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Abstract: This study aims to investigate the differentiation trajectory of osteosarcoma cells and to
construct molecular subtypes with their respective characteristics and generate a multi-gene signature
for predicting prognosis. Integrated single-cell RNA-sequencing (scRNA-seq) data, bulk RNA-seq
data and microarray data from osteosarcoma samples were used for analysis. Via scRNA-seq data,
time-related as well as differentiation-related genes were recognized as osteosarcoma tumor stem
cell-related genes (OSCGs). In Gene Expression Omnibus (GEO) cohort, osteosarcoma patients were
classified into two subtypes based on prognostic OSCGs and it was found that molecular typing suc-
cessfully predicted overall survival, tumor microenvironment and immune infiltration status. Further,
available drugs for influencing osteosarcoma via prognostic OSCGs were revealed. A 3-OSCG-based
prognostic risk score signature was generated and by combining other clinic-pathological indepen-
dent prognostic factor, stage at diagnosis, a nomogram was established to predict individual survival
probability. In external independent TARGET cohort, the molecular types, the 3-gene signature as
well as nomogram were validated. In conclusion, osteosarcoma cell differentiation occupies a crucial
position in many facets, such as tumor prognosis and microenvironment, suggesting promising
therapeutic targets for this disease.

Keywords: tumor/cancer stem cell; differentiation trajectory; molecular typing

1. Introduction

As the most common malignant primary bone tumor, it is reported that osteosarcoma
often presented resistance to the methods of checkpoint blockade, such as inhibitors for
PD-1/PD-L1 [1,2]. In addition, as the mainstay of therapy, chemotherapy is not always
resultful. It is obvious that other efficient treatment thoughts are urgently needed. Naturally,
tumor stem cell, as one of the reasons for immunologic escape and resistance of treatments,
have emerged into researchers’ vision.

Tumor heterogeneity took part in many facets in the progression of cancer including
therapy resistance, recurrence and metastasis [3]. The same as other many kinds of malig-
nant tumors, osteosarcoma has been reported extensive intratumorally heterogeneity [4,5].
Tumor stem cell, or cancer stem cell, was defined those clones drive tumor initiation, also
as a crucial contributor to tumor heterogeneity [6]. Although the conception of cancer stem
cell is still controversial and often been confused with cancer initiating cells, it has been
reported that there are some unique subsets of tumor clones with high-grade stemness
traits as well as oncogenicity [7,8].

In osteosarcoma, researchers never ceased to explore the tumor heterogeneity and
tumor stem cells with various methods. Using the suspension culture, Gibbs with his
group obtained a small subset of self-renewing bone sarcoma cells with high expression
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of Oct 3/4 and Nanog [9]. Bulk RNA sequencing (RNA-seq) technology only provides us
increasing knowledge of the osteosarcoma genome and the understanding of intra-tumor
heterogeneity [7,10]. In previous study, multiregional sequencing was also an appropriate
to explore heterogeneity in osteosarcoma [11]. Due to bulk RNA sequencing provides
the average expression level of tissues, as the technology advances, single-cell RNA-seq
(scRNA-seq) afford an opportunity to us that learn about tumor heterogeneity in the cellular
level and explore tumor stem cells in greater depth [5].

In our study, using scRNA-seq data of primary osteosarcoma as well as trajectory
analysis, time-related genes and cell differentiation-related genes were identified. Mutual
genes were recognized as osteosarcoma tumor stem cell-related genes (OSCGs) for the next
analysis. Next, we included osteosarcoma patients from Gene Expression Omnibus (GEO)
database and obtained prognostic genes. Moreover, based on the expression patterns of
prognostic OSCGs, in the GEO cohort, two OSCG-based molecular subtypes were identified
and this cell differentiation state-based classification was proved prognostic correlative as
well as tumor immunomicroenviroment related. Additionally, we explored the biological
functions of prognostic OSCGs and as expected found that they are related to ossification,
osteoblast differentiation and collagen metabolism. Then, latent available drugs were
also revealed. Further, CKLF, DKK1 and MYC were identified as the 3 key OSCGs which
also effectual in bulk RNA sequencing, and the nomogram consisting of these 3 OSCGs
and tumor stage at diagnosis was constructed. Finally, the above findings were validated
using Therapeutically Applicable Research to Generate Effective Treatments (TARGET)
osteosarcoma patient cohort. Brief intratumorally osteosarcoma cell differentiation states
were discovered and the OSCGs played crucial roles in predicting the clinical outcomes as
well as tumor immunomicroenviroment.

