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Abstract: WRKY transcription factors constitute one of the largest gene families in plants and are
involved in many biological processes, including growth and development, physiological metabolism,
and the stress response. In earlier studies, the WRKY gene family of proteins has been extensively
studied and analyzed in many plant species. However, information on WRKY transcription factors
in Acer truncatum has not been reported. In this study, we conducted genome-wide identification
and analysis of the WRKY gene family in A. truncatum, 54 WRKY genes were unevenly located on all
13 chromosomes of A. truncatum, the highest number was found in chromosomes 5. Phylogenetic
relationships, gene structure, and conserved motif identification were constructed, and the results
affirmed 54 AtruWRKY genes were divided into nine subgroup groups. Tissue species analysis of
AtruWRKY genes revealed which were differently exhibited upregulation in flower, leaf, root, seed
and stem, and the upregulation number were 23, 14, 34, 18, and 8, respectively. In addition, the WRKY
genes expression in leaf under cold stress showed that more genes were significantly expressed under
0, 6 and 12 h cold stress. The results of this study provide a new insight the regulatory function of
WRKY genes under abiotic and biotic stresses.

Keywords: Acer truncatum; genome-wide; WRKY transcription factors; bioinformatics analysis;
gene expression

1. Introduction

Transcription factors are the most abundant gene regulators in multicellular genomes.
They activate or inhibit the expression of target genes by binding to specific DNA se-
quences, thus regulating the gene expression of all organisms [1–3]. WRKY transcription
factors are one of the largest and most important families of transcription factors with a
highly conserved protein structure domain [4,5]. Structurally, approximately 60 amino
acid residues of the N-terminus contain the conserved sequence associated with DNA
binding activity (WRKYGQK), and the C-end have a zinc-finger motif (Cx4–5Cx22–23HxH
or Cx7Cx23HxC) to participate in zinc finger protein interactions [6–8]. WRKY proteins are
divided into three groups based on the number of conserved domain and type of zinc finger,
named group I, group II and group III [9,10]. Group I comprises two Cx4–5Cx22–23HxH
zinc figure motifs; group II contains one Cx4–5Cx22–23HxH zinc finger motif; and group III
includes one Cx7Cx23HxC zinc finger motif [6]. On the basis of their phylogenetic clades
and different assembling, the three groups can be further divided into subgroups, such as
group II have five subgroups (II a–e) [11,12]. WRKY has many special biological functions
due to its unique domain.
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Numerous studies have indicated the crucial regulatory roles of WRKY transcription
factors in plant growth and development, physiological and biochemistry processes, biotic
and abiotic stress response [13–16]. For instance, overexpression of the transcription factor
TaWRKY2 enhances drought stress tolerance and increase grain yield in transgenic wheat
(Triticum aestivum L.) [17]; while overexpression of OsWRKY29 represses seed dormancy by
directly downregulating the expression of OsABF1 and OsVP1 in rice (Oryza sativa L.) [18].
What is noteworthy is that the regulatory functions of WRKY genes are closely associated
with multiple plant hormone-mediated signal pathways. In Arabidopsis thaliana, AtWRKY46
modulated the development of lateral roots in osmotic/salt stress conditions via regulation
of ABA signaling and auxin homeostasis [4]. Cold tolerance is a response of plants to
abiotic stress conditions, the gene expression levels of plants will change differently under
cold stress. Many studies have proved that members of the WRKY family play a crucial
regulatory role in cold stress, for instance, the expression of some PmWRKY genes was
induced by cold stress in Prunus mume, which show 6 PmWRKY genes were downregulated,
and three genes were upregulated expressed sustainably with prolonging of the treatment
time in stems [19]. In Camellia sinensis, CsWRKY33, CsWRKY34, CsWRKY37, CsWRKY38
and CsWRKY39 genes were upregulated under low (4 ◦C) temperature treatments [20].

Acer truncatum, a deciduous tree belonging to the Aceraceae, is a crucial landscaping
tree species with high ornamental and economic value [21,22]. The natural distribution
range of A. truncatum is mainly concentrated in northern China, Korea and Japan, but
there are a few sporadically distributed species in Europe and North America [23,24].
Due to its elite hardwood, it is widely used for timber production. Seeds and leaves are
rich in oils, nervonic acid and tannins, which can also be used as raw materials for food
processing and pharmaceutical development [25–27]. Therefore, increasing attention has
been given to the various uses of A. truncatum, such as ornamental greening, medicinal
value and ecological benefit, and research on A. truncatum has also increased. In recent
years, research on the molecular biology aspects of A. truncatum has mainly focused on
molecular markers, genetic diversity, and drug synthesis, but studies on its gene family
are still lacking. Publication of the whole genome sequence of A. truncatum makes up for
the gap in molecular biology research [28], which will be of great significance for further
studies on A. truncatum flowering, seed production, and biological and abiotic stress.

