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Abstract: Nasopharyngeal carcinoma (NPC) and alcohol flush syndrome are thought to be strongly
influenced by genetic factors and are highly prevalent amongst East Asians. Diminished activity of
aldehyde dehydrogenase (ALDH), a major enzyme in the alcohol-metabolizing pathway, causes the
flushing syndrome associated with alcoholic consumption. The genetic effect of ALDH isoforms on
NPC is unknown. We therefore investigated the association between the genetic polymorphisms of
all 19 ALDH isoforms and NPC among 458 patients with NPC and 1672 age- and gender-matched
healthy controls in Taiwan. Single-nucleotide polymorphisms (SNPs) located between the 40,000 base
pairs upstream and downstream of the 19 ALDH isoform coding regions were collected from two
genome-wise association studies conducted in Taiwan and from the Taiwan Biobank. Thirteen SNPs
located on ALDH4A1, ALDH18A1, ALDH3B2, ALDH1L2, ALDH1A2, and ALDH2 Glu487Lys (rs671)
were associated with NPC susceptibility. Stratification by alcohol status revealed a cumulative risk
effect for NPC amongst drinkers and non-drinkers, with odds ratios of 4.89 (95% confidence interval
2.15–11.08) and 3.57 (1.97–6.47), respectively. A synergistic effect was observed between SNPs and
alcohol. This study is the first to report associations between genetic variants in 19 ALDH isoforms,
their interaction with alcohol consumption and NPC in an East Asian population.

Keywords: nasopharyngeal carcinoma; aldehyde dehydrogenase; single nucleotide polymorphism; alcohol

1. Introduction

Nasopharyngeal carcinoma (NPC) is more common in East and Southeast Asia than
in Western countries, with more than 70% of cases worldwide originating from this Asian
region. Recently reported age-standardized incidence rates range from 3.0 per 100,000
in China to 0.4 per 100,000 in Western countries [1,2]. The remarkable geographical
distribution of NPC incidence and family history as a strong risk factor suggests that
host genetic susceptibility plays an important role [2,3]. Familial linkage studies, genetic
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case-control association studies, genome-wide association studies (GWAS) and whole-
exome sequencing association studies have identified susceptibility genes/loci related to
the risk of NPC, including the HLA genes [4,5], CLPTM1L/TERT [6], MST1R [7] and NIPAL1
genes [3]. Additional host genetic susceptibility factors have remained elusive.

Lifestyle behaviors such as salted fish intake and cigarette smoking significantly
increase the risk of NPC in Asian populations [8]. The association between alcohol con-
sumption and NPC risk is inconsistent in many studies [9,10]. Two meta-analyses have
indicated that the risk of developing NPC may increase with alcohol consumption; in both
meta-analyses, drinking and high-frequency drinking increased the risk of NPC [11,12].

People of East Asian descent have the highest prevalence (35–45%) of aldehyde
dehydrogenase 2 (ALDH2) deficiency, which causes the flushing syndrome observed after
consumption of alcoholic beverages [13]. The major alcohol-metabolizing enzymes are
alcohol dehydrogenase-1B (ADH1B) and ALDH2, and the two most frequently reported
polymorphisms, ADH1B Arg47His (rs1229984) and ALDH2 Glu487Lys (rs671), have been
shown to alter the effect of alcohol and potentially influence carcinogenesis [14,15]. In
humans, the ALDH family consists of 19 members identified through similar amino acid
sequences and functions [16]. Several recent studies have shown that ALDH1A1, ALDH2
and ALDH3A1 may be related to different cancers, such as head and neck cancer (HNC) [17],
esophageal cancer [18], cholangiocarcinoma [19], and colorectal cancer (CRC) [14]. Elevated
ALDH1 activity has been used as a cancer stem cell biomarker of tumor aggressiveness in
the invasive front of NPC [20], while a lower expression of ALDH2 has been associated
with poor prognoses in breast cancer, lung adenocarcinoma, and HNC squamous cell
carcinomas [21].

Although NPC and ALDH2 deficiency occur with high frequencies among East Asians,
the genetic effects of ALDH isoforms on NPC remain unknown. Thus, we sought to
determine associations between the genetic polymorphisms of 19 ALDH isoforms, [22]
their interaction with alcohol consumption and NPC in an Asian population in Taiwan.