2. Materials and Methods
2.1. Data Sources and Data Preprocessing

The scRNA-seq data were obtained from the GSE152048 dataset in the GEO (https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152048, accessed on 9 August 2021)
database. 7 samples of primary osteosarcoma (BC2, BC3, BC5, BC6, BC16, BC21, BC22)
were collected. Next, scRNA-seq data were processed with the Seurat package (version
3.1.5; http://satijalab.org/seurat/, accessed on 9 August 2021) in R software (version
3.6.1) for each individual sample [12]. Low-quality cells were excluded based on the
following quality control standards: (1) genes detected in <200 cells were excluded; (2) cells
with <1000 total detected genes were excluded; and (3) cells with ≥20% of mitochondria-
expressed genes were excluded. After data filtering, using LogNormalize method as well
as Harmony package (version 1.0), the data were normalized and removed the batch
effects [13].

Further, we searched all the open samples with OS rate for osteosarcoma. Total
three human datasets (GSE21257, GSE16091, GSE39055) in GEO (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE21257; https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE16091; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39055,
accessed on 9 August 2021) were collected to make GEO merged cohort. And the necessary
documents were also respectively downloaded to annotate the respective probe sets into
gene symbol sets. Finally, the “ComBat” algorithm was applied to reduce the likelihood of
batch effects from non-biological technical biases [14].

And then samples including the prognosis information of osteosarcoma patients from
TARGET (https://ocg.cancer.gov/programs/target/projects/osteosarcoma, accessed on 9
August 2021) were also gathered, and FPKM values were transformed into transcripts per
kilobase million (TPM) values and then log2(TPM+1) values, which are more comparable
between samples and more similar to data from microarrays [15,16]. All the gene matrices
were standardized by quantiles normalization. Finally, 121 patients in GEO merged cohort
and 95 patients in TARGET cohort were selected.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152048
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152048
http://satijalab.org/seurat/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16091
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16091
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39055
https://ocg.cancer.gov/programs/target/projects/osteosarcoma
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2.2. Dimensionality Reduction and Cell Annotation

Based on the integrated joint embedding produced by Harmony with the Louvain
algorithm as well as the t-SNE algorithm, the dimension reduction of the scRNA-seq
data was accomplished and the major clusters was obtained. Additionally, sub-clustering
analysis was applied a similar procedure.

Using FindAllMarkers function in Seurat, differentially expressed genes (DEGs) be-
tween the cell clusters were gathered. The cell groups were annotated based on the previous
study [5].

2.3. Pseudotime and Trajectory Analysis

Pseudotime and trajectory analyses of osteosarcoma cells were carried out by the
‘Monocle’ package (version 2.18.0) [17]. DEGs with q-value < 0.01 between the sub-cell
groups were applied for dimension reduction with the reduceDimension function us-
ing the parameters reduction_method = “DDRTree” and max_components = 2. Based
on plot_cell_trajectory function, osteosarcoma cells were ordered and visualized. Time-
related genes were calculated (q-value < 0.01) and exhibited via plot_cell_trajectory and
plot_pseudotime_heatmap function. BEAM analysis was performed (q-value < 0.01) to find
cell differentiation-related genes visualized by plot_genes_branched_heatmap function.

2.4. OSCG-Based Molecular Subtypes of Osteosarcoma Patients

In GEO cohort, the Kaplan-Meier survival analysis based on the median of gene
expression and univariate Cox hazard analysis were applied to screen OSCGs significantly
associated with OS rate (p < 0.05).