In this study, we comprehensively analyzed the WRKY gene family with multiple
bioinformatics methods and further determined the function of WRKY in growth and
development. Furthermore, some AtruWRKYs were preliminarily verified in regulating A.
truncatum tolerance to cold stress, and the transcript level of these responsive WRKY genes
influence A. truncatum response to cold stresses. The results lay a theoretical foundation
for deeper research on WRKY genes.

2. Materials and Methods
2.1. Plant Materials

The 3-year-old A. truncatum used in this study from the Northeast Forestry University
greenhouse (126◦38′8.92′′ E, 45◦43′20.64′′ N), Harbin, Heilongjiang province, China. The
A. truncatum seedlings was positioned in a low-temperature refrigerator at 4 ◦C to experi-
mentally validate the computationally predicted AtruWRKY genes, and leaves of samples
were collected at 6, 12, 24, 36 and 48 h after treatment with 0 h as a control. The collected
leaves were instantly frozen in liquid nitrogen for 5 min and stored at −80 ◦C until they
were used for extracting total RNA.

2.2. Sequence Retrieval of the WRKY Gene Family in A. truncatum

The A. truncatum genome files v1.1 (such as A._truncatum.gff, A._truncatum.pep and
A._truncatum_genome.fa) was retrieved in https://doi.org/10.6084/m9.figshare.12986237
.v2, accessed on 8 July 2021 and used to identify AtruWRKY [28]. Next, 74 known WRKY
transcription factor family genes from A. thaliana were selected as the query objects, and we
obtained the Arabidopsis protein sequence by TAIR 9.0 release (https://www.arabidopsis.
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org/browse/genefamily/index.jsp, accessed on 10 July 2021) [29]. The protein sequences
of A. truncatum and A. thaliana were subjected to BLAST alignment by TBtools (Toolbox for
Biologists) v1.086 (evalue <1 × 10−5) [30], each A. thaliana gene was successfully matched
with multiple AtruWRKY genes (Table S1). Further, a total of 572 alignment sequence
IDs were obtained after eliminating the repetition values and blanks. Then, candidate
protein sequences were extracted by TBtools. In addition, the candidate AtruWRKY and
A. truncatum were further manually analyzed using Batch CD-Search in the National Centre
for Biotechnology database (NCBI; https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/
bwrpsb.cgi, accessed on 11 July 2021) to confirm the presence of the WRKY domain. We
estimated 7 conserved domains in A. truncatum: WRKY, UPF0242 superfamily, Plant zinc
cluster domain (Plant_zn_clust, PF10533), PLN0321 superfamily, PKc-like superfamily, and
PAH− and Sin3 superfamily. Finally, only the genes containing conserved WRKY domains
were selected for subsequent analysis, and a total of 54 AtruWRKYs were obtained and
termed AtruWRKY1 to AtruWRKY54 (Table 1).

The proteomics and sequence analysis tools on the ExPASy (http://expasy.org/,
accessed on 13 July 2021) proteomics server was used to predict the protein molecular
weights (MW) and isoelectric points (PI) of AtruWRKY genes. To ensure the accuracy and
completeness of the data, the CDS length and amino acid sequence were predicted by
TBtools [31]. In addition, subcellular localization (https://wolfpsort.hgc.jp/, accessed on
13 July 2021) were calculated through the online website.

2.3. The Gene Structure and Chromosomal Location

To predict the exon-intron structure, the gene structure of all candidate A. truncatum
WRKY genes was identified by TBtools (used A._truncatum.gff and genes ID), and TBtools
software was used for visualization (from GTF/GFF3 File) [32,33]. At the same time,
TBtools was used to determine the chromosomal location of the AtruWRKY genes, and
their gene ID and sequences were used as the basic data for the searches. According
to the gene location and number, each AtruWRKY gene was mapped to A. truncatum
chromosomes, where tandemly duplicated gene pairs were linked with a red line [34,35]. It
is well known that A. truncatum has 13 pairs of chromosomes [28], so they were named chr1,
chr2, chr3, chr4, chr5, chr6, chr7, chr8, chr9, chr10, chr11, chr12 and chr13 in this study.

2.4. Protein Motif Composition Analysis and Functional Annotation

To identify the conserved motifs in A. truncatum proteins, the motifs within the
54 A. truncatum WRKY protein sequences were detected using the Multiple EM for Motif
Elicitation (MEME 5.3.2: https://meme-suite.org/meme/doc/meme.html?man_type=
web, accessed on 20 July 2021) [36]. The maximum number of motifs was set to 10,
and members of the same subfamily have similar conserved domain characteristics. In
addition, GO annotation was performed by Eggnog (http://eggnog5.embl.de/, accessed
on 20 July 2021) and visualized using WEGO 2.0 (https://wego.genomics.cn/, accessed
on 21 July 2021).

