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Abstract: Normalization of gene expression using internal controls or reference genes (RGs) has 
been the method of choice for standardizing the technical variations in reverse transcription quan-
titative polymerase chain reactions (RT-qPCR). Conventionally, ACTB and GAPDH have been used 
as reference genes despite evidence from literature discouraging their use. Hence, in the present 
study we identified and investigated novel reference genes in SK-BR-3, an HER2-enriched breast 
cancer cell line. Transcriptomic data of 82 HER2-E breast cancer samples from TCGA database were 
analyzed to identify twelve novel genes with stable expression. Additionally, thirteen RGs from the 
literature were analyzed. The expression variations of the candidate genes were studied over five 
successive passages (p) in two parallel cultures S1 and S2 and in acute and chronic hypoxia using 
various algorithms. Finally, the most stable RGs were selected and validated for normalization of 
the expression of three genes of interest (GOIs) in normoxia and hypoxia. Our results indicate that 
HSP90AB1, DAD1, PFN1 and PUM1 can be used in any combination of three (triplets) for optimiz-
ing intra- and inter-assay gene expression differences in the SK-BR-3 cell line. Additionally, we dis-
courage the use of conventional RGs (ACTB, GAPDH, RPL13A, RNA18S and RNA28S) as internal 
controls for RT-qPCR in SK-BR-3 cell line. 

Keywords: SK-BR-3; RT-qPCR; reference genes; hypoxia; gene expression; breast cancer cell line; 
HER2 enriched 
 

1. Introduction 
Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) repre-

sents a modified variant of the popular conventional PCR with diverse applications, rang-
ing from functional genomics to molecular medicine, virology, microbiology, and biotech-
nology [1]. Quantitative PCR-based assays can target both DNA (genome) and RNA (tran-
scriptome), thereby making it an extremely powerful and important technique in molec-
ular diagnostics [2]. While functional genomics deals with understanding the functions 
and interactions of genes and proteins at a genome-wide level including the role of lig-
ands, receptors, and signaling networks that converge on transcriptional regulation [2], 
transcriptomic analysis, deals with ascertaining the functional significance to expression 
signature changes between tissues, disease states, or treatment [2]. Large-scale analysis of 
expression patterns is performed by RNA-Seq or high-throughput microarray analysis, 
however, the findings for individual genes usually are validated by RT-qPCR due to its 
high sensitivity, specificity, reproducibility, and broad dynamic range [2–4]. 

However, this enhanced sensitivity of RT-qPCR imposes special conditions. The pro-
tocol necessitates accurate and precise pipetting, high-quality RNA, accurate estimation 
of RNA concentration, and efficient reverse transcription [3]. Other considerations include 
standardization of RT-qPCR protocols [5], maintaining consistency of used reagents [6,7] 
and careful attention towards assay design, template preparation, and statistical analysis 
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[8]. Any deviation from these requirements (by human error etc.) can introduce variations 
and influence the accuracy and precision of the results [9–12]. To account for such devia-
tions, several strategies are recommended that can be incorporated in the protocol at dif-
ferent stages [12–14] ranging from ensuring that a similar sample size is chosen to using 
controls such as spike-in foreign RNA and reference genes (previously housekeeping 
genes). 

Normalization using reference genes has been the method of choice by most re-
searchers since variations in the experimental workflow will affect all genes similarly [14–
16]. The expression of reference genes is expected to be sufficient and stable across differ-
ent tissues and cell lines under varied experimental conditions [17]. However, variance in 
the expression of conventional reference genes like ACTB and GAPDH across different 
cell types has been noted [18–22] causing a continued search for suitable candidate genes. 
In addition, given the highly specific nature of RT-qPCR, the Minimum Information for 
Publication of Quantitative RT-PCR Experiments (MIQE) guidelines recommend using 
more than one reference gene for normalization unless a clear evidence of uniform expres-
sion dynamics of a single reference gene is reported for specific experimental conditions 
[11]. Identification and validation of novel reference genes, hence, becomes imperative for 
accurate normalization. In the past, reference genes have been identified using various 
large-scale gene expression profiling methods such as Expressed Sequence Tags (ESTs), 
Serial Analysis of Gene Expression (SAGE) and Microarray Analysis [23–25]. However, 
with the advent of technology, better techniques using RNA-seq data have been employed 
to identify stable reference genes. Several studies have previously identified novel refer-
ence genes and/or validated conventional reference genes for the study of breast cancer 
[26–38]. 

Breast cancer represents the most common malignant disease worldwide among 
women, accounting for 24% of new cancer cases and 15% of cancer-related deaths in 2018 
[39] with the number predicted to almost double to 46% by 2040 [40]. With the immense 
burden of the disease, it becomes crucial to develop better protocols, prediction tools, di-
agnostics, and treatment modalities. The PAM50 (Prediction Analysis for Microarrays) 
represents a 50 gene classifier containing mostly hormone receptor, proliferation-related, 
myoepithelial and basal feature-related genes and is widely used to classify breast cancer 
into molecular subtypes [41–43]. The HER2-Enriched (HER2-E) subtype according to 
PAM50 is defined by higher expression of ERBB2 along with the upregulated expression 
of tumor proliferation-related genes at the RNA and protein levels in comparison to other 
cancer types [44,45]. SK-BR-3, established in 1970 from the pleural effusion of a Caucasian 
female with malignant breast adenocarcinoma, is a human breast cancer cell line overex-
pressing ERBB2 gene product [46]. There are contrasting views in the literature over the 
classification of SK-BR-3 with some authors including it in the luminal subtype [47,48], 
with others classifying it as HER2-E [49–51]. 

