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Abstract: The Arabian Peninsula, located at the nexus of Africa, Europe, and Asia, was implicated in
early human migration. The Arab population is characterized by consanguinity and endogamy lead-
ing to inbreeding. Global genome-wide association (GWA) studies on metabolic traits under-represent
the Arab population. Replicability of GWA-identified association signals in the Arab population has
not been satisfactorily explored. It is important to assess how well GWA-identified findings general-
ize if their clinical interpretations are to benefit the target population. Our recent study from Kuwait,
which performed genome-wide imputation and meta-analysis, observed 304 (from 151 genes) of the
4746 GWA-identified metabolic risk variants replicable in the Arab population. A recent large GWA
study from Qatar found replication of 30 GWA-identified lipid risk variants. These complementing
studies from the Peninsula increase the confidence in generalizing metabolic risk loci to the Arab
population. However, both the studies reported a low extent of transferability. In this review, we
examine the observed low transferability in the context of differences in environment, genetic cor-
relations (allele frequencies, linkage disequilibrium, effect sizes, and heritability), and phenotype
variance. We emphasize the need for large-scale GWA studies on deeply phenotyped cohorts of at
least 20,000 Arab individuals. The review further presents GWA-identified metabolic risk variants
generalizable to the Arab population.

Keywords: risk loci; metabolic traits; GWAS; transferability of risk loci; population diversity;
Arab ancestry

1. Introduction

Over the past few years, a multitude of global genome-wide association (GWA)
studies have identified genetic risk variants associated with metabolic traits and related
disorders. Efforts to translate GWAS findings into polygenic risk scores (PRS) across
populations to decipher their clinical interpretation are gaining momentum [1,2]. Our
recent examination of GWAS Catalog [3] against 313 search terms relating to four classes
of metabolic traits (namely anthropometry, glycemia, lipid, and blood pressure) found
7668 genetic variants from ~4000 genes associated with metabolic traits [4]; association
signals involving 4746 (i.e., 62%) of the 7668 variants were at genome-wide significance
(p-values of ≤5.0 × 10−8). A majority of these studies were performed on populations
of European, East Asian, and African ancestries. Arab populations from the Middle East
are among the most underrepresented in genetic studies [5–8]. Factually, 88.65% of GWA
studies, summarized in the GWAS Catalog, were Europeans, while only 7.02% were Asians
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and 4.33% Africans, Latin, and other populations [9] (www.gwasdiversitymonitor.com,
accessed on 21 July 2021). Applicability of clinical translation of such GWA-identified risk
loci and PRS to ethnic populations, under-represented in global studies, depends on the
generalizability of the underlying association signals to the target populations.

By virtue of being situated between Africa, Europe, and South Asia, the Arabian
Peninsula forms an important region in the history of early human migrations and ad-
mixtures [5,6,8]. We and other researchers have illustrated that major sources of ancestry
forming the modern Arab population are from sub-Saharan/Western Africa and from
West Eurasia [8,10–12]. The region had several humid periods resulting in a “green Ara-
bia”, which facilitated human dispersals and migrations [8]. The onset of the current
desert climate is thought to have started around six thousand years ago [13]. Eventually,
the inhabitants of the Peninsula region adapted to the hot and dry environment. The
adaptation and natural selection shaped the extant human populations of the Arabian
Peninsula region [8,14]; for example, we demonstrated that a haplotype overlapping TNKS
showed strong signals of positive selection in the Arab cohort and proposed that this hap-
lotype under selection potentially conferred a fitness advantage to the Kuwaiti ancestors
for surviving in the harsh environment while posing a major health risk to present-day
Kuwaitis [14].