2.5. Sequence Alignment and Phylogenetic Tree Construction

According to the conserved domain of the A. truncatum WRKY protein, the fam-
ily can be divided into different groups. The Clustalw algorithm analysis was per-
formed, and the multiple sequence alignment analysis using the default parameters in
MEGA6.0: 1000 replicates for bootstrap analysis and pairwise deletion [37,38]. Then, the
phylogenetic tree was constructed from the alignment results using neighbor-joining (NJ)
method. The phylogenetic tree was annotated and beautified by using iTOL online software
(https://itol.embl.de/, accessed on 24 July 2021) [39,40]. Additionally, we downloaded the
genomic information of A. thaliana (TAIR10.1; https://www.ncbi.nlm.nih.gov/genome/
?term=+Arabidopsis+thaliana, accessed on 8 July 2021) and a related species called Acer
yangbiense (AYv1.1; https://www.ncbi.nlm.nih.gov/genome/?term=Acer+yangbiense+,
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accessed on 29 July 2021) from the NCBI website and analyzed the collinearity with the
information for the three species using TBtools [41].

Table 1. Information on the WRKY gene family in A. truncatum.

Gene Name Gene ID SL 1 CDS
(Length) AA 2 PI 3 MW (D) 4 Group

AtruWRKY1 Atru.chr5.112 cytosol 693 230 7.31 25,946.49 II b
AtruWRKY2 Atru.chr5.580 nucleus 1122 373 6.13 40,527.27 III c
AtruWRKY3 Atru.chr5.640 nucleus 1107 368 5.35 40,969.65 III a
AtruWRKY4 Atru.chr5.983 nucleus 798 265 5.24 30,044.15 III c
AtruWRKY5 Atru.chr5.585 cytosol 930 309 6.32 33,994.84 I a
AtruWRKY6 Atru.chr5.856 nucleus 1164 387 8.50 40,844.83 III e
AtruWRKY7 Atru.chr5.965 nucleus 945 314 6.50 34,739.92 II b
AtruWRKY8 Atru.chr5.562 nucleus 1122 373 6.13 40,527.27 III c
AtruWRKY9 Atru.chr5.1597 nucleus 1044 347 9.67 38,515.61 III b
AtruWRKY10 Atru.chr11.1895 nucleus 1878 625 6.66 68,360.37 III e
AtruWRKY11 Atru.chr11.1706 nucleus 1551 516 8.85 56,006.74 I b
AtruWRKY12 Atru.chr11.1674 nucleus 807 268 5.73 29,060.95 II b
AtruWRKY13 Atru.chr11.1669 nucleus 915 304 6.12 32,948.26 II b
AtruWRKY14 Atru.chr7.2541 nucleus 1029 342 7.62 38,513.83 III d
AtruWRKY15 Atru.chr7.1919 nucleus 492 163 5.63 18,559.46 II a
AtruWRKY16 Atru.chr7.53 nucleus 1482 493 5.62 53,646.88 I b
AtruWRKY17 Atru.chr7.2542 nucleus 819 272 8.70 30,682.41 III d
AtruWRKY18 Atru.chr7.2657 nucleus 1020 339 9.33 36,585.20 III b
AtruWRKY19 Atru.chr13.744 nucleus 1140 379 9.45 41,219.55 III b
AtruWRKY20 Atru.chr2.3906 nucleus 2241 746 5.78 80,810.51 I b
AtruWRKY21 Atru.chr2.3616 nucleus 1725 574 6.88 61,806.15 I b
AtruWRKY22 Atru.chr2.840 nucleus 1086 361 9.84 40,045.18 III b
AtruWRKY23 Atru.chr2.3488 nucleus 1656 551 7.84 60,264.59 III e
AtruWRKY24 Atru.chr2.3873 cytosol 216 71 8.95 8012.95 II a
AtruWRKY25 Atru.chr10.684 nucleus 1548 515 6.05 55,775.07 III c
AtruWRKY26 Atru.chr10.1574 nucleus 693 230 5.56 25,497.48 III c
AtruWRKY27 Atru.chr10.1366 nucleus 984 327 6.46 36,108.74 II b
AtruWRKY28 Atru.chr10.2262 nucleus 1845 614 6.07 65,386.01 III e
AtruWRKY29 Atru.chr10.2411 nucleus 1038 345 8.57 38,343.75 III d
AtruWRKY30 Atru.chr8.2579 nucleus 1740 579 5.90 62,385.94 III e
AtruWRKY31 Atru.chr8.2526 nucleus 831 276 9.56 29,968.99 I b
AtruWRKY32 Atru.chr8.2350 nucleus 1692 563 6.10 61,892.15 I b
AtruWRKY33 Atru.chr8.95 nucleus 1050 349 5.50 39,460.85 III a
AtruWRKY34 Atru.chr8.344 nucleus 1458 485 6.84 53,270.12 I b
AtruWRKY35 Atru.chr8.1995 nucleus 981 326 4.82 36,337.09 III a
AtruWRKY36 Atru.chr1.2580 nucleus 1788 595 7.73 65,397.05 I b
AtruWRKY37 Atru.chr1.252 nucleus 828 275 8.93 30,322.86 III a
AtruWRKY38 Atru.chr9.2113 nucleus 1011 336 5.41 37,384.57 III c
AtruWRKY39 Atru.chr9.2017 nucleus 1089 362 5.51 40,377.47 III a
AtruWRKY40 Atru.chr9.2304 nucleus 1662 553 7.22 59,525.46 III e
AtruWRKY41 Atru.chr4.410 nucleus 621 206 6.59 22,872.99 II a
AtruWRKY42 Atru.chr4.480 nucleus 699 232 8.78 26,451.89 II b
AtruWRKY43 Atru.chr4.3047 nucleus 1296 431 5.80 46,645.38 II b
AtruWRKY44 Atru.chr6.3354 nucleus 1689 562 6.07 61,083.23 I b
AtruWRKY45 Atru.chr6.3220 nucleus 1911 636 6.25 69,112.06 III e
AtruWRKY46 Atru.chr6.1828 nucleus 558 185 9.41 21,199.56 I a
AtruWRKY47 Atru.chr6.2590 nucleus 612 203 9.32 22,806.53 I a
AtruWRKY48 Atru.chr6.2076 nucleus 1035 344 6.73 37,984.86 II b
AtruWRKY49 Atru.chr6.1003 nucleus 1224 407 6.18 45,486.52 III e
AtruWRKY50 Atru.chr3.267 nucleus 1047 348 9.74 37,932.62 III b
AtruWRKY51 Atru.chr3.2384 nucleus 435 144 6.43 16,327.83 I b
AtruWRKY52 Atru.chr12.203 nucleus 1113 370 5.87 39,919.36 III a
AtruWRKY53 Atru.chr12.1782 nucleus 2307 768 5.31 83,984.96 I b
AtruWRKY54 Atru.chr12.201_Atru.chr12.202 nucleus 1017 338 5.78 37,079.06 III a

