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Abstract: Down syndrome (DS), trisomy of the long arm of human chromosome 21 (Hsa21), is
the most common genetic cause of intellectual disability (ID). Currently, there are no effective
pharmacotherapies. The success of clinical trials to improve cognition depends in part on the design
of preclinical evaluations in mouse models. To broaden understanding of the common limitations of
experiments in learning and memory, we report performance in context fear conditioning (CFC) in
three mouse models of DS, the Dp(16)1Yey, Dp(17)1Yey and Dp(10)1Yey (abbreviated Dp16, Dp17
and Dp10), separately trisomic for the human Hsa21 orthologs mapping to mouse chromosomes
16, 17 and 10, respectively. We examined female and male mice of the three lines on the standard
C57BL/6J background at 3 months of age and Dp17 and Dp10 at 18 months of age. We also examined
female and male mice of Dp17 and Dp10 at 3 months of age as F1 hybrids obtained from a cross
with the DBA/2J background. Results indicate that genotype, sex, age and genetic background affect
CFC performance. These data support the need to use both female and male mice, trisomy of sets
of all Hsa21 orthologs, and additional ages and genetic backgrounds to improve the reliability of
preclinical evaluations of drugs for ID in DS.

Keywords: down syndrome mouse model; hippocampus; mouse chromosome 16; 17; 10; Dp(10)1Yey;
associative learning; sex differences

1. Introduction

Down syndrome (DS) is caused by an extra copy of all or, rarely, part of the long
arm of human chromosome 21 (Hsa21). All individuals with DS display some level of
intellectual disability (ID) [1,2], and although the severity of cognitive impairment varies
among individuals, and can be mild, the average IQ is in the range of 40–50. DS is thus
a significant medical and social condition given that the worldwide incidence is approxi-
mately one in 700–1000 live births [3–5] and because life expectancy in many countries is
now ~60 years [4,6–11]. Lessening the severity of ID, even by 10–20 IQ points, would lead
to increased independence for people with DS and expanded opportunities for education,
employment and societal inclusion. Over the last several years, interest has grown in
conducting clinical trials with pharmacotherapies to lessen or prevent ID in DS [12,13].
Several trials have been completed and more are proposed. None, however, produced
significant, practical, positive outcomes for participants (ClinicalTrials.gov: NCT01576705,
NCT02304302, NCT02024789, NCT02484703; [14,15]). Many reasons for these failures can
be considered, including number and age of the participants and duration of the trial. How-
ever, another consideration is that, prior to clinical trials, candidate drugs most commonly
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are first evaluated in mice. As with other human diseases, the experimental design of such
preclincal evaluations influences their reliability in prediction of outcomes for patients
(reviewed in [16]).

There are two challenges to modeling DS in mice. First, DS is a contiguous gene
syndrome, spanning the entirety of Hsa21q. While a DS Critical Region (DSCR) [17,18] was
popularized as necessary and sufficient, suggesting that genes outside this region could be
ignored, individuals have been diagnosed with DS who are trisomic for segments of Hsa21q
that do not overlap with the DSCR [19,20]. Thus, the entirety of Hsa21q properly remains
in consideration for contributions to the DS phenotype. Hsa21q encodes approximately
160 protein coding genes of diverse functions, an additional ~45 members of the family
of Keratin Associated Proteins (KRTAPs), and many transcripts that may or may not be
functional RNAs [21,22]. A small number of Hsa21 genes has been studied extensively
for biological function and potential roles in trisomy, but for the large majority, little or
nothing is known about their function [22]. Lacking such knowledge, no Hsa21 gene
can be dismissed as irrelevant to the cognitive phenotype and therefore, the ideal genetic
representation of human DS in mice remains trisomy of all genes.