2. Materials and Methods
2.1. Study Population

This study included 458 NPC cases enrolled in two GWAS studies conducted in
Taiwan [4,23], all of whom were recruited from Chang Gung Memorial Hospital (CGMH)
between 1983 and 2008. Their pathology records were reviewed for confirmation of NPC
diagnosis according to World Health Organization (WHO) pathological classification
criteria. Age- and gender-matched healthy controls were randomly selected from subjects
without any NPC family history from the Taiwan Biobank (TWB) [24]. After matching,
a total of 413 NPC cases and 1672 healthy controls were included in the present study
(case:control ratio 1:4). The TWB has collected specimens and associated data (including
genetic information) from the general Taiwanese population since 2013 and follows up
with subjects every two to four years. The TWB data in this study involved individuals
aged 30–70 years who self-reported as being of Taiwanese Han Chinese descent. The study
was reviewed and approved by the Institutional Review Broad of Chang Gung Medical
Foundation, Taiwan (IRB 103-7224B). Written informed consent was obtained from each
study participant at the time of enrollment.

2.2. Data Collection

Survey questionnaires collected information about alcohol consumption, betel quid
chewing, and cigarette smoking. Cases were designated alcohol users if they had consumed
an alcoholic beverage at least once weekly for six months, betel nut users if they had chewed
at least two betel nuts daily for a year, and cigarette smokers if they had smoked daily for
at least one year. Among controls, alcohol users were defined as persons who reported
drinking more than 150 mL of alcohol per week during the 6 months before the study
health examination, betel nut users if they had ever chewed betel nuts daily for one month,
and cigarette smokers if they had smoked daily for at least 6 months.
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2.3. Genotyping and Imputation

Genotyping of the NPC cohort was performed by Illumina Hap550v3_A (for 277 NPC
cases) and Human610-Quad Beadchips (for 181 NPC cases), according to the manufac-
turer’s protocols (Illumina, Inc., San Diego, CA, USA). The Affymetrix Axiom genome-wide
TWB array was used to genotype the TWB cohort. Genotyping and quality control mea-
sures involving samples and single nucleotide polymorphisms (SNPs) followed those
described in previous studies [4,23]. Since the GWAS results were obtained using three
different genotyping platforms, genotype imputations were performed separately in each
platform before data combination. Imputations were performed using IMPUTE2 [25]
with the 1000 Genomes Project Phase III reference panel (October 2014 release). A total
of 78,605 SNPs were identified between the 20,000 base pairs upstream and 20,000 base
pairs downstream of 19 ALDH isoform coding regions, based on GENCODE release
38. SNPs with low imputation quality (information < 0.3), call rate < 99%, minor allele
frequency < 0.05, and Hardy-Weinberg equilibrium in controls (p < 0.0005) were removed
from analysis.

2.4. Statistical Analysis

For the baseline characteristics, continuous data are presented as means with standard
deviation, and categorical data are presented as proportions. We used t-tests to compare
mean values of continuous variables and chi-squared tests to compare the frequencies of cat-
egorical variables between two groups. The association between SNP genotype/cumulative
risk alleles and disease status was evaluated using logistic regression while controlling for
alcohol use, betel quid chewing, and cigarette smoking to obtain the p values, odds ratios
(ORs) and 95% confidence intervals (CIs) in PLINK (version 1.90) [26]. Permutation testing
was performed 10,000 times using the PLINK “-mperm 10000” command. All tests were
two-sided, and a p value < 0.05 was considered to be statistically significant. Statistical
analyses were performed using SPSS software v21.0 for Windows (IBM, Armonk, NY, USA)
and R version 3.4.4 (R Core Team, 2018).

3. Results
3.1. Characteristics of the Study Participants

A total of 1245 subjects (249 cases and 996 controls) served as the discovery cohort
to search for genetic risk factors associated with NPC, while 840 subjects (164 cases and
676 controls) served as the replication cohort for the identified genetic SNPs (Figure 1).
Demographic characteristics of patients and controls are presented in Table 1. Around three-
quarters (75%) of the study population were males; mean ages were 47.98 ± 10.03 years
in the NPC group and 48.03 ± 10.37 years in the control group. Significantly higher
proportions of the NPC group consumed alcohol, chewed betel quid, and smoked cigarettes,
compared with the controls (36.8% vs. 15.6%; 23.0% vs. 6.0%; and 48.9% vs. 35.1%,
respectively; all p values < 0.001). Around two-thirds of the NPC cases (67.5%) were
diagnosed with late-stage (III and IV) disease, as according to the WHO classification (data
not shown). Clinical characteristics including alcohol use, betel quid chewing, and cigarette
smoking are risk factors for NPC and were included in the subsequent adjusted genetic
SNP analysis.

Table 1. Demographics of the study population.

Database 1-Discovery (N = 1245) Database 2-Replication (N = 840) Database 3-Total (N = 2085)

Controls
(N = 996)

Cases
(N = 249) p Value Controls

(N = 676)
Cases

(N = 164) p Value Controls
(N = 1672)

Cases
(N = 413) p Value

Age 48.16
(9.92)

48.01
(9.43) 0.827 47.84

(11.00)
47.92

(10.91) 0.934 48.03 (10.37) 47.98
(10.03) 0.919
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Table 1. Cont.