The Arab population is characterized by unique features such as large families, con-
sanguinity, endogamy, and first-cousin marriages, which have resulted in creation of
inbreeding communities. Such inbreeding communities are expected to have increased
homozygosity at-risk variants for both monogenic and polygenic diseases as well as an
accumulation of deleterious recessive alleles in the gene pool; our previous GWA study
under a genetic model based on the recessive mode of inheritance pinpointed 16 novel
risk variants associated with plasma TG levels in Arab individuals from Kuwait [15,16].
Familial aggregation of hypercholesterolemia [17], type 2 diabetes [18–21], and type 1
diabetes [22] is prominent among Arabs. Further, the exceptional growth in prosperity in
the Arabian Peninsula during the rich post-oil era brought rapid changes in lifestyles (such
as urbanization, dietary changes, low levels of physical activity, and high levels of seden-
tary behavior) leading to chronic metabolic disorders [23]. These rapid lifestyle changes
are expected to have an impact on gene–environment interactions; several diet–genetics–
disease relationships in the region have been discussed as contributing to the increased
prevalence of metabolism disorders and micronutrient deficiencies [24]. Furthermore, the
Arab populations appear to have a higher genetic risk for metabolic disorders such as
diabetes—for example, a study on Arab immigrants in the USA found that they had a
higher risk of type 2 diabetes than native inhabitants [25]. Another study of Middle Eastern
immigrants in Sweden found that the immigrants had a two- to threefold higher risk of
type 2 diabetes than native Swedes [26]. We have discussed, in our earlier publication [27],
that combinations of such lifestyle changes, gene–environment interactions, and genetic
predispositions have probably led to the dramatic increase in the prevalence of obesity,
diabetes, and dyslipidemia in Arabs.

Replicability of GWA-identified association signals for metabolic traits by global
studies to Arab population has not been explored to satisfaction. It is important to assess
how well the GWA-identified risk loci generalizes, if a target population is to benefit from
clinical interpretation of global GWA findings.

2. GWA Studies for Metabolic Traits on Arab Populations

A literature review by us in 2019 [27] reported that only 25 GWA-identified risk loci
for metabolic traits have been replicated, largely by targeted genotyping studies, in Arab
populations. Our recent genome-wide imputation and meta-analysis study from Kuwait [4]
used a cohort of 2732 Arab individuals and observed that association signals involving
only 304 (6.4%) of the 4746 metabolic risk variants identified at genome-wide significance
in global GWA studies were replicable in the Kuwaiti cohort. These 304 variants are from
151 distinct genes (Supplementary Table S1). The GWA studies observed 178 of these
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304 GWA-identified risk variants in more than one population. The GWA study cohorts
for these 304 variants were largely of European ancestry (i.e., in 260 of the 304 variants).
Many of these transferable GWA-identified signals were observed in the Kuwaiti cohort
at borderline significance, suggestive of association. In the same study [4], we further
performed power calculations that considered effect sizes of GWA-identified risk variants
and their allele frequencies in the Kuwaiti cohorts and projected a sample size of at least
10,000 to observe these 304 GWA-identified association signals for metabolic traits at
genome-wide significance in the Arab population. The study further projected a necessary
sample size of 20,000 in order to observe the other GWA-identified association signals in
the Arab population.

In a recent study, Thareja et al. [28] performed genome-wide association tests to delin-
eate risk variants for 45 clinically relevant traits using a discovery set of whole-genome
sequences of 6218 Qatari individuals. The examined traits included two (namely anthro-
pometry and lipid) of the four classes of metabolic traits examined in our study [4]. Though
Thareja et al. used a large sample size of 6218, nearing two-thirds of the 10,000 projected
by our study, they observed only four GWA-identified association signals relating to an-
thropometric traits and 26 GWA-identified association signals relating to lipid traits at
genome-wide significance. One of these four anthropometric trait association signals and
22 of the 26 lipid trait association signals were observed in our study [4] (Table 1). These
23 association signals for lipid traits comprised 18 distinct variants from 15 genes (Table 2);
10 of these 18 distinct variants are “low-frequency” (MAF < 5%) variants in one of the
examined populations while “common” (MAF > 5%) in other populations.