The second challenge for modeling DS in mice is that orthologs of Hsa21 genes are
present on segments of three mouse chromosomes, Mmu16, 17 and 10 [23]. There are
technical challenges to generating complete trisomy, and while many partial trisomies
have been created (reviewed in [21,24–27]), a full trisomy model has only recently been
produced [28]. The oldest and most popular DS model is the Ts65Dn. It is trisomic for
most of the Mmu16 orthologous region, encompassing 90 of the 160 Hsa21 non-KRTAP
orthologs [21,23,29,30] and for ~30 protein coding genes (excluding pseudogenes) that
map to a non-Hsa21 orthologous segment of Mmu17, irrelevant to DS [31]. In spite of
its genetic shortcomings, the Ts65Dn has been shown to display a number of DS rele-
vant neurological phenotypic features, including reduced sizes of the hippocampus and
cerebellum, abnormal neuronal densities and morphologies, and impaired learning and
memory in tasks requiring a functional hippocampus (reviewed in [25,26]). To date, clinical
trials for cognition in DS have proceeded based on preclinical data obtained solely from
the Ts65Dn [14–16,32]. Because of breeding characteristics, preclinical evaluations have
used almost exclusively male mice [33]. These evaluations thus leave unexplored both
the contributions to phenotype and drug responses of the ~40% of Hsa21 orthologs not
trisomic in the Ts65Dn, as well as possible differences in responses in female mice. Lastly,
again because of challenges in breeding large numbers of mice, most often a single age is
tested, and although the Ts65Dn is on a mixed background, no effects of different genetic
backgrounds have been explored.

Chromosomal engineering has more recently been used to create segmental dupli-
cations of the individual chromosomal regions of Mmu 16, 17 and 10 (reviewed in [26]).
Among the resultant lines are the Dp(16)1Yey, the Dp(17)1Yey and the Dp(10)1Yey (abbre-
viated here as the Dp16, Dp17 and Dp10, respectively), which are trisomic for the entireties
of the respective Hsa21 orthologous mouse regions [34]. Together, these can be used to
investigate trisomy of all Hsa21 orthologous genes [35]. Young male mice (2–4 months of
age) of the Dp16 line have been shown to be impaired in novel object recognition (NOR)
and context fear conditioning (CFC) and to have repressed long term potentiation (LTP);
the Dp17, to have normal CFC and NOR learning and elevated LTP; and the Dp10, to have
normal learning in these tasks and normal LTP [34]. Older (3–7 months) Dp16 have been
shown to be impaired in both CFC and the Morris Water Maze (MWM) [36]. The Dp10
have been shown to be impaired in a spontaneous alternation task at 3, 6 and 9 months [37].
Although these lines breed well, to date there have been no studies of learning/memory in
female mice, and no studies with older mice or of mice on a genetic background other than
the original C57BL/6J (or related C57BL/6 strains). Experiments to create the complete
trisomy, i.e., the triple duplication, created by breeding the Dp17 with the Dp10, and then
crossing the offspring that are double trisomics with the Dp16, have been reported [35,38].
These experiments are expensive in terms of time and resources. Here, we instead ex-
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amined the three lines separately, to evaluate performance in CFC of separate cohorts of
female and male mice at 3 months of age, of the Dp17 and Dp10 lines at 18 months of
age and at 3 months of age on an F1 hybrid background obtained by crossing trisomic
mice with controls from the DBA/2J inbred background. We found that aspects of CFC
performance are influenced by specific trisomy, sex, age and genetic background.

2. Materials and Methods
2.1. Experimental Animals

Colonies of Dp(16)1Yey, Dp(17)1Yey and Dp(10)1Yey (abbreviated Dp16, Dp17 and
Dp10, respectively) were established from breeding pairs obtained from YE Yu and main-
tained by crossing with C57BL/6J wild type mice obtained from The Jackson Laboratory.
A colony of DBA/2J was established from breeding pairs obtained from The Jackson Lab-
oratory. All mice for these experiments were bred at the University of Colorado School
of Medicine (Aurora, CO, USA). Colonies were maintained in a room with HEPA-filtered
air and a 14:10 light:dark cycle and, fed a 6% fat diet and acidified (pH 2.5–3.0) water ad
libitum. Littermates (Supplementary Tables S1 and S2) of the same sex were housed in
the same cage. Dp16, Dp17 and Dp10 mice were genotyped by quantitative (real time)
polymerase chain reaction (qPCR) for genes in the trisomic segments as recommended by
The Jackson Laboratory [39]. Separate cohorts of female and male mice were used in all
experiments. Female mice were in diestrus.