Database 1-Discovery (N = 1245) Database 2-Replication (N = 840) Database 3-Total (N = 2085)

Controls
(N = 996)

Cases
(N = 249) p Value Controls

(N = 676)
Cases

(N = 164) p Value Controls
(N = 1672)

Cases
(N = 413) p Value

Gender 1.000 0.924 0.939
Female 228 (22.9) 57 (22.9) 188 (27.8) 45 (27.4) 416 (24.9) 102 (24.7)
Male 768 (77.1) 192 (77.1) 488 (72.2) 119 (72.6) 1256 (75.1) 311 (75.3)

Alcohol users <0.001 ** <0.001 ** <0.001 **
No 830 (83.4) 156 (62.7) 581 (85.9) 105 (64.0) 1411 (84.4) 261 (63.2)
Yes 165 (16.6) 93 (37.3) 95 (14.1) 59 (36.0) 260 (15.6) 152 (36.8)

Betel quid chewers <0.001 ** <0.001 ** <0.001 **
No 937 (94.3) 189 (75.9) 631 (93.6) 129 (78.7) 1568 (94.0) 318 (77.0)
Yes 57 (5.7) 60 (24.1) 43 (6.4) 35 (21.3) 100 (6.0) 95 (23.0)

Cigarette smokers 0.005 * <0.001 ** <0.001 **
No 620 (62.3) 131 (52.6) 464 (68.6) 80 (48.8) 1084 (64.9) 211 (51.1)
Yes 375 (37.7) 118 (47.4) 212 (31.4) 84 (51.2) 587 (35.1) 202 (48.9)

Values are presented as N (%) or mean (SD). p values for chi square test or two independent t-tests: * represent p values less than 0.05; **
represent p values less than 0.001.
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3.2. ALDH Isoforms and Candidate SNPs Confer Susceptibility for NPC

We determined the association between the genetic polymorphisms of 19 ALDH
isoforms and the risk of NPC in Taiwan Chinese. Multivariate logistic regression analysis
adjusted for alcohol drinking, betel quid chewing, and cigarette smoking identified 12 SNPs
on ALDH4A1, ALDH18A1, ALDH3B2, ALDH1L2, and ALDH1A2 that were significantly
associated with an increased risk for NPC (all p values < 0.05, Table 2). In this study,
we used the permutation test, a robust but computationally intensive alternative to the
conservative Bonferroni correction for correcting multiple testing [27]. Although none of
the SNPs remained significant after Bonferroni correction (0.05/78,605), 6 SNPs located in
ALDH4A1, ALDH18A1 and ALDH3B2 passed a 10,000 random shuffled permutation test
(p perm < 0.05). In particular, one SNP (rs7534676) located in ALDH4A1 had a significant
permutation p value of <0.01 (Table 2).
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Table 2. Associations between ALDH gene polymorphisms and nasopharyngeal carcinoma risk.

rsID Genes Chr. pb38 Risk Allele

Discovery Replication Total

OR (95% CI) OR (95% CI)
Genotype Frequency OR (95% CI) p Value

Cases Controls

rs7534676 ALDH4A1;RP13-279N23.2 1 18,893,311 C 0.35 (0.2–0.62) 0.34 (0.18–0.65) 3/20/320 16/294/1336 0.35 (0.23–0.53) 8.92 × 107 *
rs7554974 ALDH4A1;RP13-279N23.2 1 18,897,992 T 0.41 (0.25–0.69) 0.34 (0.18–0.64) 3/23/323 17/299/1340 0.38 (0.26–0.57) 2.13 × 106 *
rs7518631 ALDH4A1;RP13-279N23.2 1 18,899,249 A 0.43 (0.26–0.72) 0.34 (0.18–0.64) 3/24/322 18/299/1339 0.40 (0.27–0.58) 3.24 × 106 *
rs72936453 ALDH4A1;RP13-279N23.2 1 18,899,852 T 0.43 (0.26–0.72) 0.34 (0.18–0.63) 3/24/323 18/299/1339 0.39 (0.27–0.58) 3.01 × 106 *
rs1229984 ADH1B 4 99,318,162 T 0.95 (0.70–1.30) 1.06 (0.76–1.50) 16/86/132 104/656/912 1.00 (0.79–1.25) 9.72 × 101

rs17111068 ALDH18A1 10 95,638,799 T 0.12 (0.04–0.38) 0.12 (0.03–0.49) 0/5/304 6/204/1462 0.12 (0.05–0.30) 3.91 × 106 *
rs76655136 ALDH3B2;RP11-119D9.1 11 67,695,970 C 0.14 (0.05–0.38) 0.37 (0.17–0.83) 0/11/333 11/191/1470 0.23 (0.12–0.42) 3.02 × 106 *
rs10778364 ALDH1L2;C12orf45 12 105,047,085 T 0.68 (0.52–0.89) 0.66 (0.47–0.94) 8/115/246 96/598/960 0.67 (0.54–0.83) 1.93 × 104