In the discovery GEO and validation TARGET cohorts respectively, unsupervised
consensus clustering was used to discover OSCG-based osteosarcoma subtypes [18]. In
detail, a bootstrap procedure was performed with 80% item resampling 1000 times using
the agglomerative kmeans clustering algorithm with the Euclidean distance metric. In
the number of clusters from 2 to 9, the optimal number of clusters was selected that
corresponds to both stable consensus matrices and unambiguous cluster assignments.
Moreover, to validate the result, IGP analysis was used to evaluate the reproducibility of
the clusters derived from consensus clustering in the two independent cohorts [19]. Due to
the different types of expression values in the two datasets, we normalized the expression
data by Z-score prior to the IGP statistical analysis.

2.5. Tumor Microenvironment Evaluation and Latent Drugs Related to Molecular Subtypes

Via ‘ESTIMATE’ package, the immune/stromal scores and tumor purity of each
sample were calculated [20]. Tumor immune cell infiltration situation of 22 immune cells
was identified by CIBERSORT algorithm [21]. Based on ‘limma’ package, the discrepancy
of immune cells’ infiltration degree was evaluated, and a violin plot of immune cells with
significant differences was presented. Using the Connectivity Map database (Previous
version; https://portals.broadinstitute.org/cmap/, accessed on 9 August 2021), available
drugs for influencing osteosarcoma OSCGs were revealed.

Additionally, GO analyses were realized via “clusterProfiler” package, and
p adjust < 0.05 was believed to be statistically significant [22].

2.6. Risk Model Construction and Evaluation

In GEO cohort, we used the randomSurvivalForest algorithm to rank the importance
of OSCGs [23]. We identified genes with a relative importance >0.50 as the final signature.
Next, the multivariate Cox regression analysis was performed to build the risk score model
and the model formula was showed above-mentioned.

Via timeROC package in R, ROC and AUC was performed to evaluate the classification
efficiency of the prognosis predictions for 1 year, 2 years, 3 years and 5 years [24]. Kaplan-
Meier survival analysis was performed to estimate the OS of two groups, and survival
differences were evaluated by a two-sided log-rank test.

https://portals.broadinstitute.org/cmap/
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2.7. The Construction of Nomogram

Univariate and multivariate Cox regression analyses were performed in both osteosar-
coma cohorts to determine whether the predictive performance of risk scores could be
independent of the clinicopathological variables. These variables included gender, age,
tumor site, stage at diagnosis, stromal scores, immune scores, ESTIMATE scores, tumor
purity and risk scores.

Via the “rms” package in R, independent predictors, metastasis stage at diagnosis
and risk score were used to construct the nomogram. The predictive accuracy of the
OSCG-based prognostic model was evaluated by Harrell’s concordance index (C-index).
In addition, calibration curves were drawn to assess the consistency between actual and
predicted survival.

3. Results
3.1. Identification of 8 Cell Clusters in Primary Osteosarcoma Using scRNA-seq Data

The schematic diagram of this study is illuminated in Supplementary Figure S1.
From GEO database, seven raw output data of scRNA-seq for primary osteosarcoma were
obtained.

After initial quality control assessment and batch effects removal, we obtained single-
cell transcriptomes from 67,146 cells for the further analysis. Based on the t-distributed
stochastic neighbor embedding (t-SNE) algorithm, the cells in human osteosarcoma were
successfully classified into 8 clusters (Figure 1A). And the typical canonical markers for ma-
jor cell types were illuminated in Figure 1B (Supplementary Figures S2 and S3, Figure S4A),
according to the original previous research [5]. Cluster 0, containing 15,420 cells, was anno-
tated as myeloid cells; Cluster 1, containing 14,882 cells, was annotated as osteosarcoma
cells; Cluster 2, containing 9528 cells, was annotated as fibroblasts; Cluster 3, containing
8876 cells, was annotated as osteosarcoma cells with high proliferation; Cluster 4, contain-
ing 8125 cells, was annotated as osteoclasts; Cluster 5, containing 4640 cells, was annotated
as tumor infiltrating lymphocytes (TILs); Cluster 6, containing 3191 cells, was annotated as
endothelial cells; Cluster 7, containing 2484 cells, was annotated as pericytes.

