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Abstract: Red pitaya (Hylocereus polyrhizus) is a significant functional food that is largely planted in
Southeast Asia. Heat stress (HS) induced by high temperatures is likely to restrict the growth and
survival of red pitaya. Although pitaya can tolerate temperatures as high as 40 °C, little is known
of how it can withstand HS. In this study, the transcriptomic and metabolomic responses of red
pitaya seedlings to HS were analyzed. A total of 198 transcripts (122 upregulated and 76 downreg-
ulated) were significantly differentially expressed after 24 h and 72 h of exposure to 42 °C compared
with a control grown at 28 °C. We also identified 64 differentially accumulated metabolites in pitaya
under HS (37 increased and 27 decreased). These differential metabolites, especially amino acids,
organic acids, and sugars, are involved in metabolic pathways and the biosynthesis of amino acids.
Interaction network analysis of the heat-responsive genes and metabolites suggested that similar
pathways and complex response mechanisms are involved in the response of pitaya to HS. Overex-
pression of one of the upregulated genes (contig10820) in Arabidopsis, which is a homolog of PR-1
and named HuPR-1, significantly increased tolerance to HS. This is the first study showing that
HuPR-1 plays a role in the response of pitaya to abiotic stress. These findings provide valuable in-
sights that will aid future studies examining adaptation to HS in pitaya.

Keywords: red pitaya; heat stress; transcriptome; metabolome; PR-1 protein

1. Introduction

Global ambient temperature has gradually increased because of greenhouse gases
such as CO2, methane, chlorofluorocarbons, and nitrous oxides. Heat stress (HS) is usually
defined as a temperature increase above a threshold level for a period of time sufficient
to cause irreversible damage to plant growth and development. It occurs in response to a
transient increase in temperature, usually 10-15 °C above environmental temperature. HS
associated with increases in ambient temperature globally poses a serious threat to the
growth and production of plants. Plants have evolved various physiological and bio-
chemical adaptations to avoid or reduce the damage caused by HS [1]. HS is one of the
most crucial forms of abiotic stress, as it disrupts homeostasis, limits plant growth and
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development, and even leads to death [2,3]. Elucidating the mechanisms by which plants
respond to HS is thus critically important.

HS has independent effects on the physiology and metabolism of plant tissues and
cells. Many types of physiological damage are observed under heat stress, such as the
scorching of leaves and stems, leaf abscission and senescence, shoot and root growth in-
hibition, and fruit damage, all of which decrease plant productivity [4]. Higher plants un-
dergo a series of cellular and metabolic reactions to withstand high temperatures, which
include changes in the cellular structure and organization, such as organelles and cyto-
skeleton, as well as membrane functions [5]; reductions in normal protein synthesis; in-
creases in the transcription and translation of heat shock proteins (HSPs) and heat shock
transcription factors (HSFs) [6]; and production of phytohormones such as abscisic acid
(ABA), antioxidant substances, and other protective molecules [7]. Some secondary me-
tabolites are also involved in the responses of plants to HS, such as phenolics (e.g., flavo-
noids, anthocyanins, and plant steroids) [1]. HS activates MAPKs, which regulate HSP
gene expression; MAPK activation may be related to heat-induced changes in membrane
fluidity and calcium signaling, which are significant for HSP gene expression and heat
tolerance [8]. HS causes changes in respiration and photosynthesis, leading to shortened
life cycles and reduced plant productivity [9]. High temperature alters the activities of
carbon metabolism enzymes, starch accumulation, and sucrose synthesis by downregu-
lating specific genes that participate in carbohydrate metabolism [10].

Pitaya (Cactaceae: Hylocereus) is a nutritious tropical fruit with high commercial and
medical value [11,12]. It has recently begun to be cultivated in Thailand, the Philippines,
Vietnam, Malaysia, and China. Pitaya can be cultivated in diverse climates because of its
tolerance of various types of environmental stress, such as drought, heat, salt, and poor
soil [13]. Most research on pitaya in previous decades has mostly concentrated in the be-
taine synthesis process, mainly including their purification and identification [14,15], their
physical and chemical properties [16], and their antioxidant and radical-scavenging ca-
pacity [17]. Metabolite profiling of pitayas has led to the identification of several betalain
biosynthesis-related compounds [18]. In addition, transcriptomic analysis has led to the
identification of several key genes in the betalain biosynthesis pathway [19]. Recently,
transcriptome and proteomics levels have been used to investigate the molecular mecha-
nism of pitaya response to different types of abiotic stress such as salt, drought, and cold
stress [20-22]. Proteomic analysis of pitaya led to the identification of 116 differentially
abundant proteins, which were mainly related to chloroplast and mitochondria metabo-
lism, indicating that they play a critical role in coping with cold stress [22]. Until now,
only a few stress-associated genes, including miR396b-GRF, HuCAT3, and HuERF1 in
pitaya, have been proved to enhance tolerance to cold, drought, and salt stress [23-25].
However, genomic resources and genetic information of pitaya are still scarce. More ge-
netic data are needed to aid studies examining the resistance of pitaya to abiotic and biotic
stress and crop breeding.

The physiological and molecular mechanisms underlying the response of plants to
HS are complex and depend on diverse signal transduction pathways, genes, and metab-
olites [26,27]. Transcriptomic analysis is an effective and widely used technique to identify
genes associated with heat tolerance [28-30]. Many heat-responsive genes have been iden-
tified, including HSPs, HSFs, WRKYs, MYBs, and NACs [31-33]. Metabolomic analysis
has become an effective means to study plant responses to biotic and abiotic stress [34-
36]. An integrative transcriptomic and metabolomic analysis of pitaya in response to HS
could provide novel insights into the mechanism by which plants respond to HS.