Hypoxia is one of the principal drivers of tumor progression and growth in vivo. The 
presence of hypoxic conditions in the cancer microenvironment is not only a recognized 
event in cancer development but also is sustained by the cancer cells themselves, second-
ary to the inflammatory processes [52–54]. Such a condition in the local tumor microenvi-
ronment is necessary to induce angiogenesis and release of growth factors whilst inducing 
structural and functional damage to the healthy surrounding tissue [54]. It is estimated 
that about 1.5% of the whole human genome is transcriptionally responsive to hypoxia, 
thereby affecting gene expression [55]. Hence, given the critical role of hypoxia in tumor-
igenesis and its direct impact on gene expression, we decided to investigate the stability 
of the chosen reference genes in different hypoxic conditions. 

In the present study, we identified and validated novel reference genes that could be 
used to normalize qPCR data in SK-BR-3 breast cancer cell line. Additionally, we com-
pared expression stability of newly identified genes with previously reported reference 
genes [26–38] to select suitable candidate reference genes. Our study reports for the first 
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time to our knowledge, a comprehensive analysis, combining previous and novel candi-
dates studied over multiple successive passages (p), in replicate cultures S1 and S2, and 
validated in various hypoxic conditions for SK-BR-3 cell line. 

2. Materials and Methods 
2.1. TCGA Transcriptomic Analysis for Selection of Novel Candidate Reference Genes 

The transcriptome profiling datasets of 82 HER2-E (PAM50 classifier) breast cancer 
samples were downloaded from TCGA-BRCA legacy archive via R package TCGAbiolinks 
[56–58]. The scaled_estimate (Platform—Illumina HiSeq; file extension—rsem.genes.re-
sults) values, which represent the estimated frequency of gene/transcripts amongst the 
total number of transcripts that were sequenced, were obtained from the database. TPM 
(transcripts per million) values were generated by multiplying scaled_estimate values to 
a factor of 1 million (106). For data analysis and visualization, the TPM values were con-
verted to logarithmic scale using log2(TPM). 

2.2. Gene Ontology (GO) 
GO Annotation and enrichment analysis was done using a web based open-access 

tool—The Gene Ontology Resource, powered by Panther Classification (http://geneontol-
ogy.org/ (accessed on 15 April 2021)) [59–62]. Gene ranking was based on the fold enrich-
ment against the background frequency of total genes annotated to that term in the des-
ignated species (Homo Sapiens; whole genome, GO version Oct 2020, doi: 10.5281/ze-
nodo.408174) [63]. Fisher’s Exact test with False Discovery Rate (FDR) correction was used 
to estimate significance with the cut-off FDR value of < 0.05. The tool was further used to 
group genes based on functional classification. 

2.3. Culture and Seeding Conditions 
Samples were collected from the SK-BR-3 cell line (ATCC, HTB-30) that had been 

used in our laboratory for previous studies [64]. For consecutive passage analysis, two 
cultures, S1 and S2, were established from different laboratory lineages of SK-BR-3 which 
were cultured over five consecutive passages (p7–p11). For hypoxic exposure analysis, 
cultures at the level of 80–90% confluence were transferred to Xvivo System Sx2 (Bio-
Spherix Medical; 37 °C, 5% CO2, 2% O2). The length of hypoxic exposure for acute hypoxia 
samples was 24 h and 72 h. To obtain chronic hypoxia samples, the cultures (n = 3) were 
fully maintained in the hypoxic environment for four consecutive passages. From each 
culture, 3 lysates (in triplicates) were collected per passage. Cells were cultured in RPMI-
1640 (Lonza, BE12-115F), supplemented with 10% FBS (fetal bovine serum; Sigma Aldrich, 
F9665) at 37 °C, 5% CO2 with the growth medium replaced every 2–3 days. Cell passaging 
was performed using 1x TrypLE solution (Thermo Fisher Scientific, A12177-02). Cells 
were grown to 80–100% confluence in T-25 cm2 flasks (Sarstedt). Cell count and viability 
were estimated using a cell counting chamber (Improved Neubauer Hemocytometer). For 
further consecutive passages, cells were seeded at a density of 5000 cells/cm2. Three TRIzol 
lysates (1 × 106 cells) were obtained from each passage for both cultures for RNA isolation. 

2.4. RNA Extraction and cDNA Synthesis 
Total RNA was extracted using Trizol reagent (Thermo Fisher Scientific, Waltham, 

MA, USA; 15596026) according to the manufacturer’s protocol. The concentration and 
quality of  RNA were assessed by Nanodrop 2000 with the mean absorption ratios 
A260/280 and A260/230 checked to ensure RNA purity. RNA integrity was evaluated us-
ing 1.8% agarose gel electrophoresis. The RNA was further examined for DNA contami-
nation by PCR for ACTB and GAPDH. The PCR reaction was performed in the presence 
of both positive and negative controls. No amplified PCR product was found on the aga-
rose gel after PCR and electrophoresis of the RNA samples (except for positive controls). 
The cDNA synthesis reaction was carried out using the High-Capacity cDNA Reverse 
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transcription kit (Thermo Fisher Scientific, Waltham, MA, USA; 4368814) in accordance 
with the manufacturer’s protocol and guidelines and was stored at −20 °C until further 
analysis. 

2.5. Selection of Reference Genes and Primer Design 
In total, thirteen reference genes were selected by searching for relevant literature 

related to various breast cancer cell lines [26–38]. Twelve more genes were selected from 
the TCGA dataset analysis and were referred to as Novel Candidate Reference genes. All 
selected genes are summarized in Table 1. Along with these 25 candidate reference genes, 
three genes of interest (target genes; GOIs) were also normalized to test the selected refer-
ence genes (Table 1). Primers for all 12 selected novel candidate reference genes, PPIA and 
SNAI1 were designed using Primer3Plus in accordance with the MIQE guidelines [11,65] 
while the rest were taken from literature or from our previous study in MCF-7 cell line 
[66]. The gene function, primer pairs and respective melting curves of all the selected 
genes are presented in Supplementary File S1. 

