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Abstract: Antimicrobial peptides (AMPs) are natural peptides possessing antimicrobial activities.
These peptides are important components of the innate immune system. They are found in various
organisms. AMP screening and identification by experimental techniques are laborious and time-
consuming tasks. Alternatively, computational methods based on machine learning have been
developed to screen potential AMP candidates prior to experimental verification. Although various
AMP prediction programs are available, there is still a need for improvement to reduce false positives
(FPs) and to increase the predictive accuracy. In this work, several well-known single and ensemble
machine learning approaches have been explored and evaluated based on balanced training datasets
and two large testing datasets. We have demonstrated that the developed program with various
predictive models has high performance in differentiating between AMPs and non-AMPs. Thus,
we describe the development of a program for the prediction and recognition of AMPs using
MaxProbVote, which is an ensemble model. Moreover, to increase prediction efficiency, the ensemble
model was integrated with a new hybrid feature based on logistic regression. The ensemble model
integrated with the hybrid feature can effectively increase the prediction sensitivity of the developed
program called Ensemble-AMPPred, resulting in overall improvements in terms of both sensitivity
and specificity compared to those of currently available programs.

Keywords: antimicrobial peptides; AMP prediction; heterogeneous ensemble machine learning;
MaxProbVote; logistic regression

1. Introduction

Antimicrobial peptides (AMPs), a group of natural peptides, have a significant role in
the immune system. There are various types of peptides with antimicrobial activities, such
as antibacterial, antifungal, antiviral, and anticancer peptides. These peptides have been
found to be effective against disease-causing pathogens. Due to the increase in antibiotic
resistance becoming a major global health problem, novel anti-infective therapies are
needed [1,2]. Basically, AMPs have abilities to kill microbes and other pathogens but do not
cause drug resistance in bacteria and have received great attention as a promising/potential
alternative to conventional antibiotics. [2–4] Action mechanisms of AMPs include various
mechanisms, such as “barrel-stave”, “carpet”, or “toroidal-pore” mechanisms, to disrupt
the cell membrane or intracellular functions of microbes. AMP characteristics, including
amino acid composition, amphipathic structure, cationic charge, and size contribute in
facilitating AMP interaction and the insertion into membranes of pathogens resulting in
pore forming and membrane disruption [2,5,6]. AMPs can also stimulate the immune
system to work together efficiently [2]. Therefore, research studies on AMPs have received
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much attention and have been widely investigated for use as another option, as a potential
alternative or in conjunction with current antibiotic therapeutics [7].

Finding new AMPs from various organisms is currently receiving significant attention.
However, large-scale identification through wet lab experiments is costly, time consuming,
and resource intensive [1,8]. Therefore, developing a computation program for screening
AMPs with high accuracy and high effectiveness can help such complicated tasks. An
efficient computational machine learning predictive tool is required to screen antimicrobial
candidate sequences prior to in vitro experimentation [1,7,9]. Several antimicrobial predic-
tion tools have been designed and developed, as summarized in Table 1. These diverse
prediction tools have been developed using different data features and different machine
learning methods. Therefore, their performances differ depending on the nature of the
training technique and data features. Most existing methods use single classifier models
such as support vector machine (SVM), discriminant analysis, fuzzy K-nearest neighbors,
and deep learning. Some methods use homologous ensemble, random forests, which is
a committee of decision tree models. However, several other types of machine learning
techniques and heterogeneous ensemble techniques have not been applied in this AMPs
prediction problem. Using different machine learning techniques may provide a prediction
result of AMP candidates that remain to be discovered. Therefore, other types of machine
learning and heterogeneous ensembles techniques should be explored.

Comparison of the performances of the available AMP prediction tools is difficult
because different testing datasets are used for benchmarking these predictors [17]. Based
on our preliminary study, we collected a benchmark AMP dataset S [13] composed of
920 AMPs and 920 non-AMPs and used it in testing current existing AMP prediction
programs. From this preliminary review, we found that the false predictive answers of each
program are different. This suggests that there is a different distribution of unpredictable
answers due to the use of different models and features. Therefore, each program has gaps
that should be considered for improvement, especially reducing false positives (FPs) and
increasing predictive accuracy, in terms of both specificity and sensitivity. According to the
issues mentioned above, we aim to (1) integrate different learning models using ensemble
learning techniques to reduce FPs and to increase predictive accuracy and (2) use diverse
informative features that contain sufficient discrimination information and are strongly
related to AMP sequences.

Ensemble learning techniques are able to increase the accuracy and reduce the FPs
of the prediction. The combination of predictions by different algorithms using different
methods can reduce errors in bias or variance or otherwise reduce both bias and variance
values found in a single algorithm through the voting of diverse algorithms. Moreover,
for problems with complex decision boundaries, an appropriate combination of decision
boundaries of various single models can learn the complex boundary of the problem [18].
The popular ensemble methods for incorporating individual classification models are
bagging and boosting. There are different training procedures as follows. The bagging or
bootstrap aggregating method [19] builds different classifiers from random bootstrapping
of different training subsets. Therefore, individual models are different from each other,
then reducing variance errors. Boosting [20] builds classifier models in incrementally
sequential/linear combinations by adjusting the weight to improve the prediction values
of the previous model and therefore can reduce the model bias [21].

