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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that impedes patients
cognition, social, speech and communication skills. ASD is highly heterogeneous with a variety
of etiologies and clinical manifestations. The prevalence rate of ASD increased steadily in recent
years. Presently, molecular mechanisms underlying ASD occurrence and development remain to
be elucidated. Here, we integrated multi-layer genomics data to investigate the transcriptome
and pathway dysregulations in ASD development. The RNA sequencing (RNA-seq) expression
profiles of induced pluripotent stem cells (iPSCs), neural progenitor cells (NPCs) and neuron cells
from ASD and normal samples were compared in our study. We found that substantially more
genes were differentially expressed in the NPCs than the iPSCs. Consistently, gene set variation
analysis revealed that the activity of the known ASD pathways in NPCs and neural cells were
significantly different from the iPSCs, suggesting that ASD occurred at the early stage of neural
system development. We further constructed comprehensive brain- and neural-specific regulatory
networks by incorporating transcription factor (TF) and gene interactions with long 5 non-coding
RNA(IncRNA) and protein interactions. We then overlaid the transcriptomes of different cell types
on the regulatory networks to infer the regulatory cascades. The variations of the regulatory cascades
between ASD and normal samples uncovered a set of novel disease-associated genes and gene
interactions, particularly highlighting the functional roles of ELF3 and the interaction between STAT1
and IncRNA ELF3-AS 1 in the disease development. These new findings extend our understanding
of ASD and offer putative new therapeutic targets for further studies.

Keywords: autism spectrum disorder (ASD); neural progenitor cells (NPCs); pathway; regulatory
cascades; regulatory variations

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that impedes
patients’ cognition, social skills, speech and communication [1,2]. Autism can be diagnosed
at any age; however, symptoms usually appear in the first two years of life [3]. ASDis a
complex and heterogeneous condition affecting an increasing number of children in the
U.S. A new estimate announced by the Centers for Disease Control and Prevention (CDC)
indicates that ASD affected one in 59 (1.7%) individuals in 2018, an increase from one in
68 (1.5%) just two years earlier [4]. Primary autism, called idiopathic ASD of unknown
causes, accounts for about 85% of cases [5]. In contrast, secondary ASD accounting for 15%
of patients, has specific causes such as down syndrome, Fragile X syndrome and tuberous
sclerosis [6-8]. The high complexity, heterogeneity and wide variability, described by the
term spectrum, make this condition challenging to study and treat.

Currently, considerable research efforts at the molecular level have identified ASD-
associated genes [1,2,9-12]. Voineagu et al. identified several gene modules and the
convergent molecular abnormalities in ASD by investigating the differentially expressed
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genes (DEGs) and co-expression patterns [2]. Skafidas et al. applied genome-wide as-
sociation studies (GWAS) to discover the candidate genes related to ASD and identified
several significant pathways [9]. A number of long non-coding RNAs (IncRNAs) that
were anomalously expressed in ASD were identified, indicating their potential roles in
the disorder [12]. Furthermore, the dysregulation of gene expression was reported to be
associated with cell production, DNA-damage response, and cell cycle functions in ASD
cases [13,14].

Marchetto et al. [1] modeled ASD utilizing induced pluripotent stem cell (iPSC) tech-
nology for studying disease mechanisms. They reprogrammed fibroblasts from idiopathic
ASD patients with macrencephaly and control subjects with typically developing indi-
viduals to generate induced iPSCs, neural progenitor cells (NPCs) and neurons. They
found that increased proliferation rates in ASD-derived NPCs may be responsible for early
overgrowth in ASD patients, while abnormal neurogenesis and reduced synaptogenesis in
ASD-derived neurons may lead to functional defects in neuronal networks. Their study
also found that drug IGF-1 showed a therapeutic potential for activating neuronal spikes
and rescuing defects in the neuronal networks.

In this study, we developed a regulatory network analysis approach to investigate the
dynamic changes of transcriptome during ASD development. The RNA-seq data of three
cell types at the different cell differentiation stages, namely iPSCs, NPCs and neuron cells
reported in the previous study [1], were systematically analyzed and compared. Novel
disease genes including transcription factors (TFs), target protein-coding genes (PCGs) and
IncRNAs such as IRF1, ELF3 and ELF3-AS1, and their roles in regulations of ASD were
discovered by our study. These new findings advance our understanding of the disorder
and provide new insights for further studies.