Table 1. Summary table of candidate reference genes and genes of interest (GOI). 

Cell Line Source Selected Candidate Reference Genes 

Breast cancer various 
cell lines 

Literature 

ACTB [26,29,32,34], CCSER2 [35], GAPDH [34], HNRNPL [37], 
HSP90AB1 [31], PCBP1 [37], PGK1 [30], PPIA [36], PUM1 

[28,33,35], RNA18S [26,34], RNA28S [66], RPL13A [27,33], SF3A1 
[32,38] 

HER2-E tissue samples TCGA (Novel) BSG, CFL1, DAD1, EIF5A, GABARAP, NACA, PFN1, PSMB4, 
RBX1, TPT1, TUBA1B, UBC 

Genes of Interest 
(GOI) 

Expression Atlas AURKA, BUB1, SNAI1 

Selection of the three genes of interest was based on the data from Expression atlas 
(https://www.ebi.ac.uk/gxa/home (accessed on 15 April 2021); European Bioinformatics 
Institute). The atlas was searched for SK-BR-3 cell line and GOIs were randomly selected 
based on high expression (AURKA; 241 TPM), medium expression (BUB1; 31 TPM), and 
low expression (SNAI1; 5 TPM). 

2.6. Primer Efficiency 
Standard (calibration) curves were analyzed using different concentrations and dilu-

tions as shown in Supplementary File S1. For each reaction, 7 µL was used in a 384 well 
plate. Each dilution was done in triplicate for each primer pair along with appropriate 
non-template controls (NTC). Real-time PCR was performed using the ViiA7 RT-PCR 
thermocycler (Thermo Fisher Scientific). The cycling parameters were 95 °C for 10 min 
followed by 40 cycles of amplification at 95 °C for 15 s, 58 °C for 30 s and 72 °C for 30 s 
with signal acquisition. After that melting curve were obtained by signal acquisition from 
58 °C to 95 °C in increments of 0.05 °C/s. 

2.7. Reverse Transcription Quantitative PCR (RT-qPCR) 
Reverse transcription quantitative PCR (RT-qPCR) was performed with 10 ng of 

cDNA per reaction using ViiA 7 RT-PCR thermocycler (Thermo Fisher Scientific). Tripli-
cate reactions of each sample were done using HOT FIREPol EvaGreen qPCR Supermix 
(Solis Biodyne, Tartu, Estonia; 08-36-00020) on 384 well plates (Applied Biosystems™, 
Thermo Fisher Scientific, Waltham, MA, USA; LS4309849). The cycling parameters were 
95 °C for 10 min followed by 40 cycles of amplification at 95 °C for 15 s, 58 °C for 30 s and 
72 °C for 30 s. This was followed by melting curve acquisition as described above. All 
assays were performed with non-template controls (NTC). 
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2.8. Determination of the Least Variable Reference Genes and Validation in Hypoxic Conditions 
The Cq values obtained from RT-qPCR were used to determine the stability of the 

candidate reference genes in the sequential normoxic passage samples using different al-
gorithms (coefficient of variation—CV%, NormFinder [67], geNorm [17], BestKeeper [68], 
Comparative ∆Ct [69] and RefFinder [70]). The least variable reference genes were then 
tested in hypoxic samples to verify their stability and expression in hypoxic conditions. 
The working methodology and cut-off criteria for each of these algorithms is demon-
strated in Supplementary Appendix 1. Data management and storage along with descrip-
tive analysis was done using MS Excel (Microsoft Office 365). The various algorithms 
mentioned above were performed using R v4.0.2 (via R studio v1.3.1056). A complete 
workflow employed in the present study is shown in Scheme 1. 

 
Scheme 1. Brief overview of the workflow of analysis employed in the present study. The boxes indicate the different 
steps including lab wet work that was performed. The circles indicate the algorithms used for selection and identification 
of appropriate reference genes in SK-BR-3 breast cancer cell line. Blue boxes indicate the cellular wet lab work whilst the 
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green and pink boxes indicate the two pipelines followed for selection of candidate reference genes. The yellow boxes 
indicate the major work packages and milestones in the common workflow employed. Grey circles indicate the different 
algorithms employed for the determination of appropriate reference genes. 

3. Results 
3.1. TCGA Analysis for Selection of Novel Reference Genes 

Novel candidate reference genes were selected on the basis of HER-E breast cancer 
sample transcriptomic data from TCGA legacy dataset by applying the following criteria: 
(I) medium to high expression levels—mean (log2(TPM)≥5; (II) low expression variance—
standard deviation (log2(TPM)) ≤ 1; (III) no exceptional expression—no log2 (TPM) differs 
from the mean log2 (TPM) by a factor of two or more (criteria based on study by Li Y. et 
al.) [71]. Once the genes were filtered according to the criteria, CV% (Coefficient of Varia-
tion) was calculated. The lower the CV%, the more stable the expression of a candidate 
reference gene. 

A complete list of 3363 ranked genes which fulfilled the selection criteria is available 
in Supplementary Appendix 2. The candidates for validation (12 genes) were selected, 
based on further criteria including association with dissimilar cellular functions and that 
the selected genes are not subunits of the same protein as encoded by traditional reference 
genes. Upon consideration, from the top 10 genes, six genes were selected (GABARAP, 
PFN1, UBC, EIF5A, CFL1 and TPT1). Three more genes were selected from ranks 11–20 
(NACA, DAD1 and PSMB4). Finally, three genes (TUBA1B, RBX1 and BSG) were ran-
domly selected from the top 400 ranks. 

