped the repertoire of NB-LRR-encoding genes of
Solanaceae species [56]. A wide variation in the arrangement of protein domains was
found [11]. A ‘continuous expansion’ pattern was observed in potato and an overall ‘shrink-
ing’ pattern in pepper. By contrast, tomato NB-LRR-encoding genes exhibit an ‘expansion
followed by contraction’ pattern, as it lost many genes after the divergence of potato and
tomato. The evolutionary history of NB-LRR loci revealed several species-specific gene
expansions in Solanaceae. The comparison between tomato, eggplant and pepper pro-
teomes evidenced orthologous proteins across the three cultivated Solanaceae species [12].
An expansion of the Mi1.2 locus (R-gene against Meloidogyne incognita) and of I2 locus
(resistance to Fusarium oxysporum f. sp. Lycopersici) was identified in four Solanaceae [11].
Gene expansions, involving genes homologous to Bs2 (resistance to Xanthomonas campestris
pv. vescicatoria in pepper), Tm22 and Sw5 (resistance to ToMV and TSWV in tomato) and R2
(resistance to Phytophthora infestans in potato), were found in pepper, potato and tomato
respectively. An increasing number of Ry1 and N members was observed in eggplant
(chromosomes 5 and 11), and potato (chromosome 9) [11]. Furthermore, some loci were
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scattered on different chromosomes in other species [57]. The Gpa2 locus on tomato
chromosome 12 is orthologous to two loci on pepper chromosome 9. Clusters on tomato
chromosome 9, including the genes Sw5 and Tm22, have correspondence to R-islands on
pepper chromosome 3 [58,59]. Syntenic regions in eggplant and pepper are larger than the
corresponding ones in tomato, possibly due to the difference in genome size of the species
under investigation [4,11,60].

Comparative analysis among selected NB-LRR loci showed a large number of genome
rearrangements (gene duplications/losses, genome reshuffling, and transposable element
insertions). In particular, pepper showed a massive insertion of transposable elements in
NB-LRR-encoding genes located on specific chromosomes [61]. R-gene architecture seems
to be modified by the interplay of large-scale gene organization, that determines global
conservation in the order of loci, and extensive local genome rearrangements mediated
by tandem duplication, transposons, and other reshuffling elements [62]. Extant local
arrangements in R-loci suggest that adaptive diversification is induced by species-specific
pathogen pressure. In general, larger clusters are generated to promote the diversification
of crucial resistance loci in certain species [12].

Solanaceae genome architecture has evolved by preserving highly active R-islands,
where local genomic variability is regulated in a species-specific manner. Indeed, recombi-
nation, chromosome breaking points, and other elements (e.g., transposons) that locally
promote R-block rearrangement facilitated R-gene diversification [11]. NB-LRR copy num-
ber variation likely results from the need to maintain a diverse array of genes, that has been
generated following events of duplication and divergence, and to retain advantageous
resistance specificities. The quality and intensity of pathogen virulence together with the
genome plasticity of plants define the direction and magnitude of lineage-specific R-gene
expansions. From a genome-wide perspective, the parallel evolution of species within the
Solanaceae family allowed to design species-specific defense arsenals by combining the
retention of strategic duplications occurred millions of years ago [63] with high dynamic
selection at given R-loci.

5. Genomic-Driven Breeding for Developing New Resistant Tomato Varieties

The growing body of knowledge on the Solanaceae genomes will undoubtedly ex-
pedite the transfer of beneficial traits into tomato (Figure 2). A large number of R genes
(including NB-LRR) have been introgressed from tomato wild relatives [64–66]. For exam-
ple, sources of resistance against root-knot nematodes, aphids, whiteflies, viruses (TMV,
TYLC, TSWV), and fungi were found in S. arcanum, S. habrochaites, S. pennelli and S. peru-
vianum, (Table 1). In addition, several genes derived for other Solanaceae species extended
the tomato gene pool via transformation [67–69].

Traditional breeding based on “introgressomics” [70] greatly promoted the transfer of
wild resistance genes in tomato. After the selection of the most eligible wild species and
its hybridization with the cultivated species, the resistance traits are introgressed into the
cultivated background after several generations of backcrossing. However, linkage drag
(i.e., the undesirable effects of genes linked to the gene to be introgressed) is often associated
with traditional introgression. As an example, the S. peruvianum introgression carrying the
tomato mosaic virus (ToMV) resistance gene Tm22 can cover up to 79% of chromosome 9 in
modern tomato varieties [71]. Therefore, it is highly desirable to establish reliable and more
and more precise methods that can broaden genetic diversity through the introgression of
alleles from wild relatives. The generation of new combinations of resistance alleles should
be assisted by genomic-driven tomato breeding to minimize unwanted traits.

Genome editing technologies can make the “rewilding” process more easy [72], as they
allow for the precise introduction of desirable genes/alleles from related wild relatives
into elite cultivars (Figure 2). Indeed, plant disease resistance can be enhanced by targeting
different genes of the plant defense machinery [73]. To edit NB-LRR genes it would be
necessary modifying single nucleotides via “base-editing” and/or via homology-directed
repair (HDR)-mediated base substitution [74]. In this case, homologous sequences serve as
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donors to repair site-specific double-strand DNA breaks caused by site-directed nucleases.
Indeed, it is known that a few amino acid binding sites in different domains of NB-LRR
proteins are required for pathogen recognition. Knowledge on the pathogen recognition
sites of a particular NB-LRR receptor can be used to improve homologous NB-LRR in
other accessions/species. As an example, Giannakopoulou et al. [75] assessed the degree
of response of I2 random mutants to the Phytophthora infestans effector AVR3a. The mutant
I2(I141N) conferred partial resistance to P. infestans and had a wider response spectrum
to F. oxysporum f. sp. lycopersici effectors. Similarly, Segretin et al. [76] performed a
gain-of-function random mutagenesis screen of the potato NB-LRR immune receptor R3a
expanding its response to the P. infestans effector AVR3a. Remarkably, they found that the
N336Y mutation conferred response also to the effector protein AVR3a4 from P. capsici.