3.2. Cell Trajectory Analysis Identified OSCGs

Then, osteosarcoma subsets, Cluster 1 and Cluster 3, including 11,780 cells were
extracted for further analysis (Supplementary Figure S4B–D). Trajectory analysis of os-
teosarcoma cells was performed based on the Monocle 2 algorithm, finding three differ-
entiation nodes (Figure 1C) [17]. And then 859 pseudo time-related genes were obtained
(Figure 1D). Via the branch expression analysis modeling (BEAM) analysis, three cell dif-
ferentiation nodes-related genes were received respectively, and a total of 1042 genes were
received. (Figure 1E–G). Combining with pseudotime-related genes and cell differentiation
nodes-related genes, there were total 542 genes recognized as OSCGs (Supplementary
Table S1).
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Figure 1. Single-cell transcriptomic analysis of osteosarcoma. (A) The t-distributed stochastic neighbor embedding (t-SNE)
plot of the 8 identified main cell types. (B) Typical 28 signature gene expressions across cellular clusters. (C) The Monocle
2 trajectory plot showing the pseudotime curve of osteosarcoma subclusters. (D) Heatmap of the top 20 genes that were
differentially expressed along the pseudotime. (E–G) Heatmap of the top 20 genes that were differentially expressed in each
cell fate branch.
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3.3. The Prognostic OSCG-Based Molecular Subtypes of Osteosarcoma Patients

First, respectively, Kaplan-Meier survival analysis based on the median of gene expres-
sion and univariate Cox hazard analysis were applied to the GEO cohort to screen OSCGs
significantly associated with overall survival (OS) rate. Subsequently, 36 prognostic OSCGs
were obtained (Supplementary Table S2). Based on prognostic OSCGs and unsupervised
consensus clustering analysis in the GEO cohort, two molecular subtypes of osteosar-
coma samples were identified (Figure 2A) [18]. The 2-cluster solution corresponded to
the largest cluster number that induced the least incremental change in the area under
the cumulative distribution function (CDF) curves while keeping the maximal consensus
within clusters and the minimal rate of ambiguity in cluster assignments (Figure 2B). Then,
the Kaplan-Meier analysis determined the statistical significance of consensus cluster-
ing result of osteosarcoma that subtype_1 having better OS than subtype_2 (Figure 2C,
p = 0.008176). Further, the same results were obtained in an external independent TARGET
cohort (Figure 2D–F, p = 0.01842). Finally, the reproducibility of the two osteosarcoma
subtypes across the discovery and validation cohorts was evaluated by in-group propor-
tion (IGP) statistic [19]. The IGP values are 77.3 and 71.2% for subtype_1 and subtype_2,
respectively, indicating that both subtypes had high consistency between the two cohorts.

3.4. Comprehensive Analysis of Tumor Microenvironment Scores and Immune Cell Infiltration
across Molecular Subtypes

According to tumor microenvironment evaluation, in GEO cohort, our study found
that cluster_2 had significantly higher tumor purity (p = 0.00026) but lower ESTIMATE
score (p = 0.00026), immune score (p = 0.000016) and stromal score (p = 0.012) than clus-
ter_1 (Figure 2G, Supplementary Table S3) [20]. Additionally, there were no significant
differences in age, gender and stage at diagnosis between two subtypes. Also, the same
situation could be found in TARGET cohort, that cluster_2 had significantly higher tumor
purity (p = 0.0012) but lower ESTIMATE score (p = 0.0012), immune score (p = 0.019) and
stromal score (p = 0.00056) than cluster_1 and there were also no significant differences
in age, gender and stage at diagnosis between two subtypes. (Figure 2H, Supplementary
Table S3). Further, via the CIBERSORT algorithm, the tumor immunocytes infiltration
microenvironment was evaluated (Figure 2I) [25]. Differential analysis found that clus-
ter_2 contained more follicular helper T cells (p = 0.008) and M0 macrophages (p = 0.024),
but less CD8 T cells (p = 0.002), implying the important function of immunotherapy as
well as tumor-associated macrophages and suggesting the potential relationship between
immunity and tumor stem cell.