Based on expression levels (measured as log2[TPM]), ACTB, TPT1 and GAPDH 
showed high expression levels while PUM1, SF3A1 and PPIA showed low expression lev-
els in HER2-E samples (Figure 1a). Based on CV%, however, GABARAP, ACTB and PFN1 
were the genes with the least variable expression, while PUM1, SF3A1 and PGK1 were the 
genes with the most variable expression (Figure 1b). Genes with higher levels of expres-
sion generally were associated with lower inter-sample variation. 
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Figure 1. Ranking of the novel (pink) and conventional (blue) candidate reference genes. The rankings are based on TCGA 
database analysis. (a) Gene ranking based on expression levels (log2[TPM]); (b) Scatterplot showing the order of genes 
based on CV% and mean log2[TPM] values. CCSER2 (grey boxplot) was retrieved as FAM190B and violated the selection 
criteria due to low expression levels. 

3.2. Gene Ontology (GO) Over-Representation Analysis 
Based on fold enrichment (Table 2), the top ranked biological process was modula-

tion by symbiont of the host process which included GAPDH, UBC and PGK1. However, 
the most significantly enriched biological process was cellular response to cytokine stim-
ulus (FDR = 3.33 × 10-03) which included GAPDH, RBX1, TUBA1B, HSP90AB1, RPL13A, 
UBC, CFL1, PPIA and PSMB4. A complete ontology for Molecular function and Cellular 
Component is presented in Supplementary File S2. 
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Table 2. Gene Ontology (Biological Process) of candidate reference genes ranked by fold enrichment. 

GO ID GO Term No. of Genes * Fold Enrichment Raw p Value FDR 
GO:0044003 Modulation by symbiont of host process 3 46.10 4.24 × 10−05 3.05 × 10−02 
GO:0006090 Pyruvate metabolic process 3 38.31  7.20 × 10−05 3.68 × 10−02 

GO:0061418 
Regulation of transcription from RNA polymer-

ase II promoter in response to hypoxia 
3 34.87 9.43 × 10−05 4.27 × 10−02 

GO:0048524 Positive regulation of viral process 3 32.67 7.14 × 10−06 1.03 × 10−02 
GO:0019058 Viral life cycle 5 20.33 4.26 × 10−06 7.52 × 10−03 
GO:0006417 Regulation of translation 5 12.12 4.90 × 10−05 3.26 × 10−02 
GO:0071345 Cellular response to cytokine stimulus 9 7.86 8.38 × 10−07 3.33 × 10−03 
GO:0043066 Negative regulation of apoptotic process  7 6.96 4.13 × 10−05 3.12 × 10−02 

GO:0006139 
Nucleobase containing compound metabolic pro-

cess 
11 3.64 6.05 × 10−05 3.56 × 10−02 

GO:0010604 
Positive regulation of macromolecule metabolic 

process 
12 3.05 1.33 × 10−04 5.02 × 10−02 

GO:0043170 Macromolecule metabolic process 17 2.43 2.16 × 10−05 2.01 × 10−02 
* No. of genes indicates the number of genes from the input selected candidate reference genes that are represented by the 
respective GO term. 

3.3. Grouping of Genes Based on Functional Classification (Panther) 
Panther was used to group the candidate reference genes based on function. The 

grouping was done across five different ontologies (Figure 2; Supplementary File S2)—
GO biological process, GO molecular function, GO cellular component, protein class and 
pathway. Most of the genes in GO cellular component analysis were associated with cell 
or cell part (17 genes each) (Figure 2). In protein class classification six genes were identi-
fied as genes encoding cytoskeletal proteins (ACTB, TUBA1B, TPT1, PFN1, CFL1 and 
GABARAP). Finally, based on pathway, three genes were associated with cytoskeletal reg-
ulation by Rho GTPase pathway (ACTB, PFN1 and CFL1) while two genes were associated 
each with glycolysis (GAPDH and PGK1) and Huntington disease (GAPDH and ACTB). 
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Figure 2. Grouping of the candidate reference genes according to Panther Functional Classification, which is further based 
on five different ontologies. 

3.4. Candidate Reference Gene Stability in SK-BR-3 Cell Line 
In the present study, we collected three technical replicates from five consecutive 

passages (p7–p11) in two replicate cultures S1 and S2. The biological replicates were ana-
lyzed for all 25 candidate reference genes, thereby producing a dataset with 250 Cq values. 
A similar dataset was analyzed for the three genes of interest (dataset of 30 Cq values). 
Different algorithms were then used to analyze the stability of the reference gene expres-
sion. NormFinder, geNorm, comparative ∆Ct and RefFinder all ranked HSP90AB1, PGK1, 
DAD1, PUM1 and RPL13A as the most stable genes in the consecutive passages of SK-BR-
3 (Figure 3). BestKeeper, however, ranked RBX1, CFL1 and UBC as the most stable genes. 
RNA18S, TUBA1B and RNA28S were consistently ranked as the least stable reference gene 
candidates by all algorithms. 
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Figure 3. Ranking of candidate reference genes according to various algorithms (A) NormFinder; (B) geNorm; (C) Com-
parative ∆Ct; (D) BestKeeper; (E) Correlation with BestKeeper Index (BI) and (F) RefFinder. 