Ensemble learning combines multiple points of view from different classifiers on the
same problem domain to obtain a more accurate and robust (stable) prediction. In addition,
this makes the ensemble model more generalizable with new data [22]. It also helps in
reducing the overfitting problem found in single classification models [23], which makes it
impossible to correctly predict new data. Moreover, the voting of heterogeneous methods
can alleviate conflicting predictions found in single models.
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Table 1. Summary of existing antimicrobial predictions using various machine learning techniques and different features.

Program Name Techniques Features References

AMPer Random Forests Profile hidden Markov model (HMM) score [10]

CAMP-SVM Support Vector Machine
Sequence composition, physicochemical

properties, and structural characteristics of
amino acids

[11]

CAMP-RF Random Forests
Sequence composition, physicochemical

properties, and structural characteristics of
amino acids

[11]

CAMP-DA Discriminant Analysis
Sequence composition, physicochemical

properties, and structural characteristics of
amino acids

[11]

AntiBP Support Vector Machine N-terminal and C-terminal residues [8]

AntiBP2 Support Vector Machine N-terminal and C-terminal residues [12]

AMPA Antimicrobial propensity
scale threshold Antimicrobial index based on IC50 value [3]

iAMP-2 L fuzzy K-nearest neighbor
Pseudo amino acid composition (PseAAC)

incorporating five
physicochemical properties

[13]

DBAASP Cutoff discriminator
Physicochemical characteristics of peptides:
hydrophobic moment, charge density and

depth-dependent potential
[14]

MLAMP ML-SMOTE PseAAC with the gray model (GM) [15]

iAMPpred Support Vector Machine

PseAAC, normalized amino acid
compositions, structural features (α-helix,
β-sheet and turn structure propensity),

isoelectric point, hydrophobicity,
and net charge

[9]

AMPscanner Deep Learning Numerical matrix from deep neural network
(DNN) [16]

The factors of a prediction method are a composite of good unbiased training data, a
discriminative feature subset, and a suitable learning algorithm. To make the algorithm
capable of learning patterns and distinguishing AMPs from other sequences, feature
extraction, feature engineering, and feature selection became an important part of finding
good representative features or informative features that can capture AMP patterns and
increase the efficiency of predictions.

In this work, AMP prediction models based on ensemble methods, such as random
forest (RF), max probability voting (MaxProbVote), majority voting, adaptive boosting
(AdaBoost), and extreme gradient boosting (XGBoost), were built. In addition, we also
compared various single models (support vector machine (SVM), naïve Bayes, logistic
regression (LR), decision tree, multilayer perceptron (MLP), and K-nearest neighbor (KNN)).
We collected and extracted various informative features related to AMP characteristics.
The ability to train models relied substantially on a good representation of features that can
detect the pattern of AMPs. Therefore, the extraction of data characteristics into data vectors
was performed using a variety of 517 peptide features. Later, in addition to 517 features,
we included a feature engineering process to explore the characteristics of AMPs and
constructed a hybrid feature that combines four single preselected features based on the
logistic regression equation. We observed that with the hybrid features integrated into
the ensemble models, the sensitivity was between 93.39 and 97.51% for testing dataset 1,
and the area under the receiver operating characteristic (ROC) curve (AUC) improved to
between 0.917 and 0.946.
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2. Materials and Methods
2.1. Workflow of Ensemble-AMPPred

The proposed predictive program was designed and built, as shown in Figure 1.
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2.2. Dataset Preparation

Data collection used in training and testing of models is shown in Figure 2.

1. AMP data were collected from 15 public bioactive peptide databases, as listed in
Table 2. Only peptides that have description-matched antimicrobial activities were
selected. Peptide sequences with lengths <10 amino acids were discarded. To reduce
data redundancy, we applied the Cluster Database at High Identity with Tolerance
(CD-HIT) program [24] with threshold of 0.9 (90% sequence similarity). A total
of 13,434 peptides were used as positive sequence data. Notably, lower sequence
similarity thresholds (less than 50%) might reduce the sequence homology bias and
could improve the model reliability [25]. Since AMPs are highly heterogeneous
substances and there are likely various novel subtypes of AMPs that have not been
discovered, using a threshold of 0.9 is applicable to identifying a novel AMP sequence.

2. Currently, there is no database of experimentally verified non-AMP available. There-
fore, we build negative data using the approach described in [13,16]. Negative data
or non-AMP data were collected from the UniProt [26] database (February 2020)
by choosing only proteins that do not contain functional information related to an-
timicrobial activity and do not have a secretory signal peptide position. The basic
local alignment search tool (BLAST) was used to filter out AMP matches. Peptide
sequences with lengths <10 amino acids were discarded. Then, the in silico enzymatic
digestion simulation [27] was performed to digest polypeptides into digested peptide
sequences. Then, the CD-HIT program [24] was used to remove peptide sequences
with >25% identity. Therefore, a total of 37,595 peptides were designated as negative
sequence data.