The optimum temperature for the growth of pitaya is 20 to 30 °C, and it can tolerate
temperatures as high as 40°C. However, little is known about how pitaya can withstand
such high temperatures. Here, we analyzed the transcriptomic and metabolomic re-
sponses of pitaya seedlings after 24 h and 72 h of exposure to 42 °C and 28 °C to identify
heat tolerance genes and metabolites and characterize the mechanisms underlying the re-
sponse of pitaya to HS (Figure 1). Our study suggests that many heat-responsive genes
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and metabolites are participating in the response to HS and that overexpression of up-
regulated genes (HuPR-1) can improve the heat tolerance of transgenic Arabidopsis plants.
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Figure 1. Flow chart of the experimental process. Blue represents the transcriptome process, and
green represents the metabolome process.

2. Materials and Methods
2.1. Plant Materials and Heat Treatments

Red pitaya (Hylocereus polyrhizus) were purchased online. After surface-sterilization,
seeds of pitaya were sown in the soil in plastic pots and grown to the three-month-old
seedling stage in a greenhouse under controlled conditions (14 h/10 h day/night cycle, 28
+1°C, and 60% * 5% relative humidity). For heat treatments, plants were subjected to 42
°C for 24 h and 72 h, and control plants were cultivated under normal conditions. Both
heat stress and control treatments consisted of three independent biological replicates. A
total of 9 samples were harvested in liquid nitrogen and stored at -80 °C for RNA extrac-
tion.

2.2. RNA Isolation and Library Preparation for Transcriptomic Analysis

Total RNA from different samples was extracted using TRIzol reagent (Invitrogen,
Waltham, MA, USA) according to the manufacturer’s instructions. RNA quality and
quantity, including the RNA integrity number (RIN), were analyzed using 1% agarose gel
electrophoresis and an RNA Nano 6000 Assay Kit with an Agilent Bioanalyzer 2100 sys-
tem (Agilent Technologies, Santa Clara, CA, USA), respectively [37]. mRNA was purified
with oligo (dT) beads; these cleaved RNA fragments were then used as templates to syn-
thesize first-strand cDNA using random hexamer primers, followed by second-strand
cDNA synthesis using RNaseH and DNA polymerase I. Illumina Hiseq platform was used
for paired-end cluster generation and sequencing [37].

2.3. Sequencing, De Novo Assembly, and Annotation

RNA sequencing libraries were generated using the NEBNext® Ultra™ RNA Library
Prep Kit for Illumina® (New England Biolabs, Ipswich, MA, USA) according to the man-
ufacturer’s instructions. The produced libraries were sequenced using Illumina HiSeq™
2500 at Biomarker Technologies Co. Ltd. (Beijing, China). Raw sequencing data in FASTQ
format were processed by NGSToolkits (version.2.3.3) using default parameters [38]. Clean
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high-quality data were obtained by removing reads containing adapters, poly-Ns, or low-
quality reads from the raw data. The Trinity method was used for the de novo assembly
of high-quality data to generate unigenes [39].

The unigenes were aligned to a series of databases (the NCBI non-redundant (Nr)
protein database (NR, Jan, 2013), Swiss-Prot protein database (Swissprot, The European,
Bioinformatics Institute, Cambridge, UK), Cluster of Orthologous Genes database (NCBI,
Bethesda, MD, USA), KEGG pathway database (Kanehisa Laboratories, Kyoto, Japan),
and the GO database) using BLASTx to obtain annotation and classification information.

2.4. Identification of DEGs

DEGs (differentially expressed genes) were identified by following previously de-
scribed methods [37]. The TopHat program (http://tophat.cbcb.umd.edu/, accessed on 13
February 2021) was used to map the clean data to the de novo assembled reference tran-
scriptome. DEGs of different libraries were analyzed using edgeR software [40]. Data were
considered high quality on the basis of the following criteria: log2 FC (fold change) >1, the
count value for each gene in the two datasets >20, and the adjusted p-value FDR (false
discovery rate) <0.001.

2.5. Transcriptome Assembly and DEG Validation

To validate the accuracy of the assembly, we amplified the CDS regions of nine ran-
domly selected transcripts from the de novo transcriptome by PCR. PCR reactions proce-
dures followed those of Nong et al. (2019). gqRT-PCR amplification was conducted using
a Roche LightCycler 480 Gene Scanning system (Roche, Basel, Basel-Stadt, Switzerland)
to validate the accuracy of the RNA-seq data following previously described methods
[41]. The expression levels of selected DEGs were normalized by comparison with the
internal reference gene UBQ [42]. The relative expression levels of each transcript were
calculated using the 2-24¢t method [43]. There were three biological and three technical
replicates per treatment. The primers used for PCR and qRT-PCR were designed using
Primer Premier 5 (Premier Biosoft, San Francisco, CA, USA). All primers are listed in Table
S1.

2.6. Extraction of Metabolites

Metabolites were extracted and detected by Biomarker Technologies (Beijing, China).
Control and 24 h heat-treated seedlings of red pitaya were collected, ground to a uniform
powder using liquid nitrogen, and stored at —80 °C. Samples were thawed at 4 °C on ice,
and 100 mg was placed in a 1.5 mL centrifuge tube. After extraction with 300 uL methanol,
20 pL of internal standard substances was added, followed by vortexing for 30 s. The mix-
tures were then treated with ultrasound for 10 min (incubation with ice water) and incu-
bated for 1 h at —20 °C. The supernatant was transferred to a new 1.5 mL centrifuge tube.
After centrifugation at 13,000 rpm for 15 min (4 °C), 200 uL of the supernatant was trans-
ferred to a conical insert of a 2 mL LC-MS glass vial. A total of 20 pL of the supernatant
from each sample was mixed as a pooled QC sample. Finally, 200 pL of the supernatant
was used for the UHPLC-QTOF-MS analysis.