Table 1. GWA-identified association signals for lipid traits occurring in both the Kuwaiti and Qatari Cohorts.

Qatar Kuwait

Trait SNP Gene A1 A2 β p-Value A1 A2 Zscore p-Value Trait

BMI rs17817449 FTO T G 0.095 2.52 × 108 T G

2.852 0.0043 WT
2.842 0.0044 DBP
−3.83 0.0001 HDL
3.466 0.0005 TG
3.249 0.0011 BMI
2.865 0.0041 WC
2.276 0.0228 SBP
2.14 0.0323 NON_HDL

HDL-C rs74869266 LPL A C 0.236 2.65 × 1010 A C 2.002 0.0452 LDL

HDL-C rs1077834 LIPC T C 0.109 3.51 × 108 T C 2.807 0.005 logFPG

HDL-C rs708272 CETP G A 0.192 1.04 × 1028 A G
−6.285 3.28 × 1010 HDL
2.074 0.0381 TG
2.06 0.0393 NON_HDL

HDL-C rs7499892 CETP C T −0.198 9.88 × 1019 T C 6.424 1.33 × 1010 HDL
−2.389 0.0168 HT

LDL-C rs12740374 CELSR2 G T −0.192 3.83 × 1015 T G
4.412 1.02 × 105 TC
4.939 7.86 × 107 NON_HDL
4.39 1.13 × 105 LDL

LDL-C rs1800481 APOB G A −0.175 1.16 × 1012 A G
4.191 2.78 × 105 LDL
4.068 4.74 × 105 NON_HDL
3.672 0.0002 TC

LDL-C rs111989435 SMARCA4 A G −0.192 2.42 × 1015 A G

−4.937 7.93 × 107 LDL
−4.13 3.63 × 105 NON_HDL
−4.08 4.51 × 105 TC
2.061 0.0393 DBP

LDL-C rs111234557 MAU2 C G −0.207 8.60 × 109 C G

2.144 0.0319 HDL
−5.499 3.83 × 108 NON_HDL
−4.901 9.52 × 107 TG
−4.787 1.70 × 106 TC
−3.492 0.0004 LDL
2.857 0.0042 logFPG
2.308 0.021 logHbA1C
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Table 1. Cont.

Qatar Kuwait

LDL-C rs429358 APOE T C 0.23 4.22 × 1012 T C
−2.226 0.026 logFPG
2.122 0.0338 TG
−2.849 0.0043 HDL

LDL-C rs7412 APOE C T −0.566 6.27 × 1029 T C

2.314 0.0206 SBP
4.233 2.31 × 105 LDL
3.547 0.0003 NON_HDL
3.077 0.002 TC

TG rs1260326 GCKR C T 0.122 4.11 × 1012 T C
3.292 0.0009 LDL
−4.833 1.35 × 106 TG
2.545 0.0109 HT

TG rs33951980 MLXIPL C T −0.112 2.09 × 108 T C 3.595 0.0003 TG

TG rs10892002 AP000770.1 G C 0.098 2.25 × 108 C G
2.5 0.0124 TC

2.126 0.0335 LDL
−2.114 0.0345 WC

TG rs6589570 APOA5 T A 0.195 4.19 × 1016 A T 2.16 0.0307 LDL
−4.766 1.88 × 106 TG

TG rs5095 APOA4 A G −0.133 5.18 × 1012 A G −2.162 0.0306 TG

TG rs111234557 MAU2 C G −0.184 4.72 × 108 C G

−5.499 3.83 × 108 NON_HDL
−4.901 9.52 × 107 TG
−4.787 1.70 × 106 TC
−3.492 0.0004 LDL
2.857 0.0042 logFPG
2.308 0.021 logHbA1C
2.144 0.0319 HDL