rs671 ALDH2 12 11,180,3962 A 1.32 (1.05–1.67) 1.10 (0.82–1.47) 39/163/191 146/684/842 1.23 (1.03–1.48) 2.25 × 102

rs34200934 RP11-344A16.2;ALDH1A2 15 57,767,226 T 0.70 (0.50–0.97) 0.66 (0.44–1.01) 8/66/307 30/414/1185 0.69 (0.53–0.89) 4.76 × 103

rs11636446 RP11-344A16.2;ALDH1A2 15 57,780,522 C 0.67 (0.46–0.98) 0.65 (0.42–1.01) 3/60/315 21/364/1282 0.67 (0.50–0.89) 5.41 × 103

rs79071218 RP11-344A16.2;ALDH1A2 15 57,885,374 C 0.19 (0.08–0.48) 0.41 (0.18–0.93) 0/12/356 4/189/1479 0.28 (0.15–0.51) 3.50 × 105

rs1975431 RP11-344A16.2;ALDH1A2 15 57,887,256 C 0.19 (0.08–0.48) 0.36 (0.15–0.87) 0/11/356 4/188/1480 0.26 (0.14–0.48) 2.33 × 105

rs28829404 ALDH1A2;LIPC 15 58,379,641 T 0.40 (0.22–0.73) 0.26 (0.09–0.71) 1/14/346 6/196/1470 0.34 (0.20–0.58) 5.32 × 105

Abbreviations: OR: odds ratio; CI: confidence interval. * p value for permutation < 0.05.
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This study also investigated the two most frequently reported gene polymorphisms
related to alcohol metabolism, ADH1B Arg47His rs1229984 and ALDH2 Glu487Lys rs671.
An association was observed between the rs671 polymorphism in ALDH2 and NPC risk.
The adjusted OR was 1.23 (95% CI = 1.03–1.48, p = 0.00225) when increased by one A
allele. No association was observed between the rs1229984 polymorphism in ADH1B and
NPC risk. After adjusting for potential confounders, the OR was 0.97 (95% CI = 0.78–1.22,
p = 0.0801) (Table 2).

3.3. Cumulative Risk Effect of 13 SNPs on NPC Susceptibility

Total risk allele counts for the 13 SNPs that we have identified were calculated for each
subject (range 13–26; median 23). In the multivariate logistic regression model, alcohol use,
betel nut chewing and the cumulative risk allele were all independent risk factors for NPC.
ORs were 2.61 (95% CI = 1.60–4.26, p < 0.001) for alcohol use and 2.63 (1.40–4.94, p = 0.003)
for betel nut chewing. Study subjects with more than 23 risk alleles had a significantly
higher risk of NPC (OR = 3.98; 95% CI = 2.45–6.46, p < 0.001) compared with subjects with
fewer than 23 risk alleles (Table 3).

Table 3. Cumulative risk effect of 13 SNPs on nasopharyngeal carcinoma susceptibility in multivariate
logistic regression model.

OR (95% CI) p Value

Alcohol consumption 2.61 (1.60–4.26) <0.001 **
Betel quid chewing 2.63 (1.40–4.94) 0.003 *
Cigarette smoking 0.79 (0.49–1.27) 0.334

Cumulative risk allele
<median Ref. Ref.
≥median 3.98 (2.45–6.46) <0.001 **

Abbreviations: OR: odd ratio; CI: confidence interval. The median number of cumulative risk alleles was 23.
* p value < 0.05; ** p value < 0.001.

3.4. ALDH Genes Confer Susceptibility for NPC after Stratification for Alcohol Use

To investigate the confounding effect of alcohol use on NPC, associations between SNPs
and NPC were stratified by alcohol consumption. Among subjects who did not consume
alcohol, the homozygous risk allele for most SNPs (except rs1229984) increased the risk of
NPC (p < 0.05). Among alcohol users, the homozygous risk alleles for rs7534676, rs7554974,
rs7518631, rs7518631, rs72936453, rs1711068, rs76655136, rs1975431, and rs28829404 increased
the risk of NPC (p < 0.05). For ALDH2 rs671, the risk of NPC was higher for study subjects
with the AA/AG alleles compared with subjects with the GG allele, whether alcohol was
consumed (OR = 1.47; 95% CI = 0.95–2.27, p = 0.082) or not (1.27; 0.97–1.67, p = 0.087). A
cumulative risk allele effect for NPC was observed with alcohol consumption: the risk was
lower for subjects not using alcohol (OR = 3.57; 95% CI = 1.97–6.47, p < 0.001) than for those
who were (4.89; 2.15–11.08, p < 0.001) (Table 4).