2. Results
2.1. Differential Expression and Pathway Analyses Highlighted the NPC Stage of ASD

We downloaded RNA-seq data (GSE67528) generated based on three cell types, in-
cluding iPSCs (11 normal, 17 ASD), NPCs (nine normal, 21 ASD) and neuron cells (eight
normal, 17 ASD); each cell type contains ASD and normal samples [1]. The iPSCs were
transduced from the skin fibroblasts of ASD and normal subjects, then were derived into
NPCs and neuron cells [1].

Differential expression (DE) analysis was performed on each cell type between ASD
and normal samples. As a result, 29 significant DEGs (25 PCGs, four IncRNAs) were found
in iPSCs, whereas 383 (341 PCGs, 42 IncRNAs) and 461 DEGs (430 PCGs, 31 IncRNAs)
were found in NPCs and neuron cells (Figure 1A, Methods), respectively. A substantially
increasing number of DEGs in NPCs compared to iPSCs (383 versus 29) indicated that the
initiation and development of ASD occurred during cell differentiation from iPSC to NPC.
Moreover, only 70 DEGs (67 PCGs, three IncRNAs) were shared by NPC and neuron cells
(Figure 1B), representing 18.2% (70/341) and 15.2% (70/461) of DEGs of these two cell types.
Additionally, none of the known signal pathways were enriched of these common DEGs,
suggesting distinct mechanisms underlying the neurodevelopment of ASD at the NPC-
and neuron- stages. The differentially expressed IncRNAs were listed in Supplementary
Table S1.

The enriched functional annotations, based on the DEGs of each cell type, were
then identified via the Database for Annotation, Visualization and Integrated Discovery
(DAVID) [15]. The 29 iPSC DEGs were related to four GO biological process terms, in-
cluding the cerebral cortex and subpallium development. Two genes, DLX1 and DLX2,
were involved in these two functions and were significantly downregulated in ASD sam-
ples (log2FC = —2.05 and log2FC = —1.96, respectively). Moreover, several ASD-related
KEGG pathways, including calcium signaling and focal adhesion, reported by previous
studies [9,16] were identified as using DEGs of the NPC and neuron cell types (Table 1).
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Figure 1. Differential expression analysis in three cell types. (A) volcano plots showed the significant
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DEGs with cutoff [1og2FC|> 1 and FDR < 0.05. Blue points represent unexpressed genes, while
red points refer to overexpressed genes in different neural cells types. (B) The unique and common
DEGs among the three cell types demonstrated the distinct gene expression change patterns in iPSCs
compared to NPCs and neural cells.

Next, we calculated the gene set variation analysis (GSVA) scores [17] for the 23 ASD-
associated KEGG pathways [9] (Supplementary Figure S1) representing their relative
activation status in the three cell types (Figure 2). The activation status did not change
significantly from iPSC to NPC (p-value = 0.0789) and neuron cell (p-value = 0.166) stages
in normal samples. In contrast, the differences in GSVA scores between iPSC and NPC
(p-value =7.64 x 10~*), and iPSC and neuron cells (p-value =7.11 x 10°) were statistically
significant in the ASD samples. Many pathways have negative GSVA scores starting from
the NPC stage, especially in ASD samples indicating that the expressions of the involved
genes were changed compared to iPSC (Methods).
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Figure 2. The estimated activity of 23 ASD-associated pathways in normal and ASD samples in
three neural cell types, representing different stages of cell development. The pathway activity was
assessed based on GSVA scores. In the ASD samples, the differences of GSVA scores between iPSC
and NPC (p-value =7.64 x 10~%), as well as between iPSC and neuron cells (p-value =7.11 x 1072)
were statistically significant. *** p < 0.001, two-tail Student’s ¢-test.