TCH rs7528419 CELSR2 A G −0.175 6.51 × 1013 A G
−5.046 4.51 × 107 NON_HDL
−4.547 5.45 × 106 TC
−4.546 5.47 × 106 LDL

TCH rs1800481 APOB G A −0.162 4.75 × 1011 A G
4.191 2.78 × 105 LDL
4.068 4.74 × 105 NON_HDL
3.672 0.0002 TC

TCH rs8106503 LDLR T C −0.168 1.22 × 1012 T C

−5.114 3.15 × 107 LDL
−4.204 2.62 × 105 TC
−4.196 2.71 × 105 NON_HDL
2.232 0.0256 DBP
1.996 0.0459 SBP

TCH rs111234557 MAU2 C G −0.238 3.54 × 1011 C G

−5.499 3.83 × 108 NON_HDL
−4.901 9.52 × 107 TG
−4.787 1.70 × 106 TC
−3.492 0.0004 LDL
2.857 0.0042 logFPG
2.308 0.021 logHbA1C
2.144 0.0319 HDL

TCH rs429358 APOE T C 0.203 7.69 × 1011 T C
−2.849 0.0043 HDL
−2.226 0.026 logFPG
2.122 0.0338 TG

TCH rs7412 APOE C T −0.422 6.52 × 1017 T C

2.314 0.0206 SBP
4.233 2.31 × 105 LDL
3.547 0.0003 NON_HDL
3.077 0.002 TC

The same trait—variant associations among Qatar and Kuwait is highlighted with bold and italics in list of traits. Thareja et al. [28]
observed four GWA-identified association signals in the Qatari cohort relating to anthropometric traits at genome-wide significance, which
he Qatari cohort relating to lipid traits at genome-wide significance, which included 22 identified in the Kuwaiti meta-analysis cohort [4];
17 of these 22 associations were with the same exact lipid trait in the Kuwaiti cohort; of the remaining five, four were observed with related
lipid traits; and one with a related metabolic trait (FPG).
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Table 2. List of SNPs forming GWA-identified association signals, for lipid traits, generalizable to both the cohorts of
Kuwaiti and Qatari individuals.

SNP Consequence Gene

MAF

Qatar Kuwait
Continents

AFR AMR EAS EUR SAS

rs1077834 downstream LIPC 0.23 0.22 0.57 0.43 0.42 0.21 0.31
rs10892002 upstream AP000770.1 0.45 0.43 0.22 0.33 0.15 0.43 0.43

rs111234557 @ intron MAU2 0.07 0.08 0.02 0.11 0.18 0.11 0.16
rs111989435 @ intergenic SMARCA4 0.17 0.17 0.19 0.10 0.02 0.12 0.07

rs1260326 Missense
(L446P) GCKR 0.42 0.47 0.09 0.36 0.48 0.41 0.20

rs12740374 @ downstream CELSR2 0.17 0.16 0.25 0.20 0.04 0.21 0.26
rs7528419 @ downstream 0.17 0.16 0.27 0.20 0.04 0.21 0.26
rs17817449 intron FTO 0.47 0.44 0.38 0.25 0.17 0.41 0.29
rs1800481 @ upstream APOB 0.16 0.18 0.29 0.13 0.00 0.19 0.11
rs33951980 @ intron MLXIPL 0.24 0.15 0.06 0.04 0.12 0.12 0.08

rs429358 downstream APOE 0.08 0.09 0.27 0.10 0.09 0.16 0.09

rs7412 @ Missenseandrei
(R176C) APOE 0.03 0.06 0.10 0.05 0.10 0.06 0.04

rs5095 @ intron APOA4 0.28 0.23 0.09 0.11 0.00 0.18 0.12
rs6589570 intergenic APOA5 0.15 0.17 0.11 0.23 0.25 0.18 0.36
rs708272 intron CETP 0.39 0.40 0.25 0.46 0.38 0.43 0.45
rs7499892 intron CETP 0.17 0.19 0.41 0.22 0.16 0.21 0.22

rs74869266 @ intergenic LPL 0.06 0.06 0.01 0.05 0.03 0.11 0.06
rs8106503 @ downstream LDLR 0.18 0.18 0.30 0.17 0.04 0.11 0.14

@, These 10 risk variants are low-frequency variants (MAF < 5%) (indicated by bold and italics font) in one of the examined populations,
while they are “common” variants in other populations.