Additionally, using Gene Ontology analysis for prognostic OSCGs, the process of
ossification, response to unfolded protein, response to topologically incorrect protein, os-
teoblast differentiation and collagen metabolism could have close relationship with cell
differentiation trajectory of tumor stem cell in osteosarcoma (Figure 3A). These results sup-
ported that osteosarcoma are derived from progenitor cells in the osteoblast lineage [26,27].
Moreover, consistent with previous studies, osteoblast differentiation and the formation
of osteospheres could reflect the stemness of osteosarcoma [28,29]. Although collagen
metabolism is significant for mesenchyma stem cells, few studies have explored the rela-
tionship between collagen metabolism and osteosarcoma stem cells. Using the Connectivity
Map database, available drugs for influencing osteosarcoma OSCGs were revealed, in-
cluding proglumide, midecamycin, naproxen, ethambutol, denatonium benzoate, tiapride,
salsolidin and pyrimethamine (Supplementary Table S4) [30].
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Figure 2. The prognostic OSCG-based molecular subtypes of osteosarcoma. (A) Consensus matrix heatmaps for the
chosen optimal cluster number (k = 2) for the GEO cohort. (B) Cumulative distribution function (CDF) curves for the GEO
cohort. (C) Kaplan-Meier analysis of OSCG-based molecular subtypes of osteosarcoma for GEO cohort. (D–F) The similar
analyses in TARGET cohort. (G) Heatmap of prognostic OSCG-based genes expression, molecular subclusters, tumor
microenvironment evaluation and clinicopathological characteristics in GEO cohort. (H) The similar heatmap in TARGET
cohort. (I) The tumor immunocytes infiltration microenvironment across the two subtypes.
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Figure 3. Generation a prognostic risk scoring signature (A) GO terms analysis for prognostic OSCGs. (B) Error rate for the
data as a function of the classification tree. (C) out-of-bag importance values for the predictors. (D) Forest plot showing
hazard ratio of the three genes via multivariate cox regression analysis in GEO. * p < 0.05, ** p < 0.01.

3.5. Generation and Validation of a Prognostic Risk Scoring Signature

In GEO cohort, univariate Cox hazard analysis was performed with p < 0.05 as the
threshold. Then, using the randomForestSRC software package, we ranked the importance
of prognostic-OSCGs. The final signature was identified as genes with a relative importance
>0.50 (Supplementary Table S5). The relationship between the error rate and the number of
classification trees as well as the out-of-bag importance of the first three genes were then
exhibited (Figure 3B,C).

Three genes (CKLF, DKK1, MYC) were identified from the random forest algorithm
and subsequently multivariate Cox regression analysis were exerted to establish the 3-gene



Genes 2021, 12, 1685 9 of 15

signature (Figure 3D). The model was as follows: RiskScore = −0.537343156 ∗ expCKLF +
0.312512732 ∗ expDKK1 + 0.320496576 ∗ exp MYC.

In GEO cohort, the Kaplan-Meier curves were drawn (Figure 4A), and a markedly
significant difference of p < 0.001 was observed between the groups by median cut-off value
(Median cut-off value = 0.37). By the time-dependent receiver operating characteristic
(ROC) curves, the area under the ROC curve (AUC) for 1-year, 2-year, 3-year, and 5-year OS
were gathered (Figure 4B). Additionally, the distribution of risk scores in patients and the
relationship between risk scores and survival time were displayed (Figure 4C). By heatmap,
gene expression profiles in high-risk and low-risk were exhibited (Figure 4C). The genes
with HR > 1(DKK1, MYC) were considered dangerous, while the gene with HR < 1 (CKLF)
protective. Additionally, the high-risk group has the higher expression dangerous genes
with the lower protective one.