2.2. Context Fear Conditioning

Context fear conditioning (CFC) was performed as described in [40,41]. Briefly, in a
context-shock (CS) training session, mice were placed in a novel cage (Med Associates, St.
Albans, VT, USA, Modular Mouse Test Chamber), allowed to explore for three minutes and
then given a single electric shock (2 s, 0.7 mA, constant electric current). In a shock-context
(SC) training session, a second group of mice were placed in the novel cage, immediately
given the electric shock (2 s), and then allowed to explore for 3 min. Mice of both theCS
and SC groups were returned to their home cages and 60 min later were, re-exposed to
the same context for 3 min without any electric shock. In these testing sessions (CS-t
and SC-t respectively), the time spent “freezing” (the absence of movement except for
respiration) was measured. Freezing is indicative of associative learning between the
aversive experience (shock) and the context in which the shock was received; in normal
control mice, freezing is significantly higher in the CS group.

Prior to CFC, mice were handled for 2–3 min per day for 3 days. Immediately prior to
assessment, mice were allowed to habituate to the behavior room for 30 min in their home
cage. All experiments used separate cohorts of female and male mice of each genoytpe.
Three sets of experiments were conducted. Experiment 1 used 3 month old mice, controls
and trisomics, from the Dp16, Dp17 and Dp10 lines. Experiment 2 used 3 month old control
mice from the DBA/2J inbred line, and F1 hybrid offspring from crossing female DBA/2J
mice with (i) trisomic male Dp17 mice and (ii) trisomic male Dp10 mice. Experiment 3 used
~18-month-old mice (age range, 16–24 months), controls and trisomics, from the Dp17 and
Dp10 lines. For this experiment, a no-shock (NS) group was added in which mice were
similarly exposed to the novel context in a training and a test session, but never received
an electric shock. Because of difficulties with breeding, Dp16 mice were not available
for Experiments 2 and 3. In each experiment, an average of 10 mice per group was used;
power analysis indicates that this is adequate, based on results reported in the literature for
CFC and our experience with the DS lines, for detection of a 20% difference, with p < 0.05
and 15% standard deviation, with a power of 0.909. Entire litters were used at one time.
In order to balance littermates between SC and CS groups, it was not possible for the
experimentor to be blind to the sex/genotype of the mice. However, data are generated
automatically by the FreezeScan software, version RRID:SCR_014495 (CleverSys, Reston,
VA, USA) which precludes experimentor bias. Table 1 lists the number of mice in the SC
and CS (and NS) groups, by genotype and sex, for each experiment. A total of 671 mice
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were used; four outliers were removed from analysis. Information for all mice regarding
age and littermates is included in Supplemental Tables S1–S3.

Table 1. Numbers of mice analyzed in each cohort of each experiment.

Female Control Female Trisomic Male Control Male Trisomic

SC CS NS SC CS NS SC CS NS SC CS NS

Experiment 1

Dp16 12 11 9 10 13 16 10 10

Dp17 12 13 13 16 11 12 10 10

Dp10 11 13 12 16 12 20 10 19

Experiment 2

DBA 8 9 11 11

DBA X Dp17 7 7 10 10 6 9 7 9

DBA X Dp10 15 16 9 9 9 9 9 8

Experiment 3

Dp17 7 8 7 6 9 6 5 10 11 5

Dp10 10 11 5 10 10 5 8 10 7 9 13 7

2.3. Statistics

Statistical analyses were carried out using Prism 8.0 software (GraphPad, San Diego,
CA, USA). Results were reported for each mouse as the number of seconds spent freezing in
each 3 min session and during each 30 s interval of the 3 min session. The mean of seconds
spent freezing of all mice within a single treatment, sex and genotype group was used in sta-
tistical calculations. Significant differences between groups were determined by unpaired
Student’s t-test with SEM reported; p ≤ 0.05 was considered for statistical significance.