Then we conducted a regulatory network analysis that focuses on the regulation
variations caused by ASD in different stages of neurodevelopment. The main components
of the analysis were illustrated in Figure 3 and described in the following sections.
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Table 1. Functional annotations of the DEGs of different cell types in neural system development.

iPSC Term p-Value Benjamini
GOTERM_BP_DIRECT cerebral cortex GABAergic interneuron fate commitment 2.5 x 1073 0.48
GOTERM_CC_DIRECT endoplasmic reticulum 2.6 x 1073 0.16
GOTERM_BP_DIRECT subpallium development 3.7 x 1073 0.39
GOTERM_BP_DIRECT  regulation of transcription from RNA polymerase Il promoter involved in forebrain neuron fate commitment 3.7 x 1073 0.39
NPC Term p-Value Benjamini
KEGG_PATHWAY Neuroactive ligand-receptor interaction * 1.9 x 1073 0.3
KEGG_PATHWAY Pathways in cancer 2.5 x 1073 0.21
KEGG_PATHWAY Focal adhesion * 51 x 1073 0.27
KEGG_PATHWAY Calcium signaling pathway * 6.1 x 1073 0.25
KEGG_PATHWAY Retrograde endocannabinoid signaling 1.1 x 1072 0.34
KEGG_PATHWAY Wnt signaling pathway * 14 x 1072 0.36
KEGG_PATHWAY Regulation of lipolysis in adipocytes 0.02 0.42
KEGG_PATHWAY PI3K-Akt signaling pathway * 2.7 x 1072 0.47
Neuron Term p-Value Benjamini
KEGG_PATHWAY ECM-receptor interaction 17 x 1071 29 x 1071
KEGG_PATHWAY Protein digestion and absorption 28 x 10712 23 x 10710
KEGG_PATHWAY Focal adhesion * 2 x107? 1.1 x 1077
KEGG_PATHWAY PI3K-Akt signaling pathway * 3x107°  13x1077
KEGG_PATHWAY Amoebiasis 42x107% 14 x1072
KEGG_PATHWAY Neuroactive ligand-receptor interaction * 82x107* 23 x1072
KEGG_PATHWAY TGF-beta signaling pathway 2x107%  48x1072
KEGG_PATHWAY Renin-angiotensin system 1.2 x 1072 0.23
KEGG_PATHWAY Platelet activation 2.1 x 1072 0.33
KEGG_PATHWAY Hypertrophic cardiomyopathy (HCM) 25 x 1072 0.35
KEGG_PATHWAY Proteoglycans in cancer 2.7 x 1072 0.35
KEGG_PATHWAY Dilated cardiomyopathy 3.4 x 1072 0.38
KEGG_PATHWAY Regulation of actin cytoskeleton 3.7 x 1072 0.39
KEGG_PATHWAY Calcium signaling pathway * 3.8 x 1072 0.37

* Some of the known ASD-related pathways.

2.2. Construct Brain- and Neural-Specific Regulator-Target Regulation Pairs

We further studied the regulation variations caused by ASD in the three neural cell
types. First, we obtained the gene regulatory networks of the fetal brain and brain neu-
rons from Regulatory Circuits [18]. Regulatory Circuits is a large database containing
comprehensive cell type- and tissue-specific regulatory networks constructed computa-
tionally. Based on 639 TFs and their target PCGs, we extracted 2,175,633 regulator-target
regulation pairs from the networks. After excluding low expressed genes, the remaining
regulation pairs consisting of 424 TFs and 11,435 brain- and neuron-specific target genes
were obtained.

In addition, we incorporated IncRNAs into the regulatory networks. The position
weight matrices (PWMs) from the JASPAR, a database of TF binding profiles, were used
to search the TF-IncRNA regulations based on motif matching [19]. Consequently, we
found 312 TFs that bound to the promoter regions of the IncRNAs using MOtif Occurrence
Detection Suite (MOODS), a fast motif matching approach [20]. A total of 191,390 significant
matched bindings (p-value < 5 x 10~°) between the TFs and IncRNAs were identified. We
then inferred the downstream genes that were potentially regulated by the IncRNAs via
identifying overlap of the IncRNAs with the enhancer regions of the potential target genes.
These predicted interactions were used to complete the list of the brain- and neural-specific
regulator-target pairs for the subsequent analysis. (Figure 3A, see Methods for details).
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2.3. Expression Correlations between Regulators and Target Genes

We assessed the expression correlation of the regulator-target pairs in individual cell
types based on Pearson correlation coefficients (Figure 3B). More coordinately expressed
regulator-target pairs were found in normal samples than ASD samples of the NPCs and
neuron cells under the correlation coefficient cutoff at 0.75. Interestingly, we identified
fewer correlated regulator-target pairs in normal samples than in ASD samples of iPSC
cells. The regulator-target regulatory relationships were derived from fetal brain and
brain neurons; epigenetic differences of the stem cells may contribute to this observation.
Comparable results were observed in the IncRNA-involved regulations (Supplementary
Table S2).