3.5. Candidate Reference Gene Stability in Replicate Cultures 
To analyze the expression stability of candidate reference genes in replicate cultures 

S1 and S2, we applied all algorithms separately, as shown in Supplementary File S3. De-
scriptive analysis revealed that CCSER2 and GABARAP showed low expression levels (Cq 
> 28), while RNA28S and RNA18S showed high expression levels (Cq < 15). Coefficient of 
variation (CV%) analyses revealed that TUBA1B showed high variation (> 50%) and hence 
was not a suitable candidate. Further analysis with BestKeeper revealed ACTB, SF3A1, 
CFL1, UBC and NACA to have a low/moderate correlation with the BestKeeper Index (BI). 
After removal of these 10 candidate reference genes, the remaining 15 genes were re-ana-
lyzed using various algorithms, and none of the remaining genes violated any criteria. 
Finally, cumulative rankings from both cultures revealed HSP90AB1, DAD1, PGK1, 
RPL13A and PUM1 to be the top five most stable genes. 

3.6. Selection of Reference Genes for Further Validation 
Since geNorm indicated that use of two genes (Supplementary File S3) would be suf-

ficient, we decided to select the top five least variable genes from our analysis and test 
different triplets (rather than in pairs, as a good practice) of the selected five genes. To 
select the genes, we analyzed the results obtained so far from both cultures whilst also 
factoring-in CV% rankings (Supplementary File S3). As a result, HSP90AB1, DAD1, PFN1, 
RPL13A and PUM1 were selected for further analysis and normalization of the genes of 
interest. 

3.7. Normalization of Genes of Interest (GOIs) 
The ∆∆Ct method is the method of choice for normalization of the gene expression of 

genes of interest [72]. A modification of the ∆∆Ct method was employed in the present 
study. The modification allowed us to account for differential primer efficiencies and the 
use of multiple reference genes [73,74]. Subsequently, to account for primer efficiency in 
the equation, the efficiencies from broad and narrow range dilutions were used (Supple-
mentary File S1). We then normalized the three genes of interest (GOIs)—AURKA, BUB1 
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and SNAI1—with triplet pairs of the five chosen reference genes (10 possible triplets as 
shown in Figure 4). According to the guidelines, any arbitrary sample can be considered 
as an internal calibrator (control) for normalization without any effects on the relative 
quantification result. Hence, we considered passage p7 as the internal calibrator since it 
was the initial passage in the experiment. 

For evaluation of successful normalization, the NRQs (normalized relative quanti-
ties) should be checked for patterns in expression, and the difference should be minimal 
between each sample after normalization [73,75]. For AURKA, we noticed that the expres-
sion in comparison with p7 decreased in p8 followed by increase in p9. The NRQs were 
found to be close to p7 levels in p10 and p11 (Figure 4a). However, this trend was not 
observed in the triplets with RPL13A (triplets 2, 5, 6, 7, 9 and 10). The expression of triplets 
with RPL13A in p9 and p10 was highly elevated in comparison to p7 (Figure 4a). Similar 
observations were made for BUB1 and SNAI1 (Figure 4b,c). This may be explained by the 
fact that among the five selected genes RPL13A had the lowest correlation r (r = 0.856) with 
the BestKeeper Index (Additional Table S10 in Supplementary File S3), which was also 
shown by NormFinder results. Hence, RPL13A was not an ideal candidate and we re-
moved it from the further analysis. 
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Figure 4. Normalization of the three genes of interest (GOIs) in sequential passage experiments of SK-BR-3 cell line (S1 + 
S2) for (a) AURKA; (b) BUB1 and (c) SNAI1. The corresponding triplet codes shown on the x-axis are interpreted in figure 
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legend. Error bars indicate the standard error (S.E.). Calib (p7) stands for the calibration passage 7, i.e., the initial passage 
which was used as an internal experimental control to obtain normalized relative quantities (NRQ) by Pfaffl’s method. 

3.8. Effects of Hypoxia on the Stability of the Selected Reference Genes 
To evaluate the effects of hypoxia on reference gene stabilities, we applied all algo-

rithms combining data with hypoxic sample results for the four reference genes 
(HSP90AB1, PUM1, DAD1 and PFN1). In hypoxia, DAD1 and HSP90AB1 were the two 
most stable genes as revealed by NormFinder, geNorm, Comparative ∆Ct and RefFinder 
(Figure 5). BestKeeper, however, ranked PUM1 as the most stable gene, and the DAD1 
showed the highest correlation with the BestKeeper index. Comparison of the expression 
stabilities of the genes in normoxia vs. hypoxia showed that the expression stability of all 
four genes decreased after the addition of hypoxic samples to the dataset (Figure 5). Only 
DAD1 and PFN1 displayed improved expression stability in hypoxia according to 
RefFinder (Figure 5F). Similarly, only these two genes improved their correlation with the 
BestKeeper index in hypoxia. Nonetheless, no gene violated the respective cutoffs in any 
of the algorithms, making them suitable reference genes. 

 
Figure 5. Ranking of the candidate reference genes according to various algorithms (A) NormFinder; (B) geNorm; (C) 
Comparative ∆Ct; (D) BestKeeper; (E) correlation with BestKeeper Index (BI) and (F) RefFinder. Yellow bars indicate the 
stability values for the genes in normoxia samples, while the green bars indicate the stability values for the genes in all 
samples (normoxia and hypoxia). The reference genes are ranked according to the stability rankings in all samples (green 
bars). The stability of the reference genes in the sample pool increases from left to right for all algorithms. 