Table 4. Associations between ALDH genes and nasopharyngeal carcinoma susceptibility after stratification for alcohol use.

Alcohol Use = No Alcohol Use = Yes

Controls
(N = 1411)

Cases
(N = 261) OR (95% CI) p Value Controls

(N = 260)
Cases

(N = 152) OR (95% CI) p Value

rs1229984

CC/CT 647 (45.9) 68 (43.3) Ref. Ref. 112 (43.1) 34 (44.2) Ref. Ref.

TT 764 (54.1) 89 (56.7) 1.11 (0.80–1.55) 0.544 148 (56.9) 43 (55.8) 0.96 (0.57–1.60) 0.867
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Table 4. Cont.

Alcohol Use = No Alcohol Use = Yes

Controls
(N = 1411)

Cases
(N = 261) OR (95% CI) p Value Controls

(N = 260)
Cases

(N = 152) OR (95% CI) p Value

rs671

GG/AG 1270 (90.0) 211 (84.5) Ref. Ref. 255 (98.1) 142
(100.0) Ref. Ref.

AA 141 (10.0) 39 (15.5) 1.66 (1.13–2.43) 0.010 * 5 (1.9) 0 (0.0) 0.00 (0.00–) 0.999
Re-

cessive
(AA/AG)

755 (53.5) 149 (59.4) 1.27 (0.97–1.67) 0.087 75 (28.8) 53 (37.3) 1.47 (0.95–2.27) 0.082

rs7534676

TT/TC 253 (18.2) 16 (7.3) Ref. Ref. 56 (21.8) 7 (5.6) Ref. Ref.

CC 1135 (81.8) 203 (92.7) 2.83 (1.67–4.79) <0.001 * 201 (78.2) 117 (94.4) 4.66 (2.06–10.55) <0.001 *

rs7554974

CC/CT 259 (18.5) 19 (8.5) Ref. Ref. 56 (21.8) 7 (5.6) Ref. Ref.

TT 1139 (81.5) 205 (91.5) 2.45 (1.51–4.00) <0.001 * 201 (78.2) 118 (94.4) 4.70 (2.07–10.64) <0.001 *

rs7518631

GG/GA 260 (18.6) 19 (8.5) Ref. Ref. 56 (21.8) 8 (6.3) Ref. Ref.

AA 1138 (81.4) 204 (91.5) 2.45 (1.51–4.00) <0.001 * 201 (78.2) 118 (93.7) 4.11 (1.89–8.92) <0.001 *

rs72936453

AA/AT 260 (18.6) 19 (8.5) Ref. Ref. 56 (21.8) 8 (6.3) Ref. Ref.

TT 1138 (81.4) 204 (91.5) 2.45 (1.51–4.00) <0.001 * 201 (78.2) 119 (93.7) 4.14 (1.91–8.99) <0.001 *

rs17111068

GG/GT 178 (12.6) 4 (2.0) Ref. Ref. 32 (12.3) 1 (0.9) Ref. Ref.

TT 1233 (87.4) 195 (98.0) 7.04 (2.58–19.18) <0.001 * 228 (87.7) 109 (99.1) 15.30 (2.06–113.42) 0.008 *

rs76655136

TT/TC 167 (11.8) 6 (2.7) Ref. Ref. 35 (13.5) 5 (4.1) Ref. Ref.

CC 1244 (88.2) 215 (97.3) 4.81 (2.10–11.00) <0.001 * 225 (86.5) 118 (95.9) 3.67 (1.40–9.62) 0.008 *

rs10778364

CC/CT 586 (42.0) 76 (32.8) Ref. Ref. 107 (41.3) 47 (34.3) Ref. Ref.

TT 808 (58.0) 156 (67.2) 1.49 (1.10–2.00) 0.008 * 152 (58.7) 90 (65.7) 1.35 (0.88–2.07) 0.174

rs34200934

GG/GT 365 (26.6) 42 (17.1) Ref. Ref. 79 (30.9) 32 (23.7) Ref. Ref.

TT 1007 (73.4) 204 (82.9) 1.76 (1.24–2.51) 0.002 * 177 (69.1) 103 (76.3) 1.44 (0.89–2.32) 0.137

rs11636446

AA/AC 321 (22.8) 36 (15.2) Ref. Ref. 64 (24.7) 27 (19.1) Ref. Ref.

CC 1086 (77.2) 201 (84.8) 1.65 (1.13–2.40) 0.009 * 195 (75.3) 114 (80.9) 1.39 (0.84–2.30) 0.206

rs79071218

TT/TC 170 (12.0) 7 (3.1) Ref. Ref. 23 (8.8) 5 (3.5) Ref. Ref.