We hypothesized that transcription dysregulation reflects mechanisms underlying
ASD development and can provide further insights into the signaling pathways involved
in the disease. Thus, we investigated regulatory interactions newly gained in the ASD
samples in comparison to normal samples. Based on the regulator-target coordinately
expressed patterns (correlation cutoff = 0.75), we identified 462 and 974 unique target genes
presented in ASD samples only of NPC and neuron cell types, respectively. Functional
annotations of these two gene groups revealed several significant pathways (Table 2),
showing their involvement in ASD.

Table 2. The KEGG pathways enriched by the unique target genes in the ASD samples of NPC and
neuron cells.

NPC ASD Term p-Value Benjamini
KEGG_PATHWAY Phosphatidylinositol signaling system * 43 x 1073 0.6
KEGG_PATHWAY ECM-receptor interaction * 8x 1073 0.57
KEGG_PATHWAY Morphine addiction 0.01 0.51
KEGG_PATHWAY Inositol phosphate metabolism 1.1 x 1072 0.44
KEGG_PATHWAY PI3K-Akt signaling pathway * 0.02 0.58
KEGG_PATHWAY Circadian entrainment * 0.04 0.76
KEGG_PATHWAY Focal adhesion * 4.7 x 1072 0.76
KEGG_PATHWAY Calcium signaling pathway * 48 x 1072 0.72

Neuron ASD Term p-Value Benjamini
KEGG_PATHWAY DNA replication 1.5 x 1073 0.31
KEGG_PATHWAY RNA transport 1.7 x 1073 0.19
KEGG_PATHWAY Mismatch repair 44 x 1073 0.3
KEGG_PATHWAY Protein processing in endoplasmic reticulum * 8.1x 1073 0.39
KEGG_PATHWAY RNA degradation 1.2 x 1072 0.44
KEGG_PATHWAY Nucleotide excision repair 2.6 x 1072 0.65
KEGG_PATHWAY Spliceosome 2.8 x 1072 0.63
KEGG_PATHWAY Biosynthesis of antibiotics 54 x 1072 0.81

* Some of the known ASD-related pathways.

Similar to the results of DE analysis, the target genes that we identified in ASD
samples of NPCs were enriched of many ASD-associated pathways [9,11,21]. For example,
a newly published study about the relationship between melatonin and ASD during fetal
development suggested that neuroprotective and circadian entraining (Table 2) would help
reduce the risk of neurodevelopmental disorders [21]. Collectively, our results showed
that transcriptional dysregulation and pathway perturbation occurred as early as the NPC
stage during the ASD development.

2.4. Construction of Regulatory Cascades of ASD

We constructed tree-like regulatory cascades consisting of PGCs and IncRNAs to
further investigate regulation changes in ASD (Figure 3C). Starting from the individual
transcription factors, target genes were added based on the brain- and neural-specific
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regulator-target regulations and restrictive criteria including gene expression correlation,
motif matching, and enhancer overlap. A maximum regulation radius was set at three
to maintain the cascade size (see Methods for details). Substantially more regulatory
cascades were found in normal samples than ASD, which were 243 versus 74 and 267
versus 137 cascades in NPCs and neural cells, respectively. The sizes of cascades were also
much larger in normal samples compared to ASD (Supplementary Figure S2), suggesting
that many regulations were lost due to ASD starting at the early stage of the disease.
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O 312 TFs bound to the promoter Preidentified gene regulatory networks
regions of IncRNAs (191,390 * Fetal brainand brain neurons
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Figure 3. The workflow of generating gene regulatory cascades. The gene regulatory networks of
fetal brain and brain neuron tissues were created based on Regulatory Circuits [18] and IncRNAs
were incorporated to complete the regulatory networks (A). The gene expression profiles (B) of ASD
were overlaid on the network to establish ASD regulatory cascades (C). The root of each regulatory
cascade is a TF.