Subcellular localization 1. The length of the amino acid sequence 2. Isoelectric point 3. Molecular weight 4.

2.6. Analysis of AtruWRKY Gene Expression in Different Tissues/Organs

To analyze the expression profile of AtruWRKY genes in different tissues/organs, RNA-
seq data of AtruWRKY genes were downloaded from the NCBI databases (https://www.
ncbi.nlm.nih.gov/sra, accessed on 3 September 2021), which contains the expression levels
in root (SRR10097461), leaf (SRR10097462), flower (SRR10097463), stem (SRR10097460) and
seed (SRR10097465). The expression abundance of AtruWRKY genes were calculated using
the fragments per kilobase of transcript per million fragments mapped (FPKM) values.
R studio (pheatmap; https://cran.r-project.org/web/packages/pheatmap/index.html,
accessed on 4 September 2021) was used for standardized analysis and visualization of
gene expression data.

https://www.ncbi.nlm.nih.gov/sra
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2.7. Real-Time qRT-PCR Experimental Validation

The OMEGA Biotek (Guangzhou Feiyang Biological Engineering Co., Ltd., Guangzhou,
China) was used to extract total RNA from leaves (≤100 mg), and the experimental op-
erations were carried out strictly according to the instructions (Version: Plant RNA Kit
R6827; http://omegabiotek.com.cn/template/productShow.aspx?m=129002&i=100000
111413546, accessed on 10 September 2021). In addition, the RNA integrity and RNA
purity (OD260/230 and OD260/280) of the samples were determined by agarose gel elec-
trophoresis and ultrasonic spectrophotometry. To obtain the the amplification products
of cDNA for qRT-PCR analysis, approximately 1 ug of total RNA was reverse-transcribed
using the PrimeScript RT reagent kit with gDNA Eraser (TaKaRa, Kyoto, Japan). The
primers were designed using the online website INTEGRATED DNA TECHNOLOGIES
(https://sg.idtdna.com/pages, accessed on 22 September 2021), a total of 15 WRKY genes
were selected randomly and used for RT-qPCR analysis with specific primers, and 18S
rRNA was used as a reference gene (Table S2). The amplicon size ranging from 150 bp to
200 bp and an optimal Tm of 62 ± 1 ◦C. Quantitative real-time qRT-PCR was performed on
an ABI 7500 Real-Time system (Applied Biosystems) using the TaKaRa SYBR Green Mix
kit (TaKaRa, Beijing, China). The PCR protocol was conducted with a 20 µL volume, which
contained 0.4 uL of ROX Reference Dye II, 0.8 uL of upstream and downstream primers
(10 umol/L), 2 uL of cDNA template, 6 uL of double-distilled water (ddH2O) and 10 uL
of 2 × SYBR (TB Green Premix Ex Taq II). The PCR reaction program consisting of 95 ◦C
for 30 s, followed by 40 cycles of 95 ◦C for 5 s and 62 ◦C for 35 s, 95 ◦C for 15 s, and 60 ◦C
for 1 min, finishing with 95 ◦C for 15 s. Three technical repetitions were performed for the
whole experiment, the relative expression level was calculated using the 2−∆∆CT method.