Figure 2. Genomic-driven breeding workflow for disease resistance. The identification, annotation,
and characterization of NB-LRR genes are essential to investigate the extent of variability and
compare the defense arsenals typical of each tomato/Solanaceae species. Information on gene-
gene interaction provides additional evidence on the role and function of NB-LRRs. The different
analytical approaches based on the most cutting-edge technologies must be combined to gain valuable
knowledge on R-genes. The expanded knowledgebase is then used to apply the most appropriate
genome-driven breeding technique to improve tomato disease resistance.
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To the best of our knowledge, however, no ‘base editing’ experiments or HDR-mediated
base substitution has been attempted yet for NB-LRR genes in tomato or other Solanaceae.
Genome editing technologies can also be used to edit or insert specific cis-regulatory elements
into promoter regions, alter the epigenetic status [77] and to target miRNAs controlling the
expression of NB-LRR genes with both cis- and trans-regulatory effects [78,79]. Indeed, it was
observed that the silencing of miR482b in tomato plants promote the expression of several
NBS-LRR receptors, thus enhancing resistance to P. infestans [80]. Transcriptional suppression
may act as buffer for R-genes, thus reducing constraints on R-gene sequences [81].

Recent studies have shown that immune responses are mediated by complex and
knotty networks of genes [23]. In some cases, the involvement of additional loci can make
difficult the transfer of resistance traits in a new genetic background. For an optimal
response to pathogens, it would therefore be appropriate to preserve almost entirely the
wild NB-LRR network so that the new developed varieties will have greater ability to react
to stresses. As a consequence, a viable and alternative solution for designing resistant
tomato varieties is the de novo domestication of wild species [82,83]. With a particular focus
on the concept of signaling by cooperative assembly formation, it would be desirable to
exploit the wild genetic background by going to edit only key domestication/improvement
genes [83–85]. Indeed, the expansion of the pathogen sensor functionality can require
to bring together a large number of actors that can be activated in a proximity-based
manner resulting in a higher-magnitude signal [86]. Understanding the evolution, assembly,
and regulation of tomato immune receptor circuits is crucial to delivering fine-tuned tomato
resistant varieties.

6. Remarks

NB-LRR natural variation in tomato wild relatives and in other Solanaceae species
offers the opportunity to effectively exploit genetic diversity with the aim of developing
new resistant cultivars. Knowledge on the NB-LRR gene repertoire, chromosome organiza-
tion, spatio–temporal regulation and mechanisms involved in the birth of a gene with new
resistance functions will great benefit future breeding strategies. Genomic recombination
data can better direct the use of resistance genes in crossing schemes even though it is
still difficult to combine tightly linked resistance genes from different sources. Genome
editing technologies can be crucial for determining the functional significance of cataloged
elements and for transferring desirable genes/alleles from wild tomato relatives into cul-
tivated varieties. These gene editing technologies are A viable and alternative solution
for designing resistant tomato varieties with an improved ability to react to stresses is
re-modulate NB-LRR networks.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
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83. Zsögön, A.; Čermák, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De novo
domestication of wild tomato using genome editing. Nat. Biotechnol. 2018, 36, 1211–1216. [CrossRef] [PubMed]

84. Courtier-Orgogozo, V.; Martin, A. The coding loci of evolution and domestication: Current knowledge and implications for
bio-inspired genome editing. J. Exp. Biol. 2020, 223, jeb208934. [CrossRef]

85. Lin, T.; Zhu, G.; Zhang, J.; Xu, X.; Yu, Q.; Zheng, Z.; Zhang, Z.; Lun, Y.; Li, S.; Wang, X.; et al. Genomic analyses provide insights
into the history of tomato breeding. Nat. Genet. 2014, 46, 1220–1226. [CrossRef]

86. Burdett, H.; Bentham, A.R.; Williams, S.J.; Dodds, P.N.; Anderson, P.A.; Banfield, M.J.; Kobe, B. The Plant “Resistosome”:
Structural Insights into Immune Signaling. Cell Host Microbe 2019, 26, 193–201. [CrossRef] [PubMed]

http://doi.org/10.1093/dnares/dsy025
http://doi.org/10.1038/s41438-018-0017-2
http://doi.org/10.1093/gbe/evv225
http://www.ncbi.nlm.nih.gov/pubmed/26590211
http://doi.org/10.1016/j.molp.2019.03.016
http://www.ncbi.nlm.nih.gov/pubmed/30999078
http://doi.org/10.1038/nbt.4272
http://www.ncbi.nlm.nih.gov/pubmed/30272678
http://doi.org/10.1242/jeb.208934
http://doi.org/10.1038/ng.3117
http://doi.org/10.1016/j.chom.2019.07.020
http://www.ncbi.nlm.nih.gov/pubmed/31415752

	Introduction 
	The Genome-Wide Arrangement of Tomato NB-LRR Genes 
	Resistance Sources in Wild Tomato Relatives 
	Evolution of R-Type Defense Genes within Solanaceae 
	Genomic-Driven Breeding for Developing New Resistant Tomato Varieties 
	Remarks 
	References