Among 243 regulatory cascades in normal NPC, 26 of them containing over 1000 genes
were lost in ASD (Supplementary Figure S3). The root TFs of those cascades were enriched
in regulation of growth (p-value = 3.7 x 10~?), positive regulation of cell population prolif-
eration (p-value = 3.2 x 10~%), regulation of transforming growth factor beta 3 production
(p-value = 3.1 x 107°). Hence, these lost TF regulatory cascades may be responsible for
the increased brain size of ASD patients in the early stage of the disease. These TFs were
considered ASD-associated and the enriched pathways of these 26 cascades were listed in
Supplementary Table S3.

Of 267 cascades in normal neural cells, eight and 89 of them containing over 1000
and 20 genes, respectively, were lost in ASD neural cells (Supplementary Figure S4). The
root TFs of the eight cascades were abundant in positive regulation of neural cell death
(p-value =1.05 x 10~°), while the TF of the 89 cascades were enriched in peripheral nervous
system development (p-value = 4.9 x 10~%), nerve development (p-value = 1.02 x 107%),
and neuron differentiation (p-value = 1.7 x 1077).

Signal transducer and activator of transcription 1 (STAT1) is one of the ASD-associated
genes. It was reported that STAT1 could respond to cytokine and some growth factors and
play critical roles in ASD [22]. In the regulatory cascade rooted at STAT1, more regulations
were presented in the normal cascade than in ASD for the neural cells (Figure 4). IRFI,
another ASD-associated gene that communicates with STAT1 in ASD [23], was found to
regulate many target genes in this regulatory cascade (Figure 4A). The target PGCs in
the regulatory cascade of normal samples were enriched of two ASD-associated path-
ways: Toxoplasmosis (p-value = 0.012), protein processing in the endoplasmic reticulum
(p-value = 0.03) and the GO term: Endoplasmic reticulum (p-value = 2.2 x 10°). The
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relationships between toxoplasmosis, in which STAT1 and IRF1 were highly involved, and
ASD have been widely studied [10,23,24]. Our results suggested the regulation interaction
loss between STAT1 and IRF1, and the relevant target genes in ASD cells may attribute to
the ASD development.
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Figure 4. The regulatory cascades with transcription factor STAT1 as the root in the neuron cells.
The expression correlation coefficients of connected genes were larger than 0.8 in the cascades.
(A) showed the regulatory cascade in the normal samples. (B) represented the cascade with the root
gene STATT in the ASD samples. The gold circles denoted PCGs and the white diamonds represent
IncRNAs. The directed arrows indicate the regulations from the regulators to the target genes with
diverse correlation patterns: Positive (red), negative (blue) and IncRNA-target based on enhancer
matching (black).

In the NPC stage, different regulatory cascades with similar patterns were observed
with STAT1 as the root. A larger cascade was found in normal samples compared with
ASD (Figure 5). In particular, IncRNA ELF3-AS1, an antisense RNA of ELF3, was identified
by motif matching to be regulated by STAT1 (Supplementary Figure S5). This regulation
was further supported by the negative expression correlation (r = —0.809) between STAT1
and ELF3-AS1 in NPC.
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Figure 5. The regulatory cascades with transcription factor STAT1 as the root in NPCs. The expression
correlation coefficients of connected genes were larger than 0.8 in the cascades. (A) showed the
regulatory cascade in the normal samples. (B) represented the cascade with the root gene STAT1 in
the ASD samples.

To the best of our knowledge, there is no article reporting the involvement of ELF3
in ASD. A previous study of mouse NPC claimed that ELF3 could be a novel isoform of
B-G spectrin, which has potential roles in neural stem cell development. ELF3 was also
considered to be an axonal sprouting marker during embryonic development [25]. In this
study, we found that the regulation between STAT1 and ELF3 as well as the other target
genes of STAT1 were lost in ASD neural progenitor cells (NPCs), indicating disorder of the
axonal sprouting functions in the ASD and its association with ASD.
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3. Materials and Methods
3.1. RNA-Seq Data Process and Differential Expression Analysis