3. Balanced training data were created by proportionate stratified random sampling to
select peptide sequences to represent the positive and negative data. The stratified
sampling was conducted by similarity clustering of sequence data into homogenous
strata based on the CD-HIT clustering tool. The proportional stratified random
sampling was performed with the following steps. (i) The sequences were clustered
by using CD-HIT with a similarity threshold of 0.3. (ii) Representative sequences were
selected from each cluster to use as training data, while the other remaining sequences
that were not representative of the cluster will be used as testing data (results are
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shown in Supplementary File S1 the representative sequences are denoted with the *
symbol at the end of the line; the non-representative sequences are displayed with
the percentage of sequence similarity to the representative sequence of that cluster).
We balanced the number of representative sequences based on the cluster size, as
shown in Figure 3. Note that there is no testing sequence presented in the cluster
with one sequence member. For some clusters that contain only 1 sequence, the
sequence in that cluster will be used as a training set, and the testing sequence is not
presented in that cluster. A summary of the sequence similarities between training
and testing sequences in all clusters is presented in Supplementary File S2. The
sequence similarity between training and testing sequences falls between 30% and
89.47%, with an average of 47.29%. Finally, the training data consists of 1800 peptide
sequences of the AMP dataset and 1800 sequences of the non-AMP dataset to make
an evenly balanced training dataset in order to reduce the likelihood of generating a
predictive model biased toward the majority class.

4. Two testing datasets (testing dataset 1 and testing dataset 2) were created. The first set
of testing data was the remaining sequences of both positive data and negative data
after training data preparation. Therefore, the first testing dataset consists of 11,634
positive sequence data or AMPs and 35,795 negative sequence data or non-AMPs. The
second set of testing data was the benchmark dataset S from published works [13,16].
This dataset can be downloaded from the websites ([28,29]).

5. Sequences having less than 10 amino acids were removed from further analysis.
The benchmark dataset S1 contains 1461 AMPs (classified into five functional types:
antibacterial peptides, anticancer/tumor peptides, antifungal peptides, anti-HIV
peptides, and antiviral peptides) and 2404 non-AMPs, and the dataset S2 contains 917
AMP sequences and 828 non-AMP sequences.
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Table 2. Public bioactive databases.

Database Name Reference Biological Function Last Updated

The Antimicrobial Peptide Database (APD) [30] Antimicrobial 2020

Database Dedicated to Bacteriocin (BACTIBASE) [31] Antibacterial May 2019

Prediction of Bacteriocins In
Prokaryotes (BAGEL3) [32] Antibacterial Jan 2019

Collection of Antimicrobial Peptides (CAMP) [33] Antimicrobial Apr 2019

Data repository of antimicrobial
peptides (DRAMP) [34] Antimicrobial Sep 2020

Defensins Knowledgebase [35] Defensin, antimicrobial Jun 2019

Endogenous Regulatory
OligoPeptide knowledgebase [36] Neuropeptide, Antimicrobial Dec 2019

The Shrimp Antimicrobial Peptide Penaeidin
Database (PenBase) [37] Antimicrobial Jul 2008 (Not available now)

A Database Linking Antimicrobial
Peptides (LAMP) [38] Antimicrobial Dec 2016

A Database Dedicated to Antimicrobial Plant
Peptides (PhytAMP) [39] Antimicrobial Jan 2012

Recombinantly produced Antimicrobial Peptides
Database (RAPD) [40] Antimicrobial Mar 2010 (Not available now)

Database of Antimicrobial Activity and Structure
of Peptides (DBAASP) [14] Antimicrobial Nov 2017 (Not available now)

BIOPEP-UWM database (BIOPEP) [41] Antimicrobial N/A

A database of anticancer peptides and
proteins (CancerPPD) [42] Anticancer N/A

A database of Antiparasitic peptides (ParaPep) [43] Antiparasitic N/A
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2.3. Feature Extraction and Feature Engineering