3. Results
3.1. Identification of AtruWRKY in A. truncatum

Based on the amino acid sequences of the A. thaliana WRKY gene family, a total of
54 AtruWRKY genes were successfully identified from the A. truncatum genome by multiple
sequence alignment after removing duplicates, incomplete sequences, and sequences
without corresponding domains, and they were named AtruWRKY1 to AtruWRKY54
according to their Gene ID and structure. Detailed information on the 54 WRKY genes
is provided in Table 1. The number of amino acids (aa) in the predicted protein varied
from 71 to 768. The average predicted isoelectric points and molecular weight points of the
encoded proteins were 7.01 and 42,388.03, respectively. The subcellular localization results
showed that most of the WRKY genes (94%) were localized in the nucleus, and only the
AtruWRKY1, AtruWRKY5 and AtruWRKY24 genes were localized in the cytosol.

3.2. Phylogenetic Tree Construction and Conserved Motifs

To further explore the phylogenetic relationship of the WRKY transcription factor
family in A. truncatum, a phylogenetic tree of A. truncatum was constructed by using
MEGA software as shown in Figure 1, which intuitively reflects the evolutionary status
and grouping attribution of 54 members of the WRKY family. According to 54 WRKY
protein sequences and clustering analysis, the 54 identified members of the WRKY family
were sorted into three large groups. Specifically, the largest number of WRKY members
in the third largest group was 29. The first and second groups had 24 and 11 members,
respectively. Furthermore, a total of 10 motifs were identified by analyzing the conserved
motifs of WRKY family members through online MEME. Based on the number and amino
acid sequences of the conserved WRKY domains, we divided the three large groups into
nine subgroups (I a, I b, II a, II b, III a, III b, III c, III d and III e). As shown in Figure 2, the
same subgroups of WRKY members usually had similar motifs. For instance, almost all
gene had more than 4 motifs, and all genes except AtruWRKY5 and AtruWRKY31 contained
motif 2, which might play a crucial role in A. truncatum proteins. Interestingly, motif 5 was
observed only in group I b, whereas motif 9 was only found in groups III d and III e. The
group I b had the highest average number of motifs, approximately 8.

http://omegabiotek.com.cn/template/productShow.aspx?m=129002&i=100000111413546
http://omegabiotek.com.cn/template/productShow.aspx?m=129002&i=100000111413546
https://sg.idtdna.com/pages
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Figure 1. Phylogenetic tree of the AtruWRKY proteins from Acer truncatum. The NJ tree was
constructed from the amino acid sequences of AtruWRKY using MEGA6.0 with 1000 bootstrap
replicates. The A. truncatum WRKY proteins were grouped into three groups (I, II, III), which were
decorated with different colors.

3.3. Chromosomal Location and Gene Structure

All 54 AtruWRKY genes were mapped to 13 chromosomes (2n = 2X = 26) in the A.
truncatum genome (Figure 3). Notably, although WRKY genes were not evenly distributed
on chromosomes, they were present on every chromosome. Chr5 contained the most
AtruWRKY genes (9), the number of genes located on other chromosomes ranged from 1
to 6, and the lowest number of genes appeared on chr13 (1). There were six AtruWRKYs
on chr6 and chr8 and only two AtruWRKYs on chr1 and chr3. Gene tandem duplication
is considered to be an important reason for the formation of gene clusters [42,43]. In this
study, we discovered that some AtruWRKYs were adjacent to each other. For example,
AtruWRKY14 and AtruWRKY17 on chr7 were connected in series, suggesting that there
may be a tandem duplication relationship between these AtruWRKYs. Additionally, we
further investigated the WRKY exon-intron coding sequence structure to obtain in-depth
insight into the protein expression sequence. The results showed that each group had a
highly conserved structure (Figure 4). The distribution of CDS, UTR and introns of WRKY
genes had a certain regularity, the intron number in the A. truncatum WRKY family ranged
from 1 (AtruWRKY46) to 5 (AtruWRKY21), with an average number of 2.74, and group I
genes contained more introns. The number of CDSs was evenly distributed in AtruWRKY
genes, ranging from 3 to 4, but there was no UTR in many AtruWRKY (5, 6, 8, 11, 14, 17, 18,
24, 27, 28, 30, 36, 39, 40, 43, 45, 49, 52) genes.
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Figure 2. Conserved motifs of the proteins arranged according to their phylogenetic relationships with nine subgroups. The
motifs in the AtruWRKY were identified using MEME5.3.2 online program version. The 10 conserved motifs are shown in
diverse colors.