We downloaded 83 RNA-seq libraries (GSE67528) including 28 controls and 55 ASD
samples from [1]. In the original study [1], the skin fibroblasts from eight idiopathic ASD
individuals displayed brain overgrowth early in life and five age/gender-matched control
individuals were reprogrammed to produce three cell types, iPSCs, NPCs and neurons,
along with the neuron development. The RNA-seq data were then were processed to
calculate the gene expression profiles. The unexpressed genes (median read counts less
than 20) were first removed from our study. A total of 16,950 genes, including 14,667 PCGs,
953 lincRNAs, and 1330 antisense RNAs, remained for further analysis. Annotations
of IncRNA and antisense RNA were collected from Ensembl (GRCh38.90) [26]. Gene
expression profiles were calculated using Cufflinks [27] and HTSeq-count [28]. The R
package, edgeR [29], was applied for differentially expressed genes identification between
normal and ASD samples. The criteria |l0g2FC| > 1 and FDR < 0.05 were employed for
significance measurement.

3.2. Pathway Activation Assessment via GSVA Score

The member genes of the 23 ASD-associated pathways that were highly expressed in
our data were used to calculate GSVA scores using the R package GSVA [17]. We calculated
the difference between the largest positive and negative deviations on the normalized gene
expression log2(geneCount+1), and applied default arguments. Finally, the median GSVA
score of each pathway (gene set) was obtained based on the cell types representing the
activation status.

3.3. IncRNA-Involved Regulations

A total of 537 position weight matrices (PWMs) for motifs of the transcription fac-
tors were downloaded from JASPAR 2018 [19]. DNA sequences of the promoter regions
(—1000 bp to +200 bp respective to transcription start sites) of the IncRNAs were extracted
from the human genome (version hg38). Next, these motifs were aligned with the promoter
regions via MOODs. The statistical measure was calculated for the identification of the
significant motif matches. A much stricter threshold (p-value = 5 x 10~°) was applied
since this p-value was calculated once for multiple short sequences of the promoter regions.
The motif matches with the p-value under the threshold were output and indicated the
TF-IncRNA regulations.

To discover the potential target genes regulated by IncRNAs, we matched the IncRNAs
with the enhancer regions of the target genes. The enhancer regions, based on the fetal
placenta and fetal spinal cord tissues, were downloaded from the EnhancerAtlas. The
original enhancer regions under human genome version hgl9 were converted to hg38 using
the UCSC liftover tool [30]. A potential target gene of the given IncRNA was discovered
when there was an overlap of the genomic coordinates of the target gene’s enhancer
and the IncRNA. These IncRNA-target regulations were not further confirmed by the
gene expression correlation because they physically overlapped and the IncRNAs were
highly expressed.

3.4. Regulatory Cascade Construction

Beginning with an ASD-associated transcription factor as the root of the regulatory
cascade, we first calculated the gene expression correlation between this TF and its target
genes listed in our reference regulation list. The target genes were linked to the TF as layer
one children in the cascade if the correlation coefficients were higher than 0.8. Next, the
cascade grew by adding new target genes regulated by the layer one genes. Here, up to
three layers were allowed. PARTHER [31] was used for biological process enrichment
analysis for root TFs of the regulatory cascades.



Genes 2021, 12, 1901

9of 12

4. Discussion

Using genomic analyses focusing on ASD and neural system development, we iden-
tified many ASD-associated genes and pathways enriched in the neural progenitor cells,
which represent an intermediate stage in development between iPSC and neuron cells.
Our observations indicated that ASD might occur during the development from iPSC to
NPC stages. The genes that we identified based on this cell type could be potential targets
guiding further ASD studies.

Among the ASD-associated genes accumulated through many prior studies, only a
few were differentially expressed in our data. For instance, 873 ASD-associated genes
reported by AutDB were highly expressed in our data, and only three significant DEGs
were identified between iPSC ASD and iPSC normal samples. The number of DEGs
among AutDB genes in NPCs and neuron cells were only 32 and 19, respectively. Similarly,
265 ASD-associated rare SNVs were identified using the same RNA-seq date [1]. Of these,
only six (EGR2, KCNJ5, MYO18B, NTN1, SERPINE1 and ZSCAN10) and five (CCDC33,
EGFLAM, ITLN2, MAPK15 and NTN1) were DEGs found in NPC and neuron cell samples,
respectively, while no DEGs were found in iPSC. In this case, we extended the analyses
onto the regulation variations to study the changes in the regulatory relationships between
genes perturbed by ASD. By constructing the regulatory cascades of ASD, we discovered a
set of novel disease associated genes including IncRNAs.