CC 1241 (88.0) 219 (96.9) 4.29 (1.99–9.25) <0.001 * 237 (91.2) 137 (96.5) 2.66 (0.99–7.15) 0.053

rs1975431

AA/AC 169 (12.0) 7 (3.1) Ref. Ref. 23 (8.8) 4 (2.8) Ref. Ref.

CC 1242 (88.0) 219 (96.9) 4.26 (1.97–9.19) <0.001 * 237 (91.2) 137 (97.2) 3.32 (113–9.81) 0.030 *
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Table 4. Cont.

Alcohol Use = No Alcohol Use = Yes

Controls
(N = 1411)

Cases
(N = 261) OR (95% CI) p Value Controls

(N = 260)
Cases

(N = 152) OR (95% CI) p Value

rs28829404

CC/CT 163 (11.6) 13 (5.7) Ref. Ref. 39 (15.0) 2 (1.5) Ref. Ref.

TT 1248 (88.4) 216 (94.3) 2.17 (1.21–3.89) 0.009 * 221 (85.0) 130 (98.5) 11.47 (2.73–48.29) 0.001 *

Cumulative
risk
alleles

<Me-
dian 615 (46.3) 14 (19.4) Ref. Ref. 142 (56.6) 8 (21.1) Ref. Ref.

≥Median 713 (53.7) 58 (80.6) 3.57 (1.97–6.47) <0.001 * 109 (43.4) 30 (78.9) 4.89 (2.15–11.08) <0.001 *

Abbreviations: OR: odds ratio; CI: confidence interval. Odds ratios (ORs) were calculated by unadjusted univariate analysis. The median
number of cumulative risk alleles was 23. * p value < 0.05.

3.5. The Effects of Interaction between Alcohol Consumption and SNPs on the Risk of NPC

An investigation into the effects of interaction between alcohol consumption and
SNPs on the risk of NPC revealed that the risk increases with either the presence of a risk
allele or alcohol consumption. For the rs671 polymorphism, the NPC risk was significantly
increased among AA/AG carriers who were not consuming alcohol or GG carriers who
were consuming alcohol (OR = 1.63; 95% CI = 1.27–2.10, p < 0.001), and AA/AG carriers
who were consuming alcohol (4.55; 3.02–6.84, p < 0.001), compared with carriers of the GG
genotype who did not consume alcohol (Table 5).

Table 5. Effects of interactions between SNPs and alcohol consumption on nasopharyngeal carcinoma risk.

Controls
(N = 1672)

Cases
(N = 413) p Value a OR (95% CI) p Value b

rs1229984*Alcohol <0.001
CC/CT*Non-Alcohol 647 (38.7) 68 (29.1) Ref. Ref.
TT*Non-Alcohol or

CC/CT*Alcohol 876 (52.4) 123 (52.6) 1.34 (0.98–1.83) 0.070

TT*Alcohol 148 (8.9) 43 (18.4) 2.76 (1.81–4.21) <0.001 *

rs671*Alcohol -
GG/AG*Non-Alcohol 1270 (76.0) 212 (53.9) Ref. Ref.
AA*Non-Alcohol or

GG/AG*Alcohol 396 (23.7) 181 (46.1) 2.74 (2.18–3.44) <0.001 *

AA*Alcohol 5 (0.3) 0 (0.0) - (–) 0.999
(Recessive model) <0.001
GG*Non-Alcohol 656 (39.3) 102 (26.0) Ref. Ref.
AA/AG*Non-Alcohol or

GG*Alcohol 940 (56.3) 238 (60.6) 1.63 (1.27–2.10) <0.001 *

AA/AG*Alcohol 75 (4.5) 53 (13.5) 4.55 (3.02–6.84) <0.001 *

rs7534676*Alcohol <0.001
TT/TC*Non-Alcohol 253 (15.4) 16 (4.7) Ref. Ref.
CC*Non-Alcohol or

TT/TC*Alcohol 1191 (72.4) 210 (61.2) 2.79 (1.65–4.72) <0.001 *

CC*Alcohol 201 (12.2) 117 (34.1) 9.20 (5.29–16.02) <0.001 *

rs7554974*Alcohol <0.001
CC/CT*Non-Alcohol 259 (15.6) 19 (5.4) Ref. Ref.
TT*Non-Alcohol or

CC/CT*Alcohol 1195 (72.2) 212 (60.7) 2.42 (1.48–3.94) <0.001 *

TT*Alcohol 201 (12.1) 118 (33.8) 8.00 (4.77–13.44) <0.001 *
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Table 5. Cont.