3.9. Experimental Validation of Reference Genes in Hypoxic Conditions 
We found that after normalization AURKA was slightly upregulated (Figure 6A) af-

ter 24 h of hypoxic exposure while after 72 h, different triplets indicated different results. 
The normalization factor (NF) was within the acceptable limits (NF < 2 to 3-fold relative 
to the average), thus eliminating potential causative issues, e.g., starting material quantity 
or quality, or a problem with one of the reference genes (either not stably expressed, or 
not adequately measured) [75]. As pointed out by the other authors [34,75], the choice of 
calibrator sample (reference genes) does not influence the relative quantification result. 
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Figure 6. Normalization (Pfaffl’s method) of the three genes of interest (GOIs) in SK-BR-3 cell line in acute hypoxia (A–C) 
and chronic hypoxia (D–F) for (a,d) AURKA; (B,E) BUB1 and (C,F) SNAI1. 

Although numbers may differ, the actual fold differences between the samples re-
main identical, therefore the results are fully equivalent and only rescaled. The expression 
of BUB1 was sequentially increasing, while SNAI1 after an initial (24 h) decrease became 
upregulated, but still below the control levels (Figure 6). Both AURKA, and BUB1 were 
downregulated (−0.78 and −1.26 average log2 fold change, respectively) in chronic hy-
poxia, when normalized by all four reference gene triplets (Figure 6). However, SNAI1 
was upregulated in chronic hypoxia (+ 1.03 average log2 fold change). Based on our anal-
ysis, we can conclude that the selected reference gene triplets were able to successfully 
normalize the genes of interest irrespective of the expression levels of gene of interest in 
SK-BR-3 cell line (AURKA—high expression; BUB1—medium expression; SNAI1—low 
expression). 

4. Discussion 
A pivotal aspect in any gene expression study is the selection of appropriate internal 

controls that are expressed uniformly irrespective of culturing conditions, experimental 
treatment, nutrient stress etc. These controls (or references) normalize any variations in 
starting quantities, calibration issues or poor pipetting, thereby providing accurate re-
sults. However, complex gene-gene interactions and environmental effects on gene ex-
pression complicate the identification of such controls. Another layer of complexity in this 
pursuit is added by intrinsic heterogeneity of the cancer cells. Several tools and algorithms 
(NormFinder, geNorm, BestKeeper, Comparative ∆Ct and RefFinder) have been devel-
oped that can aid in sorting, selection, and validation of the reference genes. However, the 
considerations regarding the applicability of these algorithms and the acceptable cut-off 
limits are often misinterpreted or misapplied. Finally, the identification and extensive val-
idation of the reference genes for each type of biological object in different conditions may 
not be feasible in every instance. Such studies are often time and resource (labor, financial) 
consuming. In the present study, we have identified and validated novel reference genes 
for normalization of RT-qPCR results in SK-BR-3 breast cancer cell line. 

In the past the TCGA database has been commonly used to identify novel and relia-
ble candidate genes in different cancer types [37,38], but it has never been investigated 
individually for HER2-E subtype of breast cancer. Our analysis of TCGA legacy data re-
vealed that GABARAP, ACTB and PFN1 were the top three genes with the least variation 
amongst the samples (Figure 1b). However, upon validation in the SK-BR-3 cell line, we 
found that the least variation amongst the samples was displayed by RBX1, UBC and CFL1 
(Supplementary File S3). These differences between TCGA database and RT-qPCR results 
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are normal and expected. Firstly, the database represents a heterogenous mixture of sim-
ilar subtypes while the SK-BR-3 is a single cell line, and therefore constitutes a more ho-
mogenous sample. Secondly, all samples of TCGA repository come from primary un-
treated tumors collected from different institutes. Thirdly, there is an inherent possibility 
of bias in the biorepository generation process, stemming from different institutional re-
search interests, operative protocols, or patient populations [76]. Additionally, it must be 
considered that tissue specimens (TCGA data) in addition to cancer and normal mam-
mary cells contain various types of stromal and immune cells, which are absent from the 
cell culture samples. This type of heterogeneity also may have effects on the overall tran-
scription levels and stability. The database accommodates for most of the possible gene 
expression variations in tissues (in vivo) and, since cell lines like SK-BR-3 have been under 
constant cultivation over long-term, they tend to behave like outliers when compared to 
the TCGA database. Nonetheless, such extrapolation, bridging and application of in vivo 
data to in vitro conditions enable us to find common core genes which are uniformly ex-
pressed in both scenarios. 

Gene Ontology (GO) analysis (Table 2) revealed that the candidate genes selected 
based on the TCGA samples and literature were most significantly enriched in cellular 
response to cytokine stimulus (GO:0071345; CFL1, GAPDH, HSP90AB1, PPIA, PSMB4, 
RBX1, RPL13A, TUBA1B and UBC). Indeed, it is well known that breast cancer cells re-
spond to various cytokines in their microenvironment. The cells have been shown to 
evade cytokines such as TGF-β in the early stages (due to its anti-proliferative effects), 
however, in the later stages TGF-β stimulates the progression of the disease by inducing 
epithelial to mesenchymal transition (EMT type 3) [77–79]. IL-1 (adipokine) is known to 
increase the aromatase activity in SK-BR-3 cells, resulting in the generation of bioactive 
estrogens and increased cellular proliferation [80]. Other cytokines like IL-6, IL-19, IL-20, 
TGF-α, TNF-α, and IL-23 are also known to promote cancer progression [77]. Using data 
available from Mouse Genome Informatics (MGI; http://www.informatics.jax.org/ (ac-
cessed on 12 June 2021)), CFL1 was associated with cellular response to IL-1, IL-6 and TNF, 
GAPDH and RPL13A were associated with response to IFN-γ, while HSP90AB1 and 
TUBA1B were associated with the response to IL-4. Apart from the cytokine response, the 
genes were found to be enriched in viral life cycle (GO:0019058; BSG, HSP90AB1, PCBP1, 
PPIA and UBC) and positive regulation of viral processes (GO:0048524; BSG, PFN1 and 
PPIA). Evidence of various virus-related DNAs like EBV (Epstein-Barr virus), HPV (Hu-
man Papillomavirus), BLV (bovine leukemia virus) and MMTV (Mouse mammary tumor 
virus) has been found in breast cancers [81–84]. In fact, Lawson et al., demonstrated the 
presence of HPV-associated pre-malignant koilocytes in normal and malignant breast tis-
sues [85], indicating possible oncogenic correlation between the viruses and breast cancer. 
Using data from MGI, we found that BSG was associated with positive regulation of viral 
entry into the host cell, while HSP90AB1 was associated with virion attachment to the host 
cell. On the other hand, PFN1 and PPIA were found to be associated with positive regula-
tion of viral transcription and viral genome replication, respectively. 