Figure 3. AtruWRKY gene distribution across 13 chromosomes of the A. truncatum genome. Tandemly duplicated genes are
marked with red.
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Figure 4. The gene structure of A. truncatum WRKY genes according to the phylogenetic relationship. The phylogenetic
tree was constructed with the full length sequences of A. truncatum WRKY proteins using MEGA6.0, and three groups
were marked with different colors. Introns, exons and UTR are represented by black lines, green boxes and yellow
boxes respectively.

3.4. Synteny Analysis of AtruWRKY Genes

To reveal the origin and evolution of the A. truncatum WRKY family members, a
synteny analysis was performed between WRKY genes in A. truncatum and two other
plants, including A. thaliana and A. yangbiense (Figure 5). Red lines in the background
highlight syntenic WRKY gene pairs within A. truncatum and other plant genomes, while
gray lines indicate collinear blocks. Fifty and 65 collinear gene pair showed syntenic
relationships with those in the other two species: A. thaliana and A. yangbiense, respectively.
A. truncatum and A. yangbiense are both members of Aceraceae, and WRKY genes show
stronger homology than A. thaliana.

3.5. AtruWRKY Expression Profiles in Five Tissues

The expression levels of all 54 AtruWRKYs were investigated thoroughly using a
rigorous transcriptome analysis procedure based on public transcriptomic data of different
tissues of A. truncatum, including flowers, leaves, roots, seeds and stems. Among the 54
AtruWRKY genes, 52 AtruWRKYs (except AtruWRKY49 and AtruWRKY53) were identified
in all tissue types (Figure 6). The AtruWRKY genes showed different expression across
tissues tested; one gene in the flower (AtruWRKY11) exhibited the highest transcript levels,
and the expression of AtruWRKY34, AtruWRKY46 and AtruWRKY5 occurred preferentially
in seeds. Six AtruWRKY genes (AtruWRKY24, AtruWRKY9, AtruWRKY8, AtruWRKY2,
AtruWRKY18 and AtruWRKY30) showed higher expression levels in roots than in seeds
and stems. The expression analysis of the different leaf developmental stages showed that
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several genes (AtruWRKY52, AtruWRKY15 and AtruWRKY17) had higher expression in
the stem.

Figure 5. Synteny analyses between the WRKY genes of A. truncatum. The collinear gene pairs with AtruWRKY genes are
highlighted in the red lines, while the collinear blocks are marked by gray lines.

3.6. Functional Annotation

Of all the AtruWRKY genes identified, most (47 genes) were successfully annotated
for their functions (Figure 7). By analyzing the cellular components of the functionally
annotated genes, we found that only a few genes played a part in membrane structure
formation, such as organelle parts (one gene), membrane-enclosed lumen (one gene),
extracellular region (one gene) and membrane (one gene). However, there are many
genes that are widely present and have positive effects on molecular function (46 genes),
accounting for more than 95% of all genes. We further analyzed the biological processes
and found that there were significant differences in the expression of the number of
genes, the number of genes annotated for each GO term can be found on the website
(https://wego.genomics.cn/view/WEGOID77554007142815, accessed on 21 July 2021).

3.7. Expression Analysis of AtruWRKY Genes under Cold Stress

To verify the functions WRKYs play in cold hardiness, the expression patterns of 15
randomly selected AtruWRKY genes in different stages at low temperature (4 ◦C) (0, 6,
12, 24, 36 and 48 h) were determined by qRT-PCR. The results showed that 15 AtruWRKY
genes exhibited significant differences, and most of the genes were highly expressed during
0~12 h under cold treatment (Figure 8). AtruWRKYs, including AtruWRKY12, AtruWRKY13,
AtruWRKY15, AtruWRKY17, AtruWRKY28, AtruWRKY31, AtruWRKY39, AtruWRKY44 and
AtruWRKY47, showed the highest expression levels when exposed to low temperature
for 12 h. AtruWRKY29, AtruWRKY33, and AtruWRKY51 showed the highest levels at 6 h,
however AtruWRKY20 (48 h), AtruWRKY25 (24 h) and AtruWRKY51 (36 h) also showed
relatively high expressed level after 12 h of cold treatment. Notably, the AtruWRKY33 gene
was only distinct expressed at 6 h, while AtruWRKY15, AtruWRKY17 and AtruWRKY33
were almost non-expressed at 12~48 h.