Various numerical representation schemes of proteins and peptides from amino acid
sequences of both AMP and non-AMP datasets were generated. Feature extraction of
peptide characteristics that would be useful in predicting, namely, the amino acid composi-
tion, pseudo amino acid composition (PseAAC) in parallel and in series correlation, and
the details of the secondary structure conformation, composition–transition–distribution
(CTD), various physical–chemical properties, antimicrobial propensity scale (antimicrobial
IC50 index derived from high-throughput values of different amino acids), and the per-
centage of different conformations in the peptide sequence were calculated using the protr
R package [44,45], peptide R package [45], AMPA program [3,46], Tango program [47], and
Pse-in-one program [48,49]. Various modes of Chou’s PseAAC descriptors were gener-
ated. Chou’s PseAAC has been widely used to convert complicated protein sequences
with various lengths to fixed-length digital feature vectors while keeping considerable
sequence-order information. [50]. Chou’s PseAAC can represent a protein sequence in a dis-
crete model without completely losing its sequence-order information and hence has been
widely applied for improving the prediction quality for various protein problems [51,52].
The description of features is described in Supplementary Table S3 (in Supplementary
File S3). These feature characteristics are stored in the form of a vector of peptide data
characteristics that consists of 517 numerical features. The flowchart of feature extraction
of peptide data characteristics follows the steps shown in Figure 4.
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To improve the prediction with informative features, we proposed a hybrid feature
generation by the fusion of various selected features using a logistic regression model.
Logistic regression models were built by following the steps shown in Figure 5. Beginning
with the preselection of features by using the wrapper feature selection method, feature
subsets that specifically suit the logistic regression model were selected. The root-mean-
square error (RMSE) and forward search method were performed in the wrapper method,
providing 24 features that are most informative for the logistic regression model. To
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reduce the complexity of hybrid features and avoid the overfitting issues of the models,
we used 4 features for creating a composite feature. A combination of 4 randomly selected
features out of 24 preselected features generated a total of 10,626 sets of composite features.
Next, logistic regression models were built using 10,626 sets of features for a total of
10,626 equations. Then, the performances of the logistic regression models were compared.
The logistic regression model with the highest sensitivity would be selected for further
study as a hybrid feature. The hybrid feature is defined as the following equation:

Hybrid feature = β0 + β1 APAAC1_5 + β2 CTDD66 + β3 AMPA + β4 Tango4 (1)

where β0 is the intercept, β1, β2, β3, and β4 represent the regression coefficients, APAAC1_5
is Amphiphilic Pseudo Amino Acid Composition of Cys (sequence-order-coupling mode
along a protein sequence through a hydrophobicity correlation function), CTDD66 is the
distribution descriptor of the first residue of the neutral charged amino acid found at the N
terminus (Property 5 Group2 Residue 0), AMPA is the antimicrobial IC50 propensity index,
and Tango4 is the percentage of aggregation conformation.
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2.4. Feature Selection

To select a discriminative feature subset, the feature selection (FS) method was used to
select relevant and informative features that efficiently discriminate AMPs from non-AMPs.
Various learning algorithms were used to compare the effectiveness of various feature
selections, such as Infogain, ReliefF, and correlation-based feature selection (CFS). We used
the area under the ROC curve (AUC) and sensitivity (Sn) values that were averaged over
10-fold cross-validation as measurements of the performance.
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2.5. Prediction Models

We used a 10-fold cross-validation to examine the machine learning models. The
performance of 10 results is averaged and reported as the performance of the classifier.
Machine learning techniques, using both single predictive models and ensemble learning
methods, were built and compared. The predictive models include neural networks
using MLP, SVM, decision tree (DT), KNN, deep learning (DL), naïve Bayes (NB), linear
discriminant analysis (LDA), radial basis function network (RBF), RF, max probability
voting (MaxProbVote), majority voting, XGBoost, and AdaBoost. These models were
built by using LibSVM [53], R programming [45], Waikato Environment for Knowledge
Analysis (Weka) [54], and Python. Then, the models were fine-tuned and evaluated
based on their performance and CPU processing requirements. The details of the models,
hyperparameters, and parameter grid searches are described in the Supplementary File S3

In the algorithm selection for predictive program development, the model was selected
based on the total efficiency of the program by evaluating the following metrics:

ACC =
TP + TN

(TP + TN + FP + FN)
(2)

Sn =
TP

(TP + FN)
(3)

Sp =
TN

(TN + FP)
(4)

MCC =
TP × TN - FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(5)

where ACC, Sn, Sp, and MCC are the accuracy, sensitivity, specificity, and Matthews
coefficient correlation, respectively. These measurements were calculated based on the
numbers of true positives (TPs), true negatives (TNs), FPs, and false negatives (FNs).
The AUC was calculated to assess the tradeoff between the sensitivity and specificity
performance of the different methods. The ROC is a plot of the TP rate vs. the FP rate at
different thresholds. For a perfect predictor, the AUC is equal to 1.

3. Results and Discussion
3.1. Informative Features Extracted from Peptides Affect the Performance the Most

To detect hidden patterns, the feature extraction step is an important step to represent
biological sequences with a fixed-length numerical form that can be further analyzed using
a machine learning model to generalize to new unseen peptide data [51]. The proposed
program consists of a module for extracting various features to represent peptides with
517 numerical features. This extraction module collects and extracts as many known
peptide features as possible to have sufficient discrimination features in order to detect
hidden patterns and to explain the characteristics of the peptide sequences that could be
an active AMP.