Controls
(N = 1672)

Cases
(N = 413) p Value a OR (95% CI) p Value b

rs7518631*Alcohol <0.001
GG/GA*Non-Alcohol 260 (15.7) 19 (5.4) Ref. Ref.
AA*Non-Alcohol or

GG/GA*Alcohol 1194 (72.1) 212 (60.7) 2.43 (1.49–3.96) <0.001*

AA*Alcohol 201 (12.1) 118 (33.8) 8.03 (4.78–13.49) <0.001 *

rs72936453*Alcohol <0.001
AA/AT*Non-Alcohol 260 (15.7) 19 (5.4) Ref. Ref.
TT*Non-Alcohol or

AA/AT*Alcohol 1194 (72.1) 212 (60.6) 2.43 (1.49–3.96) <0.001 *

TT*Alcohol 201 (12.1) 119 (34.0) 8.10 (4.83–13.60) <0.001 *

rs17111068*Alcohol <0.001
GG/GT*Non-Alcohol 178 (10.7) 4 (1.3) Ref. Ref.
TT*Non-Alcohol or

GG/GT*Alcohol 1265 (75.7) 196 (63.4) 6.90 (2.53–18.79) <0.001 *

TT*Alcohol 228 (13.6) 109 (35.3) 21.27 (7.70–58.81) <0.001 *

rs76655136*Alcohol <0.001
TT/TC*Non-Alcohol 167 (10.0) 6 (1.7) Ref. Ref.
CC*Non-Alcohol or

TT/TC*Alcohol 1279 (76.5) 220 (64.0) 4.79 (2.09–10.95) <0.001 *

CC*Alcohol 225 (13.5) 118 (34.3) 14.60 (6.28–33.96) <0.001 *

rs10778364*Alcohol <0.001
CC/CT*Non-Alcohol 586 (35.5) 76 (20.6) Ref. Ref.
TT Non-Alcohol or

CC/CT*Alcohol 915 (55.4) 203 (55.0) 1.71 (1.29–2.27) <0.001 *

TT*Alcohol 152 (9.2) 90 (24.4) 4.57 (3.21–6.50) <0.001 *

rs34200934*Alcohol <0.001
GG/GT*Non-Alcohol 365 (22.4) 42 (11.0) Ref. Ref.
TT*Non-Alcohol or

GG/GT*Alcohol 1086 (66.7) 236 (61.9) 1.89 (1.33–2.68) <0.001 *

TT*Alcohol 177 (10.9) 103 (27.0) 5.06 (3.39–7.55) <0.001 *

rs11636446*Alcohol <0.001
AA/AC*Non-Alcohol 321 (19.3) 36 (9.5) Ref. Ref.
CC*Non-Alcohol or

AA/AC*Alcohol 1150 (69.0) 228 (60.3) 1.77 (1.22–2.57) 0.003 *

CC*Alcohol 195 (11.7) 114 (30.2) 5.22 (3.44–7.89) <0.001 *

rs79071218*Alcohol <0.001
TT/TC*Non-Alcohol 170 (10.2) 7 (1.9) Ref. Ref.
CC*Non-Alcohol or

TT/TC*Alcohol 1264 (75.6) 224 (60.9) 4.30 (1.99–9.29) <0.001 *

CC*Alcohol 237 (14.2) 137 (37.2) 14.04 (6.41–30.77) <0.001 *

rs1975431*Alcohol <0.001
AA/AC*Non-Alcohol 169 (10.1) 7 (1.9) Ref. Ref.
CC*Non-Alcohol or

AA/AC*Alcohol 1265 (75.7) 223 (60.8) 4.26 (1.97–9.19) <0.001 *

CC*Alcohol 237 (14.2) 137 (37.3) 13.96 (6.37–30.59) <0.001 *

rs28829404*Alcohol <0.001
CC/CT*Non-Alcohol 163 (9.8) 13 (3.6) Ref. Ref.
TT*Non-Alcohol or

CC/CT*Alcohol 1287 (77.0) 218 (60.4) 2.12 (1.19–3.80) 0.011 *

TT*Alcohol 221 (13.2) 130 (36.0) 7.38 (4.03–13.51) <0.001 *

Abbreviations: OR: odds ratio; CI: confidence interval. ORs were calculated by univariate analysis. a chi-square test; b logistic regression. *
p value < 0.05.
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4. Discussion

To the best of our knowledge, this study is the first to investigate the association
between genetic variants in 19 ALDH isoform polymorphisms and the risk of NPC in an
East Asian population residing in Taiwan. Besides the known alcohol metabolism genetic
variant, rs671, we identified 12 SNPs located on the ALDH4A1, ALDH18A1, ALDH3B2,
ALDH1L2, and ALDH1A2 genes from the ALDH multigene family that were associated
with an elevated NPC risk.