3. Results
3.1. Performance in CFC at 3 Months of Age (Experiment 1)

For each of the three partial trisomies, the Dp16, Dp17 and Dp10, cohorts of female
and male mice, controls and trisomics, were analyzed separately. Time spent freezing in a
novel context was measured before and after exposure to the electric shock. Measurements
of freezing were made in two sessions: a training session where the mouse received a shock,
was allowed to explore, and then was returned to the home cage for 60 min, followed by a
testing session where the mouse was returned to the novel context but received no shock.
Mice of each sex and genotype were separated into two groups: shock-context (SC), in
which mice received the shock in the training session immediately upon being placed in
the novel cage, and context-shock (CS), in which mice received the shock in the training
session three minutes after being placed in the novel cage. Table 2 shows the average time
freezing for each genotype/sex and CFC group.

Table 2. Average time freezing in CFC groups of three-month-old mice. Mice were placed in a novel
cage for three minutes in a training session (SC or CS) and a testing session (SC-t or CS-t); training
and testing were separated by 60 min in the home cage. SC, shock-context; mice received the electric
shock during the training session immediately on being placed in the novel cage. CS, context-shock;
mice received the electric shock during the training session after three minutes in the novel cage.
Times are provided in seconds. For numbers of mice in each group and SEM of times, see Figure 1.

SC SC-t CS CS-t

Dp16 Female C 13 18 13 66
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Table 2. Cont.

SC SC-t CS CS-t

Tr 8 10 10 23

Male C 14 30 7 98

Tr 7 12 7 32

Dp17 Female C 29 39 15 86

Tr 35 35 11 83

Male C 18 31 11 96

Tr 19 50 31 93

Dp10 Female C 19 22 13 70

Tr 17 19 11 53

Male C 16 26 13 81

Tr 17 24 14 52
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Figure 1. CFC performance of 3 month old mice on the C57BL/6J background. a–c) Freezing (sec-
onds) during 3 min of shock-context test (SC-t, black bars) and context-shock test (CS-t, grey bars). 
C, control; Tr, trisomic. F, female; M, male. Difference between CS-t and SC-t within sex and DS line: 
*, p < 0.05–0.01; **, p < 0.01–0.001; #, p < 0.001–0.0001; ##, p < 0.0001; ns, not significant. Error bar 
represent the SEM. Number of animals in SC and CS, respectively: (a) FC, 12,11; FTr, 9,10; MC, 13,16; 
MTr, 10,10; (b) FC, 12,13; FTr, 13,16; MC, 11,12; MTr, 10,10; (c) FC, 11,13; FTr, 12,16; MC, 12,20; MTr, 
10,19. (d–f) Freezing during CS-t 30 second intervals for the same sex and DS lines as in a–c. Filled 
circles, female controls; open circles, female trisomics; filled squares, male controls; open squares, 
male trisomics. 
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= 0.002), suggesting that DBA mice are more sensitive to both novelty and shock. Figure 