2.7. LC-MS/MS Analysis

LC-MS/MS analysis was performed on an UHPLC system (1290, Agilent Technolo-
gies, Santa Clara, CA, USA) with a UPLC BEH Amide column (1.7 pm, 2.1 x 100 mm,
WatersMilford, MA, USA) combined with a TripleTOF 5600 system (Q-TOF, AB Sciex,
Framingham, MA, USA). The mobile phase consisted of 25 mM NHiOAc and 25 mM
NH4OH in water (pH = 9.75) (A) and acetonitrile (B), and the elution gradient was as fol-
lows: 0 min, 95% B; 7 min, 65% B; 9 min, 40% B; 9.1 min, 95% B; 12 min, 95% B. The flow
rate was 0.5 mL/min, and the injection volume was 3 uL. The Triple TOF mass spectrom-
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eter was used to obtain MS/MS spectra through information-dependent acquisition dur-
ing LC-MS experiments. In this mode, the acquisition software (Analyst TF 1.7, AB Sciex,
Framingham, MA, USA) can continuously evaluate the full scan survey MS data, as the
MS/MS spectra are obtained on the basis of preselected criteria. In each cycle, 12 precursor
ions with intensities greater than 100 were fragmented with a collision energy (CE) of 30
V (15 MS/MS events with a product ion accumulation time of 50 millisecond each). ESI
source conditions were set as follows: ion source gas 1, 60 Psi; ion source gas 2, 60 Psi;
curtain gas, 35 Psi; source temperature, 650 °C; and ion spray voltage floating, 5000 V or
—-4000 V in positive or negative modes, respectively.

2.8. Data Preprocessing and OPLS-DA

We used ProteoWizard to convert MS raw data files into the mzXML format and
processed them by R package XCMS (version 3.2). The preprocessing results generated a
data matrix consisting of the retention time (RT), mass-to-charge ratio (m/z) values, and
peak intensity. After XCMS data processing, R package CAMERA was used for peak an-
notation, and metabolites were identified using the in-house MS2 database.

OPLS-DA was used to analyze the data. The prediction parameters of the evaluation
model were R2X, R2Y, and Q2, where R2X and R2Y represent the interpretation rate of
the model and the X and Y matrixes, respectively, and Q2 represents the prediction ability
of the model. The model is more stable the closer the three indicators are to 1. The model
can be considered valid if Q2 > 0.5 and excellent if Q2 > 0.9. For samples with biological
replicates, the p-value of Student’s ¢-test and the VIP value of the OPLS-DA model were
combined to screen the differential metabolites. The criteria were p <0.05 and VIP > 1.

2.9. DNA Constructs and Plant Transformation

To obtain a recombinant vector for the overexpression assay in transgenic Arabidopsis,
we PCR amplified the full-length cDNA of HuPR-1 using the primer pair HuPR-1-F and
HuPR-1-R (Table S1). Then, the PCR product was cloned into the Bg/II and Spel sites of
the pCAMBIA1302-v plasmid (modified from pCAMBIA1302) by homologous recombi-
nation, with an expression cassette controlled by the CaMV 35S promoter. The construct
was sequenced correctly and transferred into Agrobacterium tumefaciens strain GV3101,
and the positive clone was selected and cultured. The T-DNA region containing the HuPR-
1 and NPTII expression cassette was transformed into Arabidopsis using the floral dip
method. Seeds of the Tiand T2 generations were germinated on MS agar medium contain-
ing 50 mg/L kanamycin to obtain homozygous lines [25]. Positive transgenic plants were
selected according to the segregation ratio (sensitive: resistant = 1:3) and were confirmed
by genomic PCR with the primer pair 1302-F/1302-R. The expression levels of HuPR-1
were detected using qRT-PCR analysis as described above [25].

2.10. HS Tolerance Assays in Transgenic Arabidopsis

WT and transgenic seeds were germinated simultaneously on MS medium plates.
Plants of each genotype were planted in a greenhouse as mentioned above. For the sur-
vival assay, 7-day-old seedlings were heat-treated at 44 °C for 2 h, then returned to 22 °C
to grow for 2 days, then photographed, and survival rates were calculated. More than 40
plants of each line were analyzed.

2.11. Statistical Analysis

All the experiments in this study were repeated three times, and the data were ex-
pressed as mean + SD. Differences between each transgenic line and WT plants were as-
sessed by Student’s t-test in Excel (Microsoft Office 2010). Asterisks indicate significant
differences (* p <0.05, ** p <0.01).
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3. Results
3.1. Sequencing and De Novo Assembly of the Pitaya Transcriptome

Nine transcriptome libraries were constructed using Poly-A+ RNA isolated from
three-month-old red pitaya seedlings showing normal growth under control conditions
(28 °C) or heat treatment (42 °C). These transcriptome libraries were sequenced using the
INlumina HiSeqTM 2500 platform, and 78,871,914 paired-end raw reads were generated.
The high-quality reads were assembled into 73,589 transcripts with an average length of
2141 bp and an N50 value of 2848 bp by Trinity software. The total sequence length was
96.3 Mb, and the transcript length range was 206-40,937 bp (Tables 1 and S2).

Table 1. De novo assembly and annotations metrics for the transcriptome of pitaya.

Item Statistic Value
Total sequences 36,842
Total bases 78,871,914
Min sequence length 206
Max sequence length 40,937
Average sequence length 2141.82
Median sequence length 1749.00
N25 length 4210
N50 length 2848
N75 length 1799
N90 length 1107
NO95 length 827
As 29.40%
Ts 29.33%
Gs 20.79%
Cs 20.48%
(A+T)s 58.72%
(G+0O)s 41.28%
Ns 0.00%

In total, 16,856 unique transcripts were successfully mapped to 6215 protein se-
quences in the Swiss-Prot database, which was associated with 427 species. The species
with the most hits was Arabidopsis thaliana (66.2%), followed by Oryza sativa subsp. japonica
(3.8%), Homo sapiens (2.7%), and Nicotiana tabacum (2.4%) (Figure 2 and Table S3). This
result indicates that red pitaya is closely related to Arabidopsis thaliana, as expected. Similar
results were obtained after performing a query against the NCBI RefSeq RNA database,
and 17,194 transcripts were successfully mapped (Table 54).
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Figure 2. Species distribution of the top BLAST hits for total homologous sequences. Among them,
the species with the most hits was Arabidopsis thaliana.

Nine transcripts were randomly selected for sequencing to confirm the sequence as-
sembly. The coding sequence (CDS) length ranged from 594 bp to 1572 bp. The amplified
CDS regions showed a 99-100% identity with their associated pitaya transcripts (Table
S5).