To understand the role of the four validated reference genes in metabolic processes, 
GO biological processes analysis in association with data from MGI (http://www.infor-
matics.jax.org/ (accessed on 12 June 2021)) were investigated. The genes were found to be 
associated with negative regulation of apoptosis (DAD1) and nucleobase containing com-
pound metabolic process (Table 2). HSP90AB1 was found to be associated with positive 
regulation of activities of telomerase, phosphoprotein phosphatase and protein ser-
ine/threonine kinase. PFN1 was found to play a role in the positive regulation of DNA 
metabolic processes and of transcription by RNA polymerase II, while PUM1 was associ-
ated with the regulation of mRNA stability and the production of miRNAs (microRNAs). 
Based on Molecular function, HSP90AB1 and PFN1 shared two common ontologies—
RNA binding and Cytoskeletal protein binding (Supplementary File S2), both of which 
seemed to be downregulated in hypoxic conditions (for PFN1, fold change was 0.68 and 
0.45 after 24 and 72 h of acute hypoxia, respectively, and 0.89 in chronic hypoxia). With 
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respect to cellular component analysis the regulation of different genes (even from the 
same ontology) during hypoxia was divergent/unrelated. Whilst PUM1, HSP90AB1 and 
PFN1 shared two ontologies, nuclear and cytosol-associated genes, the genes were differ-
ently regulated with PUM1 showing upregulation while the other two showed downreg-
ulation in gene expression. 

Our analysis revealed that the four reference genes (HSP90AB1, DAD1, PUM1 and 
PFN1), when used in any combination of three, successfully normalized the genes of in-
terest (AURKA, BUB1 and SNAI1) in both hypoxic and normoxic conditions over multiple 
passages. HSP90AB1, previously known as HSPCB, was first described as a candidate ref-
erence gene by Jacob et al. [31] in a variety of 25 different cancer cell lines. However, the 
only breast cancer line in that study was MCF-7 (Luminal A subtype). The gene has been 
included among the most stable reference genes in other tissues/organs, e.g., ovary, mus-
cle tissue, adipose tissue etc. [86,87]. Heat Shock Proteins like HSP90AB1 have been pre-
viously shown to be downregulated in response to hypoxia in pig adipose-derived stro-
mal/stem cells [88] as well as in human hepatocytes [89]. Such downregulation (fold ex-
pression change of 0.71 after 24 h and 0.88 after 72 h in acute hypoxia and 0.52 in chronic 
hypoxia) appeared to have an impact on the stability of the gene by marginally lowering 
the expression stability in hypoxic conditions (Figure 5). 

DAD1, a novel reference gene identified in the present study, is a small integral mem-
brane protein of the oligosaccharyltransferase (OST) enzyme complex involved in the 
highly conserved asparagine-linked glycosylation of proteins in all eukaryotic cells [90]. 
The gene has been shown to be involved in apoptosis. Loss of DAD1 gene led to apoptosis 
in hamster cell lines and yeast cells [91,92]. In fact, DAD1 was preferentially expressed in 
hepatocellular carcinoma (HCC) and prostate cancer cells [93,94]. Hence, it has been pos-
tulated that high expression of DAD1 in HCC cells can activate OST and block apoptosis, 
thereby enhancing tumor cell survival [93]. We speculate that a similar role of the gene in 
the SK-BR-3 breast cancer cell line could explain its consistent and stable expression. In 
A431 epithelial carcinoma cells, DAD1 was upregulated in hypoxic conditions (by a fold 
change of 1.2) after exposure of 72 h [95]. In our results, however, DAD1 was downregu-
lated by 0.64-fold change after exposure to acute hypoxia for 24 and 72 h. The expression 
then increased and approached normoxia levels during chronic hypoxia (fold change 
0.95). The differences in our results from those in A431 cells could be explained by the 
cardinal differences in background transcriptome and epigenome of A4321 and SK-BR-3 
cells. Furthermore, there were differences in culturing conditions. While our cells were 
exposed to 2% O2 in acute hypoxia, the A431 cells were exposed to < 0.1% O2 [95]. Our 
results suggest that SK-BR-3 cells after an initial shock phase quickly adapted to chronic 
hypoxic conditions and continued to express core genes in levels similar to normoxia. This 
is also supported by the fact that the expression stability of DAD1 improved in hypoxia, 
i.e., it was expressed even more stably after exposure to hypoxia. 