Figure 1. CFC performance of 3 month old mice on the C57BL/6J background. (a–c) Freezing
(seconds) during 3 min of shock-context test (SC-t, black bars) and context-shock test (CS-t, grey
bars). C, control; Tr, trisomic. F, female; M, male. Difference between CS-t and SC-t within sex and DS
line: * p < 0.05–0.01; ** p < 0.01–0.001; # p < 0.001–0.0001; ## p < 0.0001; ns, not significant. Error bar
represent the SEM. Number of animals in SC and CS, respectively: (a) FC, 12,11; FTr, 9,10; MC, 13,16;
MTr, 10,10; (b) FC, 12,13; FTr, 13,16; MC, 11,12; MTr, 10,10; (c) FC, 11,13; FTr, 12,16; MC, 12,20; MTr,
10,19. (d–f) Freezing during CS-t 30 second intervals for the same sex and DS lines as in (a–c). Filled
circles, female controls; open circles, female trisomics; filled squares, male controls; open squares,
male trisomics.
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Levels of freezing in SC and SC-t are similar within each line for each sex and geno-
type, and there are no significant differences between lines (including Dp17, in spite of
levels >30 s). The lowest levels of freezing, ~7”–15”, occur in the CS training sessions (with
the one exception of trisomic male Dp17). These reflect normal levels of locomotion in
a novel environment because the electric shock is delivered at the end of the 3 min. The
highest levels of freezing occur in the CS-t sessions, manifesting in normal learning in
control mice where the novel cage is associated with the aversive electric shock. Control
mice of all lines froze for 66”-98”. While there are differences among some control groups
in the mean levels of freezing in CS-t sessions (e.g., female controls from the Dp16, Dp17
and Dp10 litters froze for 66, 86 and 70 s, respectively), none of these reached significance
(p = 0.3–0.8 in pairwaise comparisons; for details, see Supplementary Tables S1–S3).

To measure associative learning, we compared levels of freezing in SC-t with CS-t.
Results are shown in Figure 1. Male Dp16 have been shown previously to be impaired in
CFC [34], and this is demonstrated here (Figure 1a) and extended to female Dp16: i.e., as
observed for trisomic male Dp16, trisomic female Dp16 do not freeze significantly more in
CS-t than in SC-t. Conversely, male trisomic Dp17 have been shown to learn successfully
in CFC [34]; Figure 1b shows this is true here for females as well as males. Indeed levels
of freezing are not significantly different between trisomics and controls for either sex. A
similar analysis for Dp10 (Figure 1c) shows that they also learn successfully because levels
of freezing in CS-t are significantly greater than in SC-t for females and males. However,
it is notable that trisomic Dp10 freeze for only ~50 s, levels that are ~30% lower than all
control groups and trisomic Dp17 mice.

To investigate this further, we examined the time dependence of freezing in the CS-t
sessions for all three lines (Figure 1d–f). Freezing levels during the three minutes were
binned into 30 second intervals and corresponding interval levels were compared. For
trisomic Dp16 mice, both females and males freeze significantly less than sex-matched
controls (Figure 1d) for all intervals except interval 1. In contrast, trisomic Dp17 female and
male mice freeze at similar levels to their respective controls during all intervals (Figure 1e).
These results are consistent with data in Figure 1a,b. For trisomic Dp10 mice, females
and males freeze less than respective controls during intervals 3–6. These differences are
significant for male Dp10 during intervals 4–6 (p = 0.007, 0.02 and 0.02, respectively). This
suggests that male Dp10 at this young age do not learn as robustly control mice, in this
paradigm of associative learning.

3.2. Effects of Genomic Background on CFC Performance (Experiment 2)

The Dp16, Dp17 and Dp10 mice used here were maintained on the inbred C57BL/6J
background. C57 mice are generally considered to learn well in tasks requiring a functional
hippocampus, such as CFC [42]. In contrast, the DBA inbred strain has documented
physical abnormalities in the hippocampus and shows impaired performance in CFC [42].
We hypothesized that a genomic background with less robust learning might uncover the
effects of trisomy not evident in the stronger C57 background. Accordingly, Dp17 and
Dp10 trisomic males were crossed with DBA females; F1 offspring are genetically identical
(with the exception of the trisomic segments) with 50:50 C57 and DBA alleles. Performance
in CFC was assessed for female and male F1 offspring, wild type and trisomic mice, at
3 months of age. We also examined female and male mice from the parent inbred DBA
strain to compare their performance with C57 controls. Freezing levels for all genotypes
and sexes are shown in Table 3.