The correlation between all 517 features was obtained by calculating the Pearson
correlation coefficient. Then, Pearson correlation coefficients were plotted as shown in
Figure S1. As shown in the correlation plot, there are some redundant and highly cor-
related features in the 517-dimensional feature set. Therefore, the feature selection step
is needed to filter and select only informative and effective features. Feature selection is
an important data analysis process to select a more effective feature subset, which can
reduce the computation time and complexity, remove redundant features, and improve the
understandability and simplicity of the model [55]. Therefore, different feature selection
methods were compared. To select the discriminative feature subset, the empirical perfor-
mance comparison of individual predictive models using different feature sets from various
state-of-the-art feature selection methods, such as Infogain, ReliefF, CFS with a best-first
search, and CFS with a genetics search, was performed. The CFS with a genetic search
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method consistently outperforms other feature selection methods in most classifiers while
retaining fewer selected features on average. Compared to other feature selection methods,
the CFS method can drastically reduce the dimensionality of datasets while maintaining
or improving the performance of most learning algorithms (data not shown). The CFS
method can remove redundant and irrelevant features based on the heuristic that “Good
feature subsets contain features highly correlated with the target class, but uncorrelated
with each other” [55]. Finally, based on comparison and the advantages of the CFS method,
the 92 informative features (listed in Supplementary Table S2) that were selected by using
the CFS method and genetics search were applied for further analysis in this work.

3.2. Performance Comparison of Various Predictive Models

Machine learning algorithms tend to be biased toward the majority class when the
class distribution is imbalanced in order to yield high overall prediction accuracy. We also
investigated the effect of balanced and imbalanced training sets in building models, as
reported in Supplementary File S4. We compared the performance of two imbalanced
datasets with the ratio of AMPs to non-AMPS equal to 1:3 (natural ratio of this dataset)
and 1:2. From the empirical data, most classifiers do not learn the minority class well, often
becoming more misclassified compared to the majority class. When the different ratio
between classes is high, as the imbalance is more highly skewed, the effect of imbalanced
training data will be more severe, as most learners will show more bias toward the majority
class. However, in real life, the majority class is usually our class of interest, which is
more focused. Therefore, developing well-balanced training data is an important step.
There are two categories of methods that handle this class imbalance problem: Data-Level
methods (e.g., data sampling), and Algorithm-Level methods (e.g., cost-sensitive and
hybrid/ensemble) [56–58].

In this work, we have applied both the Data-Level and the Algorithm-Level methods
to avoid the imbalance problem. Firstly, since AMP data are heterogeneous (various
functional families, from various organisms), in order to ensure that the training sample
can reflect all characteristics of the AMP sequences and remain generalized to all types of
AMP data, proportionate stratified random sampling (Data-Level method) was applied.
Therefore, the training data consisted of peptide sequences selected from both the AMP and
non-AMP datasets to produce an equally balanced training dataset to reduce the likelihood
of generating a predictive model biased toward the majority class. Then, balanced training
data were used to train the predictive models. Secondly, our method is an ensemble or
hybrid method (Algorithm-Level method), which is to say that it can also handle the
imbalance problem (results in Section 3.3).

In this section, various single models were hyperparameter-optimized using a grid
search, and the optimal selected parameters based on model selection are described in
the Supplementary File S3: Parameter Optimization. There are many machine learning
algorithms, and their performance is dependent on the characteristics of the data of interest.
To detect the weaknesses and strengths of various algorithms on AMPs data, tenfold cross-
validation was used to compare the performances of various single models, as shown in
Table 3, consisting of eight single models, namely, MLP, SVM, KNN, RBF, LDA, NB, DT,
and DL, and two existing state-of-the-art programs, namely, AMPScanner [16] (using the
latest updated model in February 2020) and CAMP [11] (the results shown in Table 3 report
only the highest performance of the four predictive models, RF, neural network (NN), SVM,
and LDA).
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Table 3. Performance comparison of single machine learning models.

Single
Model

Training
Accuracy

Training
AUC

Training
MCC

Testing Dataset 1 Testing Dataset 2

AMP
(11,634)

Non_AMP
(35,795)

AMP_S1
(1461)

AMP_S2
(917)

Non_AMP_S1
(2404)

Non_AMP_S2
(828)

MLP 81.92% 0.879 0.629
10,224 33,116 1411 907 1613 689
87.88% 92.51% 96.58% 98.91% 67.07% 83.11%

SVM 85.89% 0.867 0.598
10,684 34,283 1437 915 1870 799
91.83% 95.78% 98.36% 99.78% 77.75% 96.38%

KNN 85.37% 0.906 0.701
10,886 33,448 1400 908 1951 815
93.57% 93.44% 95.82% 99.01% 81.12% 98.31%

RBF 83.04% 0.902 0.642
10,161 33,665 1420 912 1668 732
87.34% 94.05% 97.19% 99.45% 69.36% 88.30%

LDA 83.57% 0.901 0.675
9984 33,767 1377 900 1773 762

85.82% 94.33% 94.25% 98.15% 73.72% 91.92%

NB 74.00% 0.786 0.516
7426 34,629 1350 880 1786 782

63.83% 96.74% 92.40% 95.97% 74.26% 94.33%

DT 80.61% 0.797 0.603
10,483 29,020 1374 880 1824 777
90.11% 81.07% 94.05% 95.97% 75.84% 93.73%

DL 85.36% 0.900 0.661
11,063 34,180 1405 900 1967 819
95.09% 95.49% 96.17% 98.15% 81.79% 98.79%

CAMP [11] - - - 8657 20,453 1375 893 1692 615
74.41% 57.14% 94.11% 97.38% 70.38% 74.28%

AMPScanner
[16]