3. Generalizability of GWA-Identified Association Signals in Arab Populations

The results presented by the above-mentioned two studies [4,28] from Kuwait and
Qatar indicate that the assessment of generalizability of GWA-identified association signals
in the Arab population is still an “open” question. Though it is possible that the limited
sample sizes and differences in study designs may contribute to the observed low extent of
transferability, the role of differences in factors such as phenotypic variance due to unique
environmental conditions, allele frequencies, and linkage disequilibrium profiles cannot
be ruled out. Thareja et al. [28], by way of using variants with minor allele frequency
(MAF) >1%, derived reasonable heritability (h2) values for obesity traits (height = 0.59;
BMI = 0.31) and lipid traits (TC = 0.22; HDL-C = 0.41; LDL-C = 0.21; TG = 0.31) in the
Qatari cohort. Further, they demonstrated a high overall correlation in heritability with
European (r2 = 0.81) populations compared to a low, yet reasonable, correlation with
African (r2 = 0.44) populations, suggesting that much of the association signals seen in
Europeans are transferable to Arabs. However, the heritability values for obesity and lipid
traits, when individually examined, were significantly lower in the Qatari cohort compared
to Europeans, suggesting that much of the heritability of obesity and lipid traits is still
not explained by the study. Since a great proportion of phenotypic variance for complex
traits is contributed by rare variants (MAF < 1%) [29], an effective study of heritability
requires a further large cohort. These variations in heritability also warrant the need for
more Mendelian Randomization studies to pinpoint the environmental factors causally
linked to trait associations.

In our study from Kuwait [4], we observed that only those GWA-identified vari-
ants with larger effect sizes replicate well in the Arab population; failure to replicate the
variants with small effect sizes could be due to the modest sizes of our study cohorts.
Thareja et al. [28] found significant differences in both effect size and allele frequency of
variants associated with replicated risk loci and emphasized the need for further large
GWAS to determine accurate PRS in the Arab population. Complex metabolic disorders are
influenced by multiple common genetic variants with small effect size; hence, meaningful
polygenic risk scores (PRS) are derived by inspecting the cumulative effect of multiple
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variants. Such multiple genetic variants used to build PRS can differ in allele frequencies
across populations due to reasons such as natural selection and population expansion
leading to adaptation to local environmental factors. A recent study from Iran [30] found
multiple T2D-risk SNPs that were significantly depleted or enriched in at least one of the
five populations of the 1000 Genome Project (African, American, East Asian, European, and
South Asian) as well as the Iranian population. They further found that a PRS built using
the enriched risk alleles in Iran was significantly associated with type 2 diabetes incidence
in their longitudinal cohort study. The global GWA studies are highly Eurocentric. As a
result, PRS developed using risk variants identified through such global studies do not
predict individual risk accurately in non-Europeans [31]. To realize the full and equitable
potential of PRS in ethnic populations such as Arabs, there is a need to prioritize greater
diversity in global genetic studies.

Differences in linkage disequilibrium (LD) patterns among populations appear to play
a role in predictive differences [32,33]. A GWA variant strongly associated with a trait in one
population may not have a detectable association in another, as the LD with the (unknown)
causal variant may be much weaker [34]. LD for each Middle East population decayed
faster than European and East Asian populations but slower than African populations [35].
The study by Thareja et al. [28] showed marked differences in linkage disequilibrium and
allele frequencies among the European, East Asian, and Qatari populations. We found in
our earlier study that, though the LD decay patterns seem to exhibit similar rates across the
populations, the conservation values are different at any given distance—the population
subgroups from Kuwait showed lower conservation values than the European French
population [12].