3.2. Identification of Differentially Expressed Genes (DEGs) under HS

We identified 845 DEGs between the control and heat-treated samples under the 24
h treatment, and 788 DEGs between the control and heat-treated samples under the 72 h
treatment. The expression of 329 and 446 genes was upregulated, and that of 516 and 342
genes was downregulated after 24 h and 72 h of high temperature stress, respectively
(Figure 3A,B). Following heat treatment, the expression of 122 transcripts was induced at
24 h and 72 h, and the expression of 76 transcripts was suppressed (Figure 3A,B). To obtain
an integral transcriptional profile of the different expressed transcripts under different
phases of heat stress, we performed the hierarchical clustering analysis and found that
heat stress affected the transcriptional profiles and the number of downregulated/upreg-
ulated genes (Figure 3C). Photosynthesis is one of the physiological processes most sensi-
tive to heat. Under HS, the photochemical reaction in the thylakoid sheet and the carbon
metabolism in the chloroplast matrix are vulnerable to damage [44,45]. HS disrupts the
thylakoid membrane, thereby inhibiting the activities of the membrane-associated elec-
tron carriers and enzymes and reducing the rate of photosynthesis [46]. In our study, sev-
eral DEGs related to the electron carriers and enzymes in the photosynthesis pathway
were identified (Table 2).
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Figure 3. Overview of transcriptome analysis. (A) Venn graph for 24 h and 72 h based on heat down-
regulated (repressed) genes. (B) Venn graph for 24 h and 72 h based on upregulated (induced) genes.
(C) The heatmap of the DEGs in RNA-seq analysis. CK: control for 0 h; H24h: heat stress for 1 h;
H72h: heat stress for 72 h.

Table 2. Top 20 DEGs in red pitaya after heat stress.

GeneID Log:FC p-Value Annotation
GRXC11; glutathione-disulfide oxidoreduc-

Contigl9129  7.63  3.08 x 10 tase activity in the presence of NADPH and  up

glutathione reductase.

Contig20825 7.26  2.29 x 105 NA up

FER?2, chloroplastic; stores iron in a soluble,
Contig32725 5.01 3.76 x 107 non-toxic, readily available form. Important — up
for iron homeostasis. Has ferroxidase activity.
N/A, chloroplastic; stores iron in a soluble,
Contig32724 498 1.03 x10° non-toxic, readily available form. Important — up
for iron homeostasis. Has ferroxidase activity.
PFE, chloroplastic; stores iron in a soluble,

Contig21847 4.74  1.61 x10® non-toxic, readily available form. Important  up

for iron homeostasis.

ELIP1, chloroplastic; early light-induced pro-
tein 1; prevents excess accumulation of free
chlorophyll by inhibiting the entire chloro-
phyll biosynthesis pathway, and then pre-

vents photooxidative stress; involved in seed

germination
PFK3; catalyzes the phosphorylation of D-
fructose 6-phosphate to fructose 1,6-bisphos-
phate by ATP, the first committing step of
glycolysis.

Contig9300 441  9.1x10* NA up

PGM1, 2,3-bisphosphoglycerate-independent

3% 1021 phosphoglycerate mutase; catalyzes the inter-

conversion of 2-phosphoglycerate and 3-
phosphoglycerate.

Contig9996  4.28  9.30 x 10¢ NA up

ART?2; encoded on the antisense strand of the

1 — -5
Contig9364 529 4.08x10 nuclear 255 TDNA. down

Contig2380  4.67 6.45x10™ up

Contig785 463 1.25x10710

up

Contig3696 439 1.6 up
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PER?72, peroxidase 72; removal of H20; oxi-
dation of toxic reductants; biosynthesis and

degradation of lignin; suberization; auxin ca-

Contigl7684 -549 6.21 x 105 down

tabolism; response to environmental stresses
such as wounding, pathogen attack, and oxi-
dative stress.
Contig7023 -551 1.27 x 108 NA down
rbgA, ribosome biogenesis; GTPase A; essen-
Contig2725 —6.29 3.73x107% tial protein that is required for a late step of down
50S ribosomal subunit assembly.

Contigl6950 -6.58 1.09 x 107 NA down
ALMT?2, aluminum-activated malate trans-
porter 2.

LBD41, LOB domain-containing protein 41;
Contig31875 -7.22 1.92x 10" cellular response to hypoxia; regulation of ~down

Contig18702 -6.91 6.00 x 10+ down

transcription.
ALMTI10, alumi -activat late trans-
Contig29974 -8.03 2.66 x 10~ 0, aluminum-activated malate trans down
porter 10.
Contig20699 898 1.78 x 102 RAB15, glycine-rich RNA-binding, abscisic down

acid-inducible protein.
Contig352 -10.55 4.34 x 101 NA down

NA, no annotation.

Transcription factors (TFs) play a significant role in plants response to HS by regu-
lating the expression of target genes. The major TFs identified from the DEGs involved in
the response to HS in this study included 15 HSPs, 8 MYBs, 5 AP2/ERFs, 3 HSFs, 2 bZIPs,
and 1 MBF1C gene (Table S6); the expression of seven MYB TFs was suppressed (Table 3),
and the expression of 13 HSPs was induced (Table 4).

Table 3. MYB proteins regulated by heat stress in red pitaya.

GeneID Log:FC Functional Description = Homology Species
Contig9674  -1.66 MYB domam—.contammg MYBB Xenopus laevis
protein
.Con— -1.58 MYB domam-.contammg MYBB Xenopus laevis
tig26304 protein
.Con- -2.38 MYB-related protein 306 MYBO06 Antirrhinum majus
tig25078
.Con- -2.70 MYB-related protein 306 MYBO06 Antirrhinum majus
tig25077
Con- 166 MYBdomainprotein30  MYB30  Antirhinum majus
tig25252 ' P /
. Con- -1.79 MYB domain protein 44 MYB44 Arabidopsis thaliana
tig28175
. Con- -1.77 MYB domain protein 44 MYB44 Arabidopsis thaliana
tig28176
Con-

tig21877 -1.37 MYB domain protein 86 MYBS86 Arabidopsis thaliana
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Table 4. Heat-shock proteins and heat transcription factors regulated by heat stress in red pitaya.