ALDHs are a family of intracellular enzymes that are involved in aldehyde metabolism,
cellular detoxification, differentiation, and cancer drug [28,29]. Several isoforms of the
ALDH1 family (ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, ALDH1L1, and ALDH1L2) are
used as cancer stem cell markers in a variety of cancers [29–31]. Strong correlations between
ALDH1 expression in the invasive tumor front of NPC, epithelial-mesenchymal transition
(EMT) and tumor aggressiveness suggest that ALDH1 expression in the invasive front of
NPC could be a useful prognostic marker for NPC patients [20]. RNA sequencing data
from The Cancer Genome Atlas (TCGA) database have revealed downregulated ALDH1A2
and ALDH1L1 expression in esophageal squamous cell carcinoma and HNC squamous cell
carcinoma [21]. Meta-analysis results found that lower ALDH1A1 and ALDH1L1 expression
was associated with poorer overall survival and poorer progression-free survival in cancer
patients [21]. In our study, SNPs located on the ALDH1L2 and ALDH1A2 genes were
associated with the risk of developing NPC. Decreased levels of ALDH1A1, ALDH1A2,
ALDH1A3, and ALDH1L1 expression were observed in 5 pairwise samples of nasopharynx
squamous cell carcinoma (the results are not shown).

Polymorphisms in genes responsible for the alcohol metabolism pathways can affect
the amount of acetaldehyde and reactive oxygen species generated during the metabolic
process, and thus alter the effects of alcohol and potentially influence carcinogenesis [14,15].
ADH1B Arg47His (rs1229984) and ALDH2 Glu487Lys (rs671) are the most frequently re-
ported genetic polymorphisms related to alcohol metabolism. Both variants are not only
related to alcohol metabolism but also to cancer risk. A 40-fold decrease in ADH1B activity
has been observed in ADH1B His/His individuals [32], while a loss of ALDH2 enzyme
activity has been observed in individuals with the ALDH2 Lys/Lys phenotype [14,33].
Many studies have demonstrated that the genetic effect of ADH1B and ALDH2 increase the
risk of different types of cancers [34]. However, SNP rs1229884 in the ADH1B gene was
not significantly associated with NPC in our Han Chinese patients in Taiwan, which is
consistent with the results from previous meta-analyses showing that the ALDH2 polymor-
phism, but not the ADH1B polymorphism, significantly increases the risk of CRC in East
Asians [14,35].

Other research has reported that heavy alcohol consumption can increase the risk of
certain cancer types, including HNC cancers and NPC [11]. In studies involving East Asian
populations, the presence of genetic polymorphisms in ADH1B (rs1229984) and ALDH2
(rs671), as well as alcohol consumption, individually or in combination [13], increase the
risk of breast cancer [36], HNC [17], and esophageal cancer [18,35]. Moreover, research has
shown that alcohol consumption affects two major folate-metabolizing enzymes, ALDH1L1
and ALDH1L2, with a possible synergistic effect on carcinogenesis [37,38]. In this study,
SNPs rs671 located on ALDH2 and rs10778364 located on ALDH1L2 were significantly
associated with an increased risk for NPC, with or without alcohol consumption. We
also observed a synergistic effect between SNPs and alcohol consumption. These findings
indicate that not only alcohol plays a role in the risk of NPC, but that the genetic effects of
ALDH2 and ALDH1L2 are also important for NPC risk.

Inconsistent associations for alcohol consumption, betel nut chewing, and tobacco
smoking have been recorded in previous studies [8,12]. This inconsistency may be due to
differences in study populations, NPC subtypes, or definitions of lifestyle behaviors. A
significant association between alcohol intake and NPC risk was observed in this study and
other research [39–41], while several studies have observed a lack of association between
alcohol and NPC risk [10,42,43]. We also observed that betel nut chewing was significantly
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associated with NPC risk. Although three previous studies found no such association [44],
a positive association has been reported between betel nut chewing and NPC risk in NPC
high-risk families in Taiwan [45]. A modestly increased risk of NPC associated with tobacco
smoking has been reported in southern China [46], which is consistent with our study.

This study is apparently the first to discuss associations between the genetic variants
of 19 ALDH isoforms and NPC. However, some limitations in this study must be noted.
First, due to the low frequency of alcohol consumption and low frequency of risk alleles, the
numbers in each subgroup for SNPs and alcohol interactions are small and the statistical
power is limited. Second, recall bias may exist, since the information about alcohol,
betel quid chewing, and cigarette smoking was collected by self-reported questionnaires.
Third, selection bias may exist, since the NPC cases and controls were enrolled under
different projects (a hospital for the NPC cases, whereas controls were recruited from
communities throughout Taiwan). Fourth, different measurement scales used for alcohol
consumption, betel nut chewing, and cigarette smoking in these two projects may have led
to misclassification.

5. Conclusions

In conclusion, our data demonstrate that the risk of NPC is increased in the presence
of genetic variants of different ALDH isoforms. The potential of using genetic variants of
ALDH as biomarkers to help to identify potential screening populations for NPC awaits
future investigations.
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