- - - 10,557 22,511 1420 909 1491 516
90.74% 62.89% 97.19% 99.13% 62.02% 62.32%

MLP: neural nets using the multilayer perceptron, SVM: support vector machine, KNN: K-nearest neighbors, RBF: radial basis function
network, LDA: linear discriminant analysis, NB: naïve Bayes, DT: decision tree, DL: deep learning, ACC: accuracy, AUC: area under the
ROC curve, MCC: Matthews correlation coefficient. The numbers in parentheses are the number of instances in the datasets. For the testing
dataset, the column presents the number of correctly predicted and the percentage of correctly predicted.

To evaluate the model, two testing datasets were used. Testing dataset 1 is the dataset,
containing the latest and updated AMP and non-AMP sequences, compiled from public
databases. It is available to download at [59]. Testing dataset 2 is a benchmark dataset S
that has been used in testing several AMP predictive programs taken from [13]. As shown
in Table 3. The SVM had the highest performance with an accuracy of 85.89% in the training
data. The SVM uses few parameters that have been carefully selected using a grid search.
However, the AUC of the SVM model is lower than that of the KNN, MLP, LDA and RBF
models. The AUC depicts the tradeoff between the sensitivity and specificity values, which
implies achieving a balance in predicting both true positive and true negative instances.
Interestingly, the KNN model shows good performance in both accuracy and AUC (85.37%
and 0.906, respectively). The advantage of the KNN model is that it is well suited for
multimodal classes [60,61]. In fact, AMP-positive data can be considered multimodal class
data composed of several types of AMPs, such as antibacterial, anticancer, antiviral, and
antifungal AMPs. This may explain the KNN performance on the testing.

In addition, the two existing state-of-the-art programs, namely, AMPScanner (using
the latest updated model in February 2020) and CAMP (reporting only the highest per-
formance of the four predictive models, RF, NN, SVM, and LDA), were tested with an
independent testing dataset, and their performance is reported in Table 3.

3.3. Ensemble Models have Better Performance than Single Models

Since the AMPs have diverse functions with heterogeneous data from various organ-
isms, we hypothesize that the ensemble may be suitable for this type of data. Therefore,
we investigated various types of ensemble models. The ensemble model has the ability to
increase accuracy by combining the output of multiple diverse classifiers to reduce bias
and variance. Moreover, an ensemble can improve efficiency by decomposing complex
problems into multiple subproblems. A proper combination of diverse predictors through
the ensemble method can efficiently exploit the strength of the single predictive models by
considering multiple points of view to obtain a more accurate and robust (stable) predic-
tion. Therefore, in this work, the ensemble models based on bagging, boosting, and voting
techniques were also built and compared, as shown in Table 4. The five ensemble models
include the RF, MaxProbVote (where the answer from model with a higher probability
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between the RF and KNN models is chosen), majority vote, XGBoost, and AdaBoost. Com-
paring the five ensemble models based on accuracy, the MaxProb voting of the RF and KNN
has the highest overall accuracy of 87.41% with a high AUC of 0.925 using the training
datasets. When comparing the performance based on testing dataset 1, the MaxProbVote
model has the highest performance compared to other models in predicting the AMPs of
testing dataset 1, but it has a lower performance in identifying AMP-positive sequences
than the RF model in testing dataset 2. Table 4 also includes the performances of the five
ensemble models integrated with the new hybrid feature (the new hybrid feature will be
discussed in Section 3.4). When comparing the 10 ensemble models (with and without the
hybrid feature), based on overall accuracy, we found that the majority vote model with the
hybrid feature achieved the highest accuracy of 88.63% with an AUC of 0.927. However,
MaxProbVote models provide better predictive tradeoffs between sensitivity and specificity
than the majority vote model, with a higher AUC value of 0.946. This suggests that a
tradeoff between the specificity and sensitivity of the MaxProbVote method is relatively
more appropriate.

Table 4. Performance comparison of ensemble machine learning models.