GeneID Log: FC Functional Description Homology Species
. Con- 1.86 Heat shock factor A2 HsfA2 Arabidopsis thaliana
tig26416
Con- . . .
. 2.54 Heat shock factor A2 HsfA2 Arabidopsis thaliana
tig26417
Con- 1.67 Heat shock factor R2 HspR2 Arabidopsis thaliana
tig27952 P P
Con- 1.13 Heat shock protein 83 Hsp83 D. melanogaster
tig20486 P P ' g
Contigl1864 3.72 Heat shock protein 16 Hsp16 Glycine max
Contiglgog 491  eatshockcognate7lkDa e Petunia hybrida
protein
Heat-sh 71 kD
Contigl899 1.43 eat-shock Cog'nate kDa Hsp7C Petunia hybrida
protein
Heat-sh 71 kD
Contig3506  2.20 eat-shock Cog.nate kDa Hsp7C Petunia hybrida
protein
Con- 3.89 Heat shock protein 41 Hsp41 Glycine max
tigl3687 P P 4
Contigl1021  4.67 Heat shock protein 83 Hsp83 Ipomoea nil
Contigl1022  2.34 Heat shock protein 83 Hsp83 Ipomoea nil
Contigl1023  2.27 Heat shock protein 83 Hsp83 Ipomoea nil
- Heat-sh 71 kD
.Con 6.29 eat-shock Cog.nate kDa Hsp7C Rattus norvegicus
tig27132 protein
.Con- 137 70 kDa heat sho.ck-related pro- Hsp7S Pisum satioum
tig22611 tein
Con- heat shock 70 kDa protein cog- Lo
-1.94 Hsp7E
920223 9 nate 5 sp Spinacia oleracea
Con- . Solanum lycopersi-
-1.31 Heat shock protein 72 Hsp72
ig26216 3 eat shock protein sp cum
- 22.0 kDa class IV heat sh
.Con 4.25 0kDa class V eat shock Hsp22 Ipomoea nil
tig14935 protein
Con- . . . .
tig13847 1.59 Heat shock protein 70 Hsp70 Arabidopsis thaliana

To verify the RNA-Seq data, we randomly chose seven contigs (genes) from the da-
taset and verified them by qRT-PCR. The qRT-PCR results showed that the patterns of
expression of the selected contigs were consistent with the RNA-Seq dataset (Figure S1).
These findings confirm the reliability of the obtained data.

To investigate the mechanisms underlying the expression of DEGs in response to HS,
we analyzed their functions through Gene Ontology (GO) analysis. A total of 1434 DEGs
were mapped to 888 protein sequences in Swiss-Prot, of which 546 DEGs were uncharac-
terized transcripts (Table S7). These DEGs were assigned to three classes (molecular func-
tion, biological process, and cell component) of GO categories (Table S7 and Figure S2).
Among the classified GO groups, the terms such as catalytic activity (GO:0003824), meta-
bolic process (GO:0008152), and cell part (GO:0044464) were dominant in each of the three
main categories (Figure S2). We also observed a high level of enrichment of genes in the
following functional groups: binding (GO:0005488), cellular process (GO:0009987), re-
sponse to stimulus (GO:0050896), and organelle (GO:0043226) (Figure S2).

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis provided
insight into the complex biological functions of these genes under HS. DEGs in the heat
treatment were significantly enriched in the following pathways: “metabolic pathways,”
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“biosynthesis of secondary metabolites,” “carbon metabolism,” “biosynthesis of antibiot-
ics,” and “protein processing in endoplasmic reticulum” (Figure 4, Table S8). These DEGs
were also enriched in “photosynthesis,” “MAPK signaling pathway,” and “plant hormone
signal transduction” (Figure 4, Table S8). The above results showed that red pitaya under-
goes complex metabolic and enzymatic reactions under HS.
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18 KEGG Pathway
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Figure 4. Top 15 of the pathway assignments of red pitaya genes according to the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database. DEGs in the heat stress were significantly enriched in
the metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, etc.

3.3. Analysis of the Metabolites in Red Pitaya Seedlings under HS

Metabolic pathway analysis can provide insights into the main biochemical and sig-
nal transduction pathways involved in the response of red pitaya to HS. To identify the
metabolites in response to heat treatment, we compared the metabolic profiles between
normal pitaya seedlings and seedlings subjected to heat treatment for 24 h using LC-
MS/MS. We detected a total of 1071 metabolic peaks, with 450 non-target metabolites and
621 target metabolites (Table 59). In the orthogonal projections to latent structures discri-
minant analysis (OPLS-DA) model, the score (T1) of the main component in the OSC pro-
cess was 31% (Figure 5A). Compared with the control group (CK), 64 metabolites (37 up-
regulated and 27 downregulated) were identified to be differentially accumulated under
HS (Figure 5B, Table S9). We also generated a heatmap of all differentially accumulated
metabolites under HS to display changes in metabolites compared with CK group (Figure
6). Metabolites that increased in content mainly included meta_206, meta_40, meta_10,
and meta_8, which represented glycerol tributanoate, cis-aconitate, L-isoleucine, and
mesaconic acid, respectively. However, some metabolites were unmapped, including
meta_1028, meta_1029, and meta_1037 (Table S9).
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Figure 5. Identification of differentially accumulated metabolites. (A) Metabolic analysis using an OPLS-DA model. (B)
Volcano plots of differentially accumulated metabolites under HS compared with the control group. The green indicates
downregulated metabolites, red indicates upregulated metabolites, and black indicates no significant change.
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Figure 6. Heatmap of all differentially accumulated metabolites for H24h. CK, the control group;
H24h, the 24 h heat stress group.