https://wego.genomics.cn/view/WEGOID77554007142815
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Figure 6. Tissue-specific expression of WRKY genes in A. truncatum. The color scale shows increasing
expression levels from blue to red, which represents log2-transformed FPKM. Gene expression was
normalized using Z-scores of fragments per kilobase of exon per million fragments mapped (FPKM)
for mean valued.
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Figure 7. Statistical results for GO annotations of coexpressing genes.

Figure 8. qRT-PCR analysis of WRKY genes in A. truncatum under cold stress. The Y-axis and X-axis represent the relative
expression level and the time course of stress treatment, respectively. Leaves were sampled at 0, 6, 12, 24, 36 and 48 h after
4 ◦C cold treatments. Data represent the mean ± SD of three technical repetitions.
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4. Discussion

A. truncatum is a well-known and valuable tree species for its graceful maple, elite
hardwood and rich medicinal ingredients [44,45]. However, only a few studies have been
conducted on its growth development and stress response at molecular level because of
incomplete RNA-seq and genome sequence data. Previous studies have found that TFs
play a crucial role in plant growth and response to abiotic stress through self-regulation
and regulation of downstream target gene expression [46–48]. WRKY transcription factors
have been reported to be one of the largest gene families and play a pivotal role in flow-
ering, growth development, and abiotic and biotic stress responses in plants [16]. So far,
some WRKY family members have been identified and analyzed in plant species such as
A. thalliana [49], G. max L. [50], T. aestivum [17] and O. sativa [51]. However, none of the
reports are published for the identification and functional role of the WRKY gene family
in A. truncatum. This study is the first publicly published analysis and identification of
WRKY transcription factors via genomic data, which provided a better understanding of
the function of WRKY genes family under cold stress in A. truncatum.

The number of TFs in a gene family is related not only to the genetic background of
the species but also to the influence of the long-term evolutionary succession of plants. In
present investigation, 54 genes were ultimately identified as encoded by the A. truncatum
WRKY family. The number of WRKY genes identified in A. truncatum was neither high nor
less than those WRKY genes in various plants (Santalum album, 57 WRKYs; Solanum tuberosum,
79 WRKYs; Sesamum indicum, 71 WRKYs; Panicum miliaceum L., 32 WRKYs;
Zanthoxylum bungeanum Maxim, 38WRKYs; Taraxacum antungense kitag,
44 WRKYs) [52–57], suggesting high conservation of WRKY gene family in A. truncatum,
which may be related to gene duplication during species formation and evolution. Fur-
thermore, the subcellular localization results in this study showed that all but AtruWRKY1,
AtruWRKY4 and AtruWRKY24 were detected in the nucleus, suggesting that most WRKY
gene functions may are closely related to the expression regulation of target genes, similar to
Xanthoceras sorbifolium [58] and S. album [52]. The 54 WRKY transcription factors identified,
all of which were unevenly distributed on 13 chromosomes in A. truncatum, may play im-
portant roles in the evolution of the WRKY gene family. Interestingly, the AtruWRKY14 and
AtruWRKY17 have a tandem duplication relationship between them, which were also close
phylogenetically. At the same time, transcription factor genes with similar functions were
clustered together in evolutionary trees. In particular, group III had significantly more gene
members than the other two, accounting for 54% of all AtruWRKYs. This was consistent with
the results of P. miliaceum L. [55] and Chinese jujube (Ziziphus jujuba Mill.) [8], indicating the
WRKY gene family diversification and conservation among the land plants. In addition, some
studies have clarified that the variation of group III WRKY genes may be key to the variation
of WRKY transcription factors [59].