Ensemble Model
Training
Accuracy

Training
AUC

Training
MCC

Testing Dataset 1 Testing Dataset 2

AMP
(11,634)

Non_AMP
(35,795)

AMP_S1
(1461)

AMP_S2
(917)

Non_AMP_S1
(2404)

Non_AMP_S2
(828)

RF 86.45% 0.936 0.730
11,115 34,314 1447 915 1895 818
95.54% 95.86% 99.04% 99.78% 78.79% 98.67%

MaxProbVote
(RF, KNN) 87.41% 0.925 0.749

11,254 33,992 1441 913 1965 824
96.73% 94.96% 98.63% 99.56% 81.70% 99.40%

Majority voting
(RF, KNN, SVM) 86.05% 0.892 0.767

11,094 34,598 1441 916 2006 822
95.36% 96.65% 98.63% 99.89% 83.41% 99.16%

XGBoost 85.68% 0.924 0.734
11,156 33,421 1439 910 1920 809
95.89% 93.37% 98.50% 99.24% 79.88% 97.71%

AdaBoost 82.52% 0.910 0.668
9899 33,560 1404 905 1664 711

85.09% 93.76% 96.09% 98.69% 69.19% 85.77%

Ensemble model
with hybrid

feature

Training
Accuracy

Training
AUC

Training
MCC

Testing Dataset 1 Testing Dataset 2

AMP
(11,634)

Non_AMP
(35,795)

AMP_S1
(1461)

AMP_S2
(917)

Non_AMP_S1
(2404)

Non_AMP_S2
(828)

RF 86.92% 0.939 0.744
11,127 34,447 1451 915 1904 822
95.64% 96.23% 99.32% 99.78% 79.17% 99.15%

MaxProbVote
(RF, KNN) 88.13% 0.946 0.764

11,344 33,866 1448 915 2042 825
97.51% 94.61% 99.11% 99.78% 84.94% 99.63%

Majority voting
(RF, KNN, SVM) 88.63% 0.927 0.773

11,295 34,516 1448 915 1993 827
97.09% 96.43% 99.11% 99.78% 82.87% 99.76%

XGBoost 87.44% 0.941 0.749
11,118 33,594 1440 911 1951 818
95.57% 93.85% 98.56% 99.35% 81.16% 98.79%

AdaBoost 83.19% 0.917 0.693
10,866 33,917 1436 909 1681 729
93.39% 94.75% 98.29% 99.12% 69.89% 87.94%

RF: random forest, XGBoost: extreme gradient boosting, AdaBoost: adaptive boosting, ACC: accuracy, AUC: area under the ROC curve,
MCC: Matthews correlation coefficient. The numbers in parentheses are the numbers of instances in the datasets. For the testing dataset,
the column presents the number of correctly predicted and the percentage of correctly predicted.

We found that the performances of ensembles based on bagging and voting methods
are comparable (RF, MaxProbVote, and majority voting with and without the hybrid
feature). However, for all of the predictive models, both single and ensemble models are
included in the Ensemble-AMPPred program (therefore, users can choose and compare the
results between these models, especially to use them as a decision support system for a
situation in which conflicting predictions occur).

3.4. Hybrid Feature to Improve the Sensitivity of the Predictive Performance

To add some additional features for capturing the major and subtle patterns to differ-
entiate actual positives from negatives, we include feature engineering and transformation
experiments in this work. We propose a new feature by building a hybrid feature based
on feature fusion using a logistic regression equation. The logistic regression model that
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had the highest sensitivity (Sn = 77.07%) among the others was selected for further use as a
hybrid feature. For this new feature, APAAC1_5, CTDD66, AMPA, and Tango4 features
were included in this logistic regression and applied as a hybrid feature. The hybrid feature
was integrated into the ensemble to test whether this new proposed feature can further
improve the sensitivity of the models. We also performed feature ranking based on various
filtering feature selection techniques (including information gain, gain ratio, chi-square,
consistency, and Pearson’s correlation feature ranking) and found that the newly added
hybrid feature can be ranked in the top ranks (in the top 1–5 ranking of most feature
selection methods). Moreover, the hybrid feature was the top ranked variable in the plots
of variable importance during the process of building both the RF model and the XGBoost
model (as shown in Supplementary Figures S2–S3), which indicates the highly significant
contribution of the hybrid feature to the prediction performance.

To demonstrate the enhancement when adding the proposed new hybrid feature to the
model, Table 4 shows that the overall ACC and AUC values obtained from the ensemble
with the hybrid feature are 0.54–2.99% and 0.30–3.92% higher, respectively, than those of
the model without the hybrid feature based on 10-fold cross-validation (CV) of the training
datasets. Interestingly, we found that the hybrid feature can improve the sensitivity and
overall accuracy of the ensemble model based on the bagging and voting methods (RF,
MaxProbVote, and majority vote models). We highlight that our hybrid feature is more
advantageous for use with bagging or voting ensemble strategies. In particular, including
the hybrid feature showed significantly improved performance in the tradeoff between true
positive and false positive prediction, as indicated by a better improvement in AUC values.

Actually, the MaxProbVote model with hybrid features (with an ACC of 88.13% and
an AUC of 0.946) and the majority vote model with hybrid features (with an ACC of 88.63%
and an AUC of 0.927) showed comparable performances. However, the MaxProbVote
model with the hybrid feature was chosen as the default model in the Ensemble-AMPPred
program because the AUC is higher (AUC is a measure of the value that shows that the
model has a better tradeoff between both positive and negative predictions).