To obtain a better understanding of the characteristics of the compounds involved in
metabolic processes, we conducted a KEGG enrichment analysis for the detected metab-
olites. The differentially accumulated metabolites were mapped to different pathways
(Tables 5 and S9). Among these pathways, “metabolic pathways (ko01100),” “biosynthesis
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of secondary metabolites (ko01110),” “2-oxocarboxylic acid metabolism (ko01210),” “car-
bon metabolism (ko01200),” and “biosynthesis of amino acids (ko01230)” were the top
five enriched pathways (Figure 7).

Table 5. KEGG classification of significantly enriched pathways, following metabolite analysis of
differentially accumulated metabolites.

ID 2 Term Diff_Metabolites Metabolite_id
ko00970  Aminoacyl-tRNA biosynthesis 2 meta_51; meta_10
1000630 Glyoxylate and learboxylate me- ) meta_40; meta_ 8

tabolism
000960 Tropane, plp.erld.me, and pyrldme 1 meta_10
alkaloid biosynthesis
ko00460  Cyanoamino acid metabolism 1 meta_10
ko00020 Citrate cycle (TCA cycle) 1 meta_40
ko00240 Pyrimidine metabolism 1 meta_212
ko00966 Glucosinolate biosynthesis 1 meta_10
ko01200 Carbon metabolism 2 meta_51; meta_8
B h o !
1000660 C5-Branched leasm acid metabo ) meta_8; meta_40
lism
k001110 Biosynthesis of s.econdary metabo- ’ meta_10; meta_ 40
lites
k000260 Glycine, serine, ar}d threonine me- 1 meta_51
tabolism
ko02010 ABC transporters 1 meta_10
1000280 Valine, leucine, an(fl isoleucine deg- 1 meta_10
radation
. . . meta_§8; meta_10;
ko01210 2-Oxocarboxylic acid metabolism 3
meta_40
000290 Valine, leucine, and 1.soleucme bio- ’ meta_10; meta_8
synthesis
ko01230 Biosynthesis of amino acids 2 meta_51; meta_10
000270 Cysteine and m.ethlonme metabo- 1 meta_51
lism
meta_212; meta_8;
ko01100 Metabolic pathways 5 meta_51; meta_40;

meta_10

aPathway-map ID. In the KEGG database (http://www.genome.jp/kegg/, accessed on 10 March
2021). Term, annotation of various metabolic pathways in plants; Diff Metabolites, the number of
differentially expressed compounds under heat treatment conditions compared with the control

group.
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Figure 7. Top 18 enriched pathways for heat-responsive compounds.

3.4. Interaction Network Analysis between Heat-Regulated Genes and Metabolites

Gene-metabolite interaction networks can provide insight into the functional rela-
tionships between genes and metabolites and aid in the identification of new regulatory
elements [47]. The KEGG analysis showed that the top three pathways were metabolic
pathways (ko01100), biosynthesis of secondary metabolites (ko01110), and carbon metab-
olism (ko01200) (Table S9). Metabonomic analysis revealed that the known differential
compounds mainly included meta_40 (cis-aconitate), meta_10 (L-Isoleucine), meta_8
(mesaconic acid), meta_51 (3-phosphoserine), and meta_212 (uridine). Metabolites are the
final products of cell activities that directly reflect the effects of environmental changes or
physiological and pathological changes on plants. In this study, meta_40 (cis-aconitate)
accumulated under HS, which is localized in mitochondria and is an intermediate product
of the isomerization of citric acid to isocitrate (ko00020 and ko00630) by aconitase hydra-
tase. The KEGG analysis showed that contigb82 (ACOC) encoded aconitate hydratase
(ACO; aconitate hydratase (EC: 4.2.1.3)) in the citrate cycle (TCA cycle) and was upregu-
lated under HS (Table S6). Therefore, the expression of the aconitic acid hydratase gene
contigh82 was upregulated under HS; this gene promotes the conversion of citric acid to
isocitric acid and thus increases the accumulation of the intermediate product cis-aconitic
acid. Meta 40 also participates in other important pathways, including the biosynthesis of
secondary metabolites (ko01110), metabolic pathways (ko01100), 2-oxocarboxylic acid
metabolism (ko01210), C5-branched dibasic acid metabolism (ko00660), and glyoxylate
and dicarboxylate metabolism (ko00630). These findings indicated that cis-aconitate may
play an important role in the response of red pitaya to HS through its effects on different
pathways. The content of other metabolites was also altered under HS, such as meta_51
(3-phosphoserine), which participates in glycine, serine, and threonine metabolism
(ko00260). The content of 3-phosphoserine decreased under HS, which affected the ex-
pression of the downstream gene contig28686, which encodes trpB (tryptophan synthase
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[ chain, (EC: 4.2.1.20)) and catalyzes the transformation of serine to L-tryptophane. We
also found several other genes upregulated in this signaling pathway, but their roles in
the response to HS remain unclear. The expression of contig11990 (ODBA1, 2-oxoisova-
lerate dehydrogenase subunit al) was upregulated under HS in valine, leucine, and iso-
leucine degradation (ko00280) (Table S6), and the content of meta_10 (L-isoleucine) in-
creased according to the metabolomic analysis; thus, HS might lead to an increase in the
content of L-isoleucine and induce the expression of the downstream gene contig11990.