The number and species of conserved motifs of each WRKY family member were
different to some extent, but the conserved motifs and species of the protein members in the
same subgroup were roughly the same, indicating that the members of the WRKY family
had similar structure and biological function. All of WRKY genes family members in this
paper contained motif 2, indicating that motif 2 with high frequency may be closely related
to the molecular function and structural properties involved in WRKY gene. In-depth
analysis of the structural characteristics of introns and exons is a key step in the process of
gene family evolution [60,61]. A varied number of introns was possessed by AtruWRKY
genes, group I had more introns in this study, implying that the molecular structure in
the group I of WRKY genes may be quite conserved in the process of evolution, which
conductive to the protein diversity caused evolution [62,63]. It seems that the crucial
function of the WRKY gene family in A. truncatum is very much related to group I, and
similar results were found in eggplant (Solanum torvum L.) [60]. These results confirm the
characteristics of the AtruWRKY gene family and facilitate further study on the function of
AtruWRKY genes.
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RNA-seq is usually used to study gene function and structure at the overall level and
reveal the molecular mechanisms of specific biological processes and disease occurrence.
This approach has been widely used in basic research, clinical diagnosis, drug development
and other fields [64–67]. As shown in Figure 6, we used transcriptome data from different
tissues/organs (root, flower, leaf, seed and stem) of A. truncatum to explore the expression
of the WRKY gene family, the expression pattern of each AtruWRKY gene was altered
in these tissues/organs. We found that among all 54 AtruWRKY genes, 52 genes (except
AtruWRKY49 and AtruWRKY53) were expressed specifically in plant tissues. Among them,
most AtruWRKY genes were highly expressed in root (56%), whereas a few AtruWRKY
genes were expressed in seed (6%) and stem (8%). This is consistent with studies made in
other plants, such as S. indicum L. [54], cabbage (Brassica rapa ssp. pekinensis) [68], grape
(Vitis vinifera) [69] and cucumber (Cucumis sativus) [70]. The results showed that the WRKY
genes are expressed tissue specifically, and which may function reflect in responses that
first affect plants below ground. AtruWRKY2, AtruWRKY8, AtruWRKY9, AtruWRKY22
and AtruWRKY24 showed the highest expression levels in the roots, and these genes may
play a key role in the root formation and development of A. truncatum. For instance,
previous studies have suggested that TaWRKY51 genes took part in T. aestivum L. lateral
roots formation by modulating ethylene biosynthesis [71]. Overexpression AtWRKY75
and OsWRKY31 gave rise to reduced significantly the number of relevant lateral roots in
contrast [72,73]. AtruWRKY11 is highly expressed only in flowers, indicating that some
AtruWRKY might only be expressed in response to particular biotic and abiotic. These
results suggest that WRKY transcription factors exhibit varied expression profiling in
various organs or tissues to regulate various biological and physiological metabolism
processes in A. truncatum [74,75].

Cold stress is a crucial factor affecting the growth and development of plants. Previous
studies on the mechanism by which WRKY regulates cold stress have mainly focused on
model plants, for instance, the OsMADS57 and OsTB1 conversely affect O. sativa L. chilling
tolerance via targeting OsWRKY94 [76]. In A. thaliana, the AtWRKY34 negatively mediated
cold sensitivity of mature pollen, speculated that it might be involved in the CBF signal
cascade in mature pollen [77]. In this study, 15 differentially expressed AtruWRKY genes
were verified in A. truncatum from the 54 genes (Figure 8). The results showed that
13 AtruWRKY genes were highly expressed at 0~12 h after low-temperature treatment,
which implied that these genes may be crucial in the early stage of cold stress treatment. In
contrast, the expression levels of AtruWRKY25 and AtruWRKY51 were slightly increased
after 12 h, suggesting that these genes participated in the late reaction to cold treatment.
This difference in expression before and after indicates that WRKY transcription factors
were time-efficient in response to cold stress, which was also verified in Brassica napus [78]
and P. mumu [19] in the past research, suggesting that different WRKY transcription factors
may play roles in different periods. In addition, the expression of a few AtruWRKY
genes decreased or faded away under cold treatment, such as AtruWRKY17, AtruWRKY31,
AtruWRKY33, AtruWRKY39 and AtruWRKY47. We conjecture that these genes may play a
role in other biotic and abiotic stresses in A. truncatum.

5. Conclusions

This study is the first genome-level description of the WRKY gene family of A. truncatum.
We identified 54 WRKY genes in A. truncatum, and all of them were located on 13 chromosomes.
In addition, we identified ten conserved domains of AtruWRKY proteins, and these WRKY
genes were classified into 3 groups (9 subgroups) based on phylogenetic relationships. The
collinearity of A. truncatum and A. yangbiense was better than that of A. thaliana, and the
functional annotation results showed that the majority of WRKY genes were involved in the
regulation of molecular functions and biological processes, such as transcription regulator
activity, biological regulation, regulation of biological process, metabolic process, and cellular
process, etc. Furthermore, the expression patterns in five different tissues suggested that these
WRKY genes might play a crucial role in flowers, seeds, leaves, roots, and stems. Finally, more
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AtruWRKY genes were significantly highly expressed under 0, 6 and 12 h of cold stress, which
provides a meaningful direction for future research under cold stress. The analysis of WRKY
genes identifies their molecular mechanisms and potential functions involved in plant biotic
and abiotic stress responses in A. truncatum and lays a foundation for the study of WRKY TFs
in A. truncatum and other plants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12121867/s1, Table S1: Each A. thaliana gene was matched with multiple AtruWRKY
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