PFN1, another novel reference gene identified in the present study, is often regarded 
as the founding member of its family constituting four profilin genes (PFN1, PFN2, PFN3 
and PFN4). These genes have been associated with almost every aspect of cellular func-
tions including proliferation, survival, motility, endocytosis, membrane trafficking, 
mRNA splicing as well as gene transcription [96,97]. The overexpression of PFN1 could 
negatively regulate cancer cell motility in breast cancer cells [98]. Additionally, it has been 
demonstrated that in triple negative breast cancer cell lines, overexpression of PFN1 sup-
presses AKT (serine-threonine kinase) activation via upregulation of PTEN (phosphatase 
and tensin homolog) [99], indicating the tumor-suppressive character of PFN1 gene. Sim-
ilar observations have also been reported in pancreatic cancer cells [100]. These findings 
are of interest since the expression of PFN1 in the SK-BR-3 cell line seems to be uniform 
and stable despite its anti-tumorigenic nature. In fact, depletion of PFN1 in breast cancer 
cells has enabled hyper-migratory phenotype in vitro and enhanced hematogenous dis-
semination from primary tumor in vivo [101]. We can hypothesize that some downstream 
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regulation is at play, which leads to decreased PFN1 protein levels in breast cancer cells 
despite rather uniform expression of the gene. 

Finally, the fourth reference gene identified for the SK-BR-3 cell line, PUM1 has been 
previously described as a candidate reference gene in various cancers including breast 
cancers [28,33,35]. The gene has been associated with cancer cell growth, migration, and 
invasion [102]. In fact, amongst the four selected reference genes in our study, only PUM1 
showed an increase in expression fold change in hypoxia. The fold change was 0.80 and 
1.13 after 24 h and 72 h of acute hypoxia, respectively, and reached 1.56 in chronic hypoxia. 
These findings suggest that PUM1 may be more involved in the regulation of cellular 
functions under hypoxia in comparison to the other identified reference genes. Another 
candidate gene, RPL13A, has been previously described as a stable reference gene in breast 
cancers [27,33]. The expression of RPL13A was quite stable in our analysis, however, it did 
not yield successful normalization of the genes of interest. 

Various other reference genes in the past have been described to be suitable reference 
genes in breast cancers including GAPDH, ACTB, PPIA and RNA28S/RNA18S 
[26,29,32,34]. However, there is also contrary evidence suggesting against the use of these 
genes as references [18–22]. The use of GAPDH as a reference gene has long been a topic 
of debate. It is overexpressed in cervical, prostate, pancreatic and lung cancers, and it has 
been the least stable gene in multiple studies [29,34,103,104]. Similar concerns have been 
raised concerning use of ACTB as a single internal control [28]. RNA18S and RNA28S have 
been reported previously to be stable reference gene candidates [34], however, concerns 
regarding the absence of purified mRNA samples and their relatively high abundance 
compared to the target mRNAs have been reported [17]. Both RNA28S and RNA18S were 
highly expressed (mean Cq = 7–8) in the present study and in our study of MCF-7 cell line 
[66]. Secondly, these two genes are not included in the TCGA database, which makes it 
difficult to compare their expression between in vivo and in vitro scenarios. 

PPIA along with ACTB was found to be the most stable reference gene for basal type 
breast cancer cell lines in hypoxic and serum deprived conditions [36]. However, our anal-
ysis revealed that the expression of PPIA was moderately stable and ranked ninth in the 
combined analysis (Supplementary File S3). In our study of MCF-7 breast cancer cell line, 
we identified GAPDH-CCSER2-PCBP1 triplet as the most stable reference gene triplet 
which could be used to normalize the expression of genes of interest in various nutrient 
stress conditions [66]. However, the expression of CCSER2 was extremely variable in the 
present study. The gene did not reach the thresholds set for TCGA analysis, and the ex-
pression of the gene was low (mean Cq = 27.4). Hence, we eliminated it from our analysis 
in early stages. PCBP1 and GAPDH were among the top 15 most stable reference genes in 
our analysis (Supplementary File S3). Interestingly, GABARAP was identified to have the 
least variation (CV%) among our novel candidate reference genes, however, the gene was 
associated with low expression and poor primer efficiency when confirmed by RT-qPCR 
(Supplementary Files S1 and S3). 

Nonetheless, the results of the present study are constrained by some limitations. 
First, the expression stabilities of the reference genes were validated in vitro only. Second, 
these reference genes were tested in normoxic and hypoxic conditions only. Their use for 
normalization of expression in other conditions such as nutrient stress, drug treatment 
etc. remains to be validated. Finally, given the heterogeneous behavior of cancer cells, 
there is a need for inter-laboratory validation to further confirm our results. The major 
question that arises is how many more reference genes can we identify. Although a precise 
number will be difficult to predict, the estimates in normal human tissues (using ESTs) 
predict the numbers to be in the range of 3100 to 6900 genes [23], thereby making a pleth-
ora of reference genes still waiting to be identified and validated that could be more prom-
ising than the ones previously reported. However, we agree with other authors that rather 
than testing thousands of genes, we need to validate a panel of reference genes whose 
expression under varying conditions can be proven to be as minimally variable and as 
robust as possible [35]. Accordingly, based on our analysis, we suggest the use of 
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HSP90AB1, DAD1, PFN1 and PUM1 in any combination of three (triplet), thereby giving 
other researchers not one but four different combinations to choose from based on their 
individual experimental designs and needs. 

5. Conclusions 
Based on the results of the present study, we suggest the use of HSP90AB1, DAD1, 

PFN1 and PUM1 in any combination of threes (triplet) for normalization of the expression 
of genes of interest in SK-BR-3 breast cancer cell line. The conventional RT-qPCR reference 
genes such as ACTB, GAPDH, RPL13A, RNA18S, RNA28S, as well as CCSER2 and GABA-
RAP are not appropriate for use as reference genes in the SK-BR-3 cell line. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/genes12101631/s1, Supplementary File S1: Primer Description and Efficiency, Supple-
mentary File S2: Gene Ontology, Supplementary File S3: Replicate Culture Analysis, Supplementary 
Appendix 1: Description of Algorithms, and Supplementary Appendix 2: TCGA filtered ranking for 
HER2-E samples. 
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