3.5. Overexpression of HuPR-1 in Arabidopsis Increased Heat Tolerance

To verify the genes upregulated in the response of red pitaya to HS, we selected the
candidate gene contig10820 for functional verification; this gene is also upregulated in re-
sponse to salt stress according to the salt transcriptome database [37]. The expression of
contig10820 was increased by 3.47 times when induced by high temperature and increased
by 3.01 times when induced by salt. The CDS of contig10820 is 594 bp and is a homolog of
PR-1 (pathogenesis-related protein 1) family genes. On the basis of the Pfam database, we
found that HuPR-1 contained the CAP superfamily (cysteine-rich secretory proteins, an-
tigen 5, and pathogenesis-related 1 proteins (CAP)) domain structure (PF00188) (Figure
8A). To determine its biological function, we generated transgenic Arabidopsis plants over-
expressing HuPR-1 that were driven by the CaMV 35S promoter. Three homozygous Ts
lines (OE-4, OE-17, and OE-134) were selected for HuPR-1, and gRT-PCR was performed.
HuPR-1 was highly expressed in all transgenic Arabidopsis lines (Figure 8B), and they were
used for phenotypic analyses (Figure 8C). For the survival assay under HS, 7-day-old
seedlings of wild type (WT) and transgenic lines were heat-treated at 44 °C for 2 h, and
then recovered under normal conditions (22°C) for 2 days (Figure 8C). The survival rates
of all transgenic lines were significantly higher than those of WT plants (Figure 8C). These
data indicated that HuPR-1 may play a critical role in the response of pitaya to HS.
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Figure 8. Sequence analysis of HuPR-1 and its overexpression conferred heat tolerance to transgenic Arabidopsis plants. (A)
Protein sequence alignment result of HuPR-1 in NCBI and protein alignment by Vector NTI Advance 11. (B) The qRT-
PCR was used to measure the expression levels of HuPR-1 in transgenic Arabidopsis plants. (C) Survival rates (%) of WT
and transgenic seedlings after heat treatment. Seven-day-old seedlings were heat-treated at 44 °C for 2 h and returned to
22 °C to grow for 2 days, and then photographed; following this, the survival rates were calculated. More than 50 plants
of each line were analyzed. Bars represent standard deviations. Asterisks indicate significant differences (* p <0.05, ** p <

0.01).
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4. Discussion

Temperature is one of the most significant factors limiting plant growth and devel-
opment. When plants are subjected to HS, the transcription and translation of proteins
involved in normal metabolic activities are reduced, and the synthesis of HSP proteins is
stimulated; in addition, osmotic adjustment substances, such as inorganic ions, soluble
sugars, proline, and betaine, accumulate to decrease heat-induced injury [48]. In this
study, the response of red pitaya to HS was explored.

4.1. Roles of Heat-Responsive TFs

Previous studies have shown that HS signals are transduced through multiple sig-
naling pathways to activate TFs, which induces the expression of many HSPs and other
HS-responsive genes to respond to HS. TFs have an important effect on the response of
plants to HS by regulating the expression of target genes. Studies have showed that there
are more than 50 TFs families in plants, of which AP2/EREBP, NAC, MYB, WRKY, bHLH,
HSF, and bZIP, are mainly involved in the response of plant to abiotic stress. AP2/EREBP
is a large family of TFs found in plants, among which DREBs belong to the EREBP sub-
family and participate in the response of plants to different abiotic stresses. For example,
rice OsDREB2B and maize ZmDREB2A are induced to express in response to high tem-
perature stress [49,50]. WRKYs is a kind of plant-specific transcription factor. WRKY pro-
tein can positively regulate the heat tolerance of plants. For instance, CaWRKY40 partici-
pates in plant response to high temperature stresses in pepper, and rice OsWRKY11 par-
ticipates in resistance to heat shock stress [51,52]. NACs is also one of the plant-specific
and largest transcription factor family, involved in multiple processes in response to abi-
otic stress. Among them, wheat TaNAC2L can improve heat tolerance by regulating the
expression of stress response genes [53].

The major TFs identified from the DEGs involved in the response to HS in this study
included MYBs (8), AP2/ERFs (5), bZIPs (2), MBF1C (1), HSPs (15), and HSFs (3), indicat-
ing that these TFs play a key role in the response to HS. MBF1C is a highly conserved
transcriptional coactivator and a key regulator of heat resistance. The expression of
DREB2A and HSFBs under HS was reduced in an mbflc mutant [54]. MYB TFs occur in all
eukaryotes. MYBs are known to be involved in plant development, metabolism, and stress
responses. To date, AtMYB68, LeAN2, and OsMYB55 have been proposed to play an es-
sential role in heat tolerance. In Arabidopsis, compared with WT plants, the Atmyb68 mu-
tants was significantly inhibited in vegetative growth at high temperature [55]. The over-
expression of LeAN2 in tomato resulted in anthocyanin accumulation and enhanced tol-
erance to HS by maintaining low levels of reactive oxygen species and high non-enzymatic
antioxidant activity [56]. Overexpression of OsMYB55 improves the tolerance of rice
plants to high temperature by increasing the expression of the downstream genes
0sGS1,;2, GAT1, and GAD3, which are involved in amino acid metabolism [57]. In addi-
tion, transgenic Arabidopsis plants overexpressing TaMYB80 showed enhanced tolerance
to heat and drought stress, which might be due to the increased levels of cellular ABA
[58]. In Arabidopsis, MYB30 regulates the response to HS through ANNEXIN (ANN)-me-
diated cytosolic calcium signals [59]. MYB30 binds to the promoters of ANN1 and ANN4
and inhibits their expression. Hereafter, ANNs regulate the increase in heat-induced
[Ca¥]cyt, triggering downstream responses to HS, and contig25252, which encodes
MYB30, was also upregulated in our study. The expression of seven other MYB TFs was
markedly inhibited by HS (Tables 3 and S6), indicating that they may play negative regu-
latory roles in the response to HS.

HSPs are known to play key roles in protecting the cell metabolic apparatus as well
as the response of plants to HS [1]. In this study, HSPs were markedly induced by HS
(Tables 4 and S6). The overproduction of Hsp70 confers resistance to heat and other types
of abiotic stress in Arabidopsis [60]. Mitochondrial Hsp70 may suppress programmed cell
death of rice protoplasts by inhibiting the amplification of reactive oxygen species [61]. In
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this study, the mRNA levels of contig13847, which belongs to the Hsp70 gene family, were
increased after heat treatment. HSFs are the terminal components of signal transduction
and mediate the expression of HSPs and other HS-induced transcripts [62,63]. In addition,
two DEGs (contig26416 and contig26417) belonging to the HSF family were upregulated in
this study. HsfA2 plays an important role in preventing oxidative damage and cell death
in plant organelles and are vital regulators of plant stress responses [64]. Overexpression
AtHsfA2 not only improves heat resistance but also improves the resistance to oxidative
stress and hypoxia caused by salt [65]. Overall, the findings of this study enhance our
understanding of the roles of HSPs and HSFs in the response to HS of red pitaya.