Figure 2a shows that both female and male DBA control mice freeze significantly longer
in SC, SC-t and CS than C57 control mice: >50 s vs. ≤25 s, respectively (p ≤ 0.001–p = 0.002),
suggesting that DBA mice are more sensitive to both novelty and shock. Figure 2b shows that
DBA control mice nevertheless still learn successfully because there is a significant difference
between time spent freezing in CS-t and SC-t. This result differs from prior reports of DBA
failure in CFC [42]. This difference is likely due to the assessment here of learning only (at
60 min post training), while previous experiments assessed learning plus memory at 24 h.
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This suggests that DBA mice can indeed learn the context but likely fail to consolidate the
memory. For assessment of the F1 hybrids, Figure 2c shows that both female and male Dp17
F1s learn successfully, but while male trisomic and control Dp10 F1s learn successfully, female
trisomic Dp10 F1s do not learn (Figure 2d).
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Figure 2. Effect of DBA/2J genomic background on CFC performance of 3 month old mice.
(a) Freezing (seconds) during 3 min of SC training (SC, black bars), SC testing (SC-t, light grey
bars) and CS training (CS, dark grey bars) of female (F) and male (M) control mice on the DBA/2J
(DBA) and C57bL6/J (C57) genomic backgrounds. Freezing of DBA mice in all three measures is
significantly higher than freezing in C57. (b) Freezing (seconds) during 3 min of shock-context test
(SC-t, black bars) and context-shock test (CS-t, grey bars) for control mice on the DBA and C57
genomic backgrounds. Difference between CS-t and SC-t within sex and background. (c) Freezing
(seconds) during 3 min of shock-context test (SC-t, black bars) and context-shock test (CS-t, grey
bars) of F1 mice from crossing trisomic male Dp17 on the C57 background with female controls on
the DBA background. C, control; Tr, trisomic. Difference between CS-t and SC-t within sex and DS
line. (d) Freezing (seconds) during 3 min of shock-context test and context-shock test (CS-t, grey
bars) of F1 mice from crossing trisomic male Dp10 on the C57 background with female controls on
the DBA background. Difference between CS-t and SC-t within sex and DS line. * p < 0.05–0.01;
** p < 0.01–0.001; # p < 0.001–0.0001; ## p < 0.0001; ns, not significant. Error bars represent the SEM.
Number of animals in SC and CS, respectively (from Table 1): (b) F-DBA, 8,9; F-C57, 11,13; M-DBA,
11,11; M-C57, 11,12; (c) FC, 7,7; FTr, 10,10; MC, 6.9; MTr, 7,9; (d) FC, 15,16; FTr, 9,9; MC, 9,9; MTr, 9,8.

Table 3. Average time freezing in CFC in DBA/2J inbred mice and F1 hyrbids. Mice were placed in a
novel cage for three minutes in a training session (SC or CS) and a testing session (SC-t or CS-t); training
and testing were separated by 60 min in the home cage. SC, shock context; mice received the electric
shock during the training session immediately on being placed in the novel cage. CS, context-shock;
mice received the electric shock during the training session after three minutes in the novel cage. Times
are provided in seconds. For numbers of mice in each group and SEM of times, see Figure 2.

SC SC-t CS CS-t

DBA/2J Female C 91 66 60 127
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Table 3. Cont.

SC SC-t CS CS-t

Male C 64 55 57 84

DBA X Dp17 Female C 15 29 14 97

Tr 21 22 11 104

Male C 16 23 11 73

Tr 21 28 14 83

DBA X Dp10 Female C 37 52 13 86

Tr 23 37 13 60

Male C 35 38 15 101

Tr 26 29 17 73

3.3. Performance in CFC at ~18 Months of Age (Experiment 3)

Table 4 shows freezing levels in SC and CS training and test sessions for naïve Dp17
and Dp10 aged to ~16–24 months. For female mice, both Dp17 and Dp10, controls and
trisomics, levels of freezing in SC-t are 26”–55”, which is generally higher than the 19”–39”
seen in the corresponding 3 month old mice. Similarly levels for male