Figure 4. Validation of the OSCG-based risk score model in osteosarcoma patients. (A) Kaplan-Meier survival analysis to
estimate the OS of high-risk and low-risk patients in GEO cohort. (B) Time-dependent ROC curve analysis was performed
to evaluate the prognostic performance of the OSCG signature for predicting the 1-, 2-, 3- and 5-year OS rates in GEO cohort.
(C) Risk score in the GEO cohort were calculated, and the patients were divided into either a high-risk group or a low-risk
group using the median value. Risk sores, patient survival status and the signatures expression across the two groups were
displayed in GEO cohort. (D–F) Similar analyses were performed in TARGET cohort using the median value as cutoff value.
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Further, the 3-gene signature was validated in the external independent TARGET
cohort. In TARGET cohort, by the median value as cut-off value, the Kaplan-Meier curves
were drawn (Figure 4D), and a markedly significant difference of p < 0.01 was observed.
By ROC curves, the AUC for 2-year, 3-year, and 5-year OS were gathered (Figure 4E). The
gene expression heatmap, the distribution of risk scores in patients and the relationship
between risk scores and survival time were also displayed (Figure 4F).

3.6. The Risk Model Based on OSCGs as an Independent Prognostic Factor

In GEO merged cohort, both univariate and multivariate analysis showed that the risk
scores an independent prognostic indicator (HR = 2.718, 95%CI = 1.730–4.271, p < 0.001;
HR = 3.148, 95%CI = 1.722–5.756, p < 0.001) (Supplementary Table S6). Further, we vali-
dated this model in the external independent TARGET cohort with the same way. And the
risk score was still proved an independent prognostic factor the same as tumor stage at
diagnosis (HR = 2.308, 95%CI = 1.498–3.554, p < 0.001; HR = 2.344, 95%CI = 1.419–3.870,
p < 0.001).

3.7. The Construction of Nomogram for Predicting Patient 3-Year and 5-Year OS

In the clinical environment, a nomogram is a highly legible illustration of a mathe-
matical model and a convenient tool for predicting the outcome of individual patients.
The above analysis showed that the risk score as well as tumor stage at diagnosis were
independent prognostic indicators. And in this study, the nomogram consisting of above
significant risk factors was established, with C-index of 0.757 in GEO merged cohort and
0.773 in TARGET cohort (Figure 5A). The calibration curves showed non-significant devia-
tions between predicted and actual probability in both GEO merged cohort and TARGET
cohort (Figure 5B,C).

Figure 5. Cont.
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Figure 5. Construction and evaluation of a nomogram. (A) A nomogram for predicting 3-year
and 5-year OS. (B) The calibration curves for predicting 3-year and 5-year OS in GEO cohort.
(C) The calibration curves for predicting 3-year and 5-year OS in TARGET cohort.

4. Discussion

Whereas the researches of the earlier years had noticed the existence of tumor stem
cells (TSCs, also cancer stem cells—CSCs), the precise definition and the standard of
perfection for TSCs are still deficient. Both tumor-initiating cells and drug-resistant cells
could be deemed to TSCs. Similarly, cells with highly proliferation ability or cells in the
dormancy stage may also be thought to TSCs [31].

In terms of TSCs in osteosarcoma, the scientists never ceased from exploration. There
are many methods for obtaining TSCs: dye exclusion assays, utilizing aldehyde dehydro-
genase, utilizing cell surface markers (such as CD133, CD117, IBSP and CD105) and sphere
formation assays [8]. However, it is hard to identify quiescent TSCs. Moreover, the alleged
TSC phenotypes may vary with diverse isolation methods [8]. With continuing devel-
opment of scRNA-seq technology as well as machine learning, new methods as well as
perspectives have been provided to us for seeking the OSCGs. In our study, 36 prognostic
OSCGs were obtained to generate molecular subtypes of osteosarcoma. Among them,
many genes have been proved related to cancer stemness and tumorigenesis in osteosar-
coma. It has been reported that osteosarcoma may be origin from the mesenchymal stem
cell (MSC) or the osteoblast [32]. In addition, transformed human MSCs or osteoblasts
were observed acquiring malignant osteosarcoma-like properties [33–35]. From MSCs to
osteosarcoma, CDKN2A, ALPL, SPARC (osteonectin) and MYC were considered as origin-
related factors [32,35,36]. From osteoblasts to osteosarcoma, SOX9, SPP1 (osteopontin) and
RUNX2 were also considered as origin-related factors [32,37]. Moreover, in patients with
Li-Fraumeni syndrome, DCN (decorin) mediated Li-Fraumeni syndrome related osteosar-
coma [33]. By the way, CD117, IBSP (Stro-1), ID1, SOX9, CD24, CD44 and THBS-1 were
also reported to affect osteosarcoma growth and stemness [37–42].