3.5. Comparison with Existing Prediction Methods

As shown in Table 3, we also reported the testing dataset 1 and 2 prediction results
of the other two existing methods: CAMP and AMPScanner. (We initially planned to
test more predictive programs; however, since our testing dataset is quite large, other
webserver programs become unavailable or nonresponsive.) Based on the testing results
using the two testing datasets, our ensemble models (in Table 4) can recognize both AMPs
and non-AMPs based on accuracy in predicting positive and negative data compared with
the currently available programs, AMPScanner (a DL model using a deep neural network
(DNN) and long short-term memory (LSTM) deep learning) and CAMP (LDA, SVM, RF,
and NN models), as shown in Table 3. Testing dataset 2, which contains benchmarked data,
was not generated by our group. In contrast, testing dataset 1 is quite large, and the latest
updated dataset (updated February 2020) was generated by our group. In addition to these
two testing datasets, we added another smaller benchmark dataset that included all AMPs
from the ADP3 database [62] (obtained in October 2020) and the smaller UniProt dataset as
negative data to be compared with another two programs, i.e., iAMP-2 L and iAMPpred.
The comparison result is in the Supplementary File S5. The results provide more details
beyond the predictive performance summary. The information shows more details about
the distribution of incorrect predictions of both false positive and false negative results
of all five programs, including our Ensemble_AMPPred (MaxProbVote model), CAMP,
AMPscanner, iAMP-2 L, and iAMPpred. This result also gives a better understanding of
the different behaviors of different predictive models and identifies influential instances in
the testing data, which is the weakness of individual predictive models that makes them
perform poorly.

The contributions of this research are as follows: (1) To the best of our knowledge,
we collected the largest AMP dataset from 15 public databases, in contrast to previous
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works that used one to two databases, such as the CAMP and/or APD database. As AMPs
are highly heterogeneous, different subtypes of AMPs exist; therefore, we performed pro-
portionate stratified random sampling by partitioning into homogeneous strata based on
clustering. Representative sequences were selected from each cluster for using as training
data. (2) We collected and employed as many features as possible. Sequence features
are important for the antimicrobial activity and in vivo stability of AMPs. Such sequence
features also contribute to AMP prediction. Different AMP predictors use different sets of
features. For a state-of-the-art deep learning approach, the algorithm automatically extracts
features (in the form of a matrix of the weight numbers from deep neural nets). Thus, the
deep learning method does not possess a feature engineering step. In our method, feature
extraction and selection were conducted. The features are relatively more explainable in
terms of biological meanings. We attempted to capture some explainable relationship in
the features, which may provide an advantage in AMP sequence design in the future. (3)
We include the process of feature engineering, i.e., modeling, to describe or capture rela-
tionships between interpretable features to create the hybrid feature. Moreover, we expect
that this type of information will be helpful in exploring or designing AMPs sequence
in the future. Moreover, we plan to explore this type of feature in greater detail. (4) We
investigated various types of machine learning technique for building predictors, including
both single and ensemble techniques.

4. Conclusions

Ensemble-AMPPred is an AMP prediction and recognition program that contains
various predictive models, including individual single models and ensemble models.
The overall accuracy obtained by Ensemble-AMPPred is significantly higher than that
obtained by the existing methods on the same benchmark dataset. We found that the
ensemble model based on the voting technique, especially the MaxProbVote model, has a
better tradeoff performance between sensitivity and specificity. Moreover, including the
new hybrid feature into the ensemble-based models can improve the accuracy of these
predictive models. All the predictive models based on single or ensemble machine learning
algorithms are included in Ensemble-AMPPred and are available to download at [59].
Therefore, users can choose between models and can compare and distinguish the results
between these models. Moreover, users can use these models as a decision support system
for screening new AMPs prior to in vitro laboratory experiments or use them in a situation
in which conflicting predictions occur.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/2/137/s1, Supplementary File S1: CD-HIT clustering result of AMP sequences (positive data),
Supplementary File S2: Sequence similarities between training and testing sequences, Supplementary
File S3: Ensemble AMP Prediction (Figure S1: The correlation between all features obtained by
calculating the Pearson correlation coefficient, Figure S2: Variable importance plot. The importance
of each of the features for predicting AMPs with a random forest. The most important feature that
significantly contributed to the prediction performance was the hybrid feature, Figure S3: Variable
importance plot. The importance of each of the features for predicting AMPs with XGBoost. The
most important feature that significantly contributed to the prediction performance was the hybrid
feature. Table S1: 517 feature descriptors, Table S2: A list of 92 features selected by CFS + Genetic
Search), Supplementary File S4: Performance comparison of machine learning models when trained
with imbalanced datasets, Supplementary File S5: Preliminary performance comparison of available
AMP prediction tools.
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