Recently, an interesting framework of the omnigenic model has been proposed [36,37]
to explain the observed low transferability of polygenic scores and the variations in effect
sizes across populations. The model explains how the interaction network comprising ‘core’
genes of GWAS findings and ‘peripheral’ (to the core) genes (participating in the pathway)
ultimately leads to causality of phenotype through gene × environment interactions. The
Arab population went through ‘rapid’ lifestyle changes in the post-oil era. Further, the
two populations differ considerably in climate conditions. Even with consistency in effect
sizes between European and Arab populations, the effect of ‘core’ genes on phenotype
via the ‘peripheral’ gene network can differ because of differences in gene × environment
interactions; thus, the predictive power of polygenic scores can differ substantially across
these two population groups. On the other hand, heterogeneity in effect size (or even
direction) at transferable GWA loci to the Arab population could be due to differences in
LD structure and allele frequency. Often, the direct estimates of genetic correlations of
cross-populations are less than one. Although the difference in the contribution of ‘core’
genes to the loss of variance at PRS level is small, much of the variance loss is likely due to
differences in LD, allele frequency, and causal effect by gene × environment of ‘peripheral’
genes [36]. Hence, the predictive power of polygenic risk scores decreases more severely
than what would be expected for given differences in allele frequency and LD structure at
‘core’ genes alone.

4. ‘Novel’ Risk Variants for Lipid Traits in Arab Populations

Thareja et al. [28] identified a novel variant (rs376997679, located downstream of
CADM1) associated with TG. Though it is a common variant (MAF = 5.92%) in the Qatari
cohort, it is rare in continental populations. Rare variants from CADM1 have been re-
cently implicated in anorexia nervosa, a subtype of eating disorder [38]. Similarly, in
our study from Kuwait [4], we found a novel locus rs76018028 from [LOC105377613-
LOC105377614], along with 25 accompanying LD variants, associated with low HDL levels.
Further, in an earlier work [16], we identified a few more novel variants (from genes such
as CDK12-NEUROD2, RPS6KA1, LAD1, PGAP3, and CERK) for lipid traits in the Arab
population. Identification of novel risk loci for lipid traits in Arabs is important given
the unique phenotypes: (i) the high prevalence of metabolic syndrome, diabetes, familial
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hypercholesterolemia, and consanguineous marriages in the Middle East region resulted in
a pattern of dyslipidemia that is different from elsewhere in the world [39]; (ii) the Dyslipi-
demia International Study (DYSIS) indicated that while 61.8% of statin-treated participants
from the Middle East cohort missed their therapeutic LDL-cholesterol goal [40], only up
to 48.2% of statin-treated participants from the European and Canadian cohorts missed
the goal [41].

5. Future Directions

By way of discussing two recent GWA studies of sample sizes of 6218 and 2732 in-
dividuals from Qatar and Kuwait, respectively, we reviewed the transferability of GWA
genetic findings to the Arab populations in the Middle East. We propose a sample size of
at least 20,000 Arab individuals to enable a more comprehensive assessment of the trans-
lational value of genetic and genomic findings from global GWA studies on populations,
typically dominated by European ancestry, to the Arab population. The genetics of the
Arab population in the Peninsula has been largely driven by consanguinity and inbreeding.
A combination of rapid lifestyle changes in the rich post-oil era, gene–environment-disease
interactions, and the inherent genetic predispositions has shaped the observed high preva-
lence of metabolic disorders in the region. The assessment and delineation of the exact
translatable genetic findings represent a foundation for transferring the implementation of
precision medicine to the Middle East.