Our work revealed the potential involvement of ELF3, ELF3-AS1 in ASD development
which has not been widely reported. ELF3 was found to be associated with mouse neural
stem cell development [25]. A recent study identified ELF3 as one of the top ranked active
TFs that are important for neural induction based on expression profiles at the different
time points of the induction process as well as ChIP-Seq experiments [32]. Our work further
demonstrated the importance of this gene in neural development. Based on regulatory
cascade analysis, we found that ELF3 was interacted with ELF3-AS1 and STAT1 in normal
NPCs, while those interactions were lost in ASD samples. Hence, ELF3 and its interactors
may have essential roles in the ASD progression.

Over the past decade, though hundred of genes related to ASD have been reported,
these genes only account for 10-20% of autism cases [33]. Our regulatory network analysis
centered at TFs provides a unique way to reveal master regulators, which position at the
top of regulatory hierarchies and control the transcriptional activities of many downstream
genes. For instance, we found some TFs regulate over 1000 genes in the regulatory cascades.
It has been shown that a TF or a set of TFs can drive the development of diseases and
biological processes [34-37]. Hence, the ASD-associated TFs identified by our work can
offer new therapeutic targets, leading to more effective treatments for more autism patients.
Our regulatory analysis started with the extraction of transcriptional regulatory circuits
from Regulatory Circuits database. The database was built through genome-wide mapping
promotes and enhancers, and their linkages with TFs and target genes to data of FANTOMS5
consortium [18,38,39]. Precisely and comprehensively locating regulatory regions, particu-
larly for enhancers, is a challenging task. Enhanced knowledge of these regulatory regions
will help improve our model to achieve better results. The ASD regulatory cascades that
we established in this study offer a framework for revealing new disease-related genes and
can be applied and extended to study other tissues and diseases.

5. Conclusions

We investigated alterations of gene expression, pathways and regulatory interactions
to understand ASD initialization and progression. Through the systematical study of the
dynamic changes of transcriptomes and regulatory networks in three neural cell types,
we found that abnormal gene expression and activity of ASD-related signal pathways
consistently occurred at NPCs, suggesting that transcriptional dysregulation of ASD at the
early stage of the neural system development. Our regulatory cascade analysis revealed
that many regulations between TFs and downstream targets were lost in ASD compared
to normal samples. Hence, the TFs of these lost cascades may have crucial roles in the
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neural system and brain development. In particular, we discovered STAT1 and IncRNA
ELF3-AS1 as novel genomic elements related to ASD development. Our findings enhance
our understanding of ASD at the regulation level.

Supplementary Materials: The following are available at https://www.mdpi.com/2073-4425/12
/12/1901/s1, Figure S1:(A) The percentages of differentially expressed genes in the reported ASD-
associated KEGG pathways of the three cell types. (B) The expression levels of the gene members
of the long-term depression pathway in the neuron cells of the normal(blue) and ASD (gold) cases.
Figure S2: The size of regulatory cascades for normal and ASD in NPC and neural cells. Figure S3:
The hierarchy clusters of the sizes of regulatory cascades for normal and ASD in the NPC stage. The
color refers to the log2( size of a regulatory cascade), and the dark red represents the regulatory
cascade lost in ASD. Figure S4: The hierarchy clusters of the sizes of regulatory cascades for normal
and ASD in the neural cells. The color refers to the log2(size of a regulatory cascade), and the dark red
represents the regulatory cascade lost in ASD. Figure S5: (A) GATA1 binds to the promoter regions of
the two isoforms of the IncRNA ELF3-AS1. The promoter region of the IncRNA was defined as the
window from 1000 bps upstream to 200 bps downstream from the transcription start site. (B) The
spatial structures of the ELF3 and ELF3-AS1 in the human genome. Table S1. List of the differentially
expressed IncRNAs in ASD samples of the three cell types. Table S2. The numbers of reference
regulations in fetal brain that were confirmed by gene expression correlation. Table S3.The TFs that
lost the interactions with their target genes in the ASD samples.
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