Previous studies have indicated that some TSCs-related genes correlate with the
prognosis for many neoplasms [43,44]. Moreover, due to the TSCs-related genes are not
universal, specific researches should be implemented respectively for various neoplasms.
Currently, aiming at TSCs-related hedgehog signaling pathway, vismodegib and sonidegib
are approved by the US Food and Drug Administration (FDA) for use in advanced basal
cell carcinoma [45]. In addition, CD47, was not only considered as TSCs-related gene in
leukemia and bladder tumor, but also an important marker to evade phagocytosis [46,47].
Further, in clinical trials, CD47 blockade combing rituximab in non-Hodgkin’s lymphoma
showed promising activity [48]. In osteosarcoma, Dkk1 was considered as molecule with
pro-tumor function [49]. It is interesting that the clinical trials have already been in progress
for DKK1 inhibited drugs BHQ880 and DKN-01 in other tumors [50,51].

Although earlier studies mentioned above indicated the importance of TSCs in os-
teosarcoma, little attention was paid to using scRNA-seq technology for exploring TSC
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related genes neither related molecular subtyping. On the one hand, the heterogeneity of
tumor makes it hard to target all the tumor cells. On the other hand, similar to traditional
pathology types, molecular phenotype identification can also be used to optimize and
simplify treatment strategies. Based on TSCs to construct molecular subtypes can obviously
an appropriate strategy. Considering the TSCs may only occupy a small proportion of the
total tumor cells, directly targeting well-known stem-cell markers like CD133 may serve a
restricted role. In our study, combining scRNA-seq data and bulk RNA-seq data develops
better strategy. TSC related genes as well as molecular subtypes were obtained. Moreover,
the molecular subtypes successfully predicted overall survival, tumor microenvironment
and immune infiltration status, no matter the metastasis stage at diagnosis. Addition-
ally, related latent drugs were exploited. Further, for the osteosarcoma population, our
3-gene risk score model based on OSCGs was shown to be a reliable predictor of prognosis.
Subsequently, the nomogram consisting of significant risk factors was established.

However, the present study still has some limitations. Firstly, the race and district of
patient were heterogeneous because of the retrospective multiple-platform study. Secondly,
although gene symbols with changed official name were converted into latest edition as far
as possible, some old gene symbols have been officially abandoned. Thirdly, integrated
clinical characteristic was incomplete for osteosarcoma cohort, such as, the incomplete
EFS or PFS curves, needing preferable clinical follow-up and data collection. Additionally,
drug-resistant TSCs or dormancy stage TSCs were still hard to identify, needing more
information involved. Finally, experimental studies as well as further prospective clinical
studies are required to further validate and polish our results.

5. Conclusions

Via scRNA-seq data, bulk RNA-seq data and microarray data, we found that os-
teosarcoma samples could be briefly divided into two molecular subtypes associated with
prognostic OSCGs. Moreover, the classification of osteosarcoma patients based on aforesaid
patterns can to some extent predict patient overall survival, tumor microenvironment and
immune infiltration status. Further, the key prognosis-predicting OSCGs were identified
and a related nomogram was established. In summary, this study highlights not only the
promise of researches about osteosarcoma cell differentiation and osteosarcoma stem cells,
but the essential roles of corresponding molecular subtypes or OSCGs in predicting the
clinical outcome and immune-micro-enviroment.
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