4.2. Mechanism Underlying the Response of Red Pitaya to HS

Various physiological processes, such as photosynthesis, respiration, transpiration,
membrane thermostability, and osmotic regulation, are all adversely affected by HS. We
conducted a comprehensive analysis of the transcriptome and metabolome to elucidate
the regulatory networks of red pitaya involved in response to HS. The differential expres-
sions of the most common heat-responsive genes were related to metabolic pathways (106
genes), biosynthesis of secondary metabolites (61 genes), carbon metabolism (17 genes),
and biosynthesis of amino acids (11 genes) according to the KEGG analysis; similar results
were also obtained from our analysis of metabolome data (Table S10). Meanwhile, the top
20 differentially expressed genes (Table 2) are mainly involved in photosynthesis and en-
zyme activity regulation in plant chloroplasts (such as contig32725, FER2; contig21847,
PFE; and contig785, PFK3), and protein synthesis and activation of transporters (con-
tig20699, contig2725, contig29974, etc.), which indicated that photosynthetic-related genes
are more sensitive in response to heat stress.

Homeostasis, including the biosynthesis and compartmentalization of metabolites, is
disturbed in plant tissues subjected to high temperatures [7]. Because heat tolerance is a
polygenic trait, many biochemical and metabolic pathways are involved in the develop-
ment and maintenance of heat tolerance, including antioxidant activity, membrane lipid
unsaturation, gene expression and translation, protein stability, and the accumulation of
compatible solutes [66]. In addition, flavonoids, anthocyanins, and plant steroids and
other secondary metabolites play a considerable role in response of plants to HS [1]. For
example, HS in tomato plants causes the accumulation of soluble phenols; increases phe-
nylalanine ammonia-lyase activity; and decreases the activity of peroxidase and polyphe-
nol oxidase, which could be a mechanism by which tomato plants acclimate to HS [67].
High temperature alters the activities of carbon metabolism enzymes, starch accumula-
tion, and sucrose synthesis by downregulating specific genes involved in carbohydrate
metabolism [10]. Moreover, “photosynthesis,” “MAPK signaling pathway,” and “plant
hormone signal transduction” were also enriched (Figure 5, Table S8) according to the
transcriptome analysis. Several lines of evidence suggest that plant growth regulators
such as ABA, SA, ET, and BRs play a vital part in plant heat tolerance [62]. In tomato and
Arabidopsis, brassinosteroids cause tolerance to heat stress by promoting the biosynthesis
of major HSPs [68,69]. In sum, high temperatures have a negative impact on the photo-
synthesis, primary and secondary metabolism, and hormonal signal transduction and
other physiological processes of red pitaya.

4.3. HuPR-1 Plays an Active Role in the Response to HS

The pathogenesis-related protein 1 (PR-1) gene family plays a significant part in the
response to biotic and abiotic stress in plants. To protect themselves against pathogens,
plants have developed sophisticated mechanisms to adapt to their environment. Patho-
genesis-related (PR) genes play essential roles in these mechanisms and are activated in
response to pathogen attacks [70]. With their antifungal activities, PR-1 proteins are the
main group of PR proteins induced by pathogens or salicylic acid. PR-1 genes also play
vital roles in response to abiotic stress. In wheat, TaPR-1-1 expression is induced by freez-
ing, salinity, and osmotic stress, and TaPR-1-1 overexpression confers tolerance to these
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different types of stress in yeast and Arabidopsis [71]. Di19 (drought-induced) upregulates
the expression of pathogenesis-related PR-1, PR-2, and PR-5 genes in Arabidopsis [72].
Thirteen novel SIPR-1 genes were identified, each of which produce a protein belonging
to the CAP superfamily in tomato, and drought stress leads to the upregulation of all
SIPR-1 genes (as high as 50-fold) [70]. In this study, the expression of HuPR-1 was up-
regulated up to 3.47-fold by HS (Table S6); the expression of this gene can also be induced
by salt stress [37]. Overexpression of this gene greatly increased the tolerance of Arabidop-
sis to HS (Figure 8B,C), indicating that HuPR-1 plays an active role in the response to heat
and salt stress. In short, the findings of this study provide new insight into the regulatory
mechanism of heat stress that could aid future studies to examine the role of PR-1 genes
in response of plants to different types of abiotic stress.

5. Conclusions

We performed the transcriptomic and metabolomic analysis to characterize the mo-
lecular mechanism underlying the response of red pitaya to HS. The changes in numerous
genes and metabolites indicated that the mechanisms involved in response to HS are com-
plex and closely related in pitaya.

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/genes12111714/s1, Figure S1: RNA-Seq dataset validation by using qRT-PCR. Seven
DEG contigs (x-axis) were randomly selected from the RNA-Seq dataset and validated by qRT-PCR.
The y-axis displays natural log:-transformed fold changes for both datasets. HulIBQ was used as
the internal standard. Mean values and SDs of three biological replicates are shown. Figure S2: GO
classifications of DEGs using the PANTHER database. The obtained 1434 annotated DEGs were
divided into three GO categories: molecular function (A), biological process (B), and cellular com-
ponent (C). The percentages shown are based on the numbers of genes in a given GO category. Table
S1: Primers used in this study. Table S2: Dragon_fruit_rnaseq_count_heat_stress at 0, 24, and 72 h.
Table S3: Dragon_fruit_trinity_combined_v2_fasta_cap_contigs_uniprot_annotation. Table S4:
Dragon_fruit_trinity_combined_v2_fasta_cap_contigs_blastn. Table S5: CDS amplification and se-
quencing results for confirm the sequence assembly. Table S6: DEGs genes annotation. Table S7: All
DEG pathways in KEGG KAAS-2. Table S8: All DEG pathways in KEGG-2. Table S9: NO_vs_N24
metabolites in this study. Table S10: Integrated analysis between differentially accumulated metab-
olites and DEGs.
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