Aside from the need for a larger sample size, it is becoming increasingly evident
that deep phenotyping through the utilization of gold standard, scalable metabolic tech-
niques, such as oral glucose tolerance test, liver imaging, and bioelectrical impedance
(that measures body fat composition distributions), is essential. For example, using a eug-
lycemic insulin clamp technique, Hassoun et al. [42] demonstrated that a small increase of
1.2 units from normal BMI in Arabs as compared to Mexican Americans could be associated
with high insulin resistance. Additionally, lean Arab participants compared to Mexican
Americans had a more severe level of insulin resistance where Arabs had a 28% less total
body glucose disposal compared to lean Mexican Americans. Additionally, Arabs had a
much lower total body glucose disposal rate across all BMI levels compared to Mexican
Americans. The presence of such a severe insulin resistance in lean Arab individuals with
impaired glucose tolerance suggests that it is caused by a combination of genetic and envi-
ronmental factors. Such ethnic differences can only be identified through utilizing sensitive
techniques that allow us to pinpoint metabolic abnormalities. Additionally, increased uti-
lization of cutting-edge imaging techniques will also allow us to better understand the fat
tissue distribution and establish its association with genetic variants within various ethnic
groups. In another example, Ji et al. [43], by way of using MRI data quantifying body fat
distribution in combination with GWAS data, showed that while 14 alleles were associated
with higher BMI and higher body fat percentage, they were also associated with lower risk
for type 2 diabetes, heart disease, and hypertension. They concluded that carriers of these
alleles, particularly in PPARG, GRB14, and IRS1 genes, had higher subcutaneous fat and
lower ectopic fat accumulation. Both these two examples demonstrate the need for deep
phenotyping to properly establish the genetic associations with metabolic factors beyond
the basic clinical traits. One of our earlier works on the obesity gene of FTO [44], by way
of demonstrating that an FTO variant rs1421085 associates with total body water and soft
lean mass through interaction with ghrelin and apolipoproteins in the Arab population,
illustrates the insight that deep phenotyping can bring to transferability of GWA-identified
association signals to the ethnic population.

In summary, transferability of GWAS findings and their clinical interpretation to
diverse population groups is an important issue in the community. The Arabian Peninsula
forms an important region in the history of early human migrations and admixtures. The
Arab population is characterized by large families, consanguinity, endogamy, inbreeding,
and familial aggregation of metabolic disorders. Notable GWA studies, including ours, of
modest cohort sizes from the Arab region demonstrated the transferability at genome-wide
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significance of a minor proportion of the GWA-identified metabolic risk variants. These
studies further identified few novel risk variants at genome-wide significance. A sample
size of 20,000 has been estimated as a good size to detect a large proportion of established
GWA variants in the Arab population. The review highlights the linkages between these
studies from the region and potential for transferability:

(a) Strength of LD between a GWA variant and the causal variant can vary across pop-
ulations; hence, the GWA variant may not be equally detectable across population
groups. Marked differences in LD have been observed among the European, East
Asian, and Arab populations; hence, population-specific differences in LD need to be
considered while assessing transferability.

(b) A proper assessment of transferability requires considering gene–environment inter-
acting network models that include gene × environment interactions (involving not
only the core genes of GWAS findings but also their peripheral genes) in determining
the causality of phenotype. In contrast to Europeans, the Arab population went
through recent ‘rapid’ lifestyle changes due to wealth from the post-oil era.

(c) PRS for metabolic disorders is derived by the cumulative effect of multiple genetic
variants; differences in allele frequencies at such variants across populations—due
to reasons such as natural selection, population expansion, and adaptation to local
environmental factors—make the PRS not readily transferable.

(d) Finally, the review emphasizes the need for deeply phenotyped cohorts to properly
assess the transferability and to get new insights into established association signals

6. Conclusions

In conclusion, the risk factors unique to Arabs, offer a unique challenge compared
to other counterpart populations, in terms of choice of genetic models and phenotypes,
analysis designs and strategies. These two recent GWA studies have enlightened a need
for large size cohorts and holistic data analysis approaches to reveal yet unidentified
genetic signatures for metabolic disease traits in Arab population. This review attempts to
summarize the findings in terms of novelty and transferability of genetic associations, the
grasp of the situation and plausible challenges to be addressed by the metabolic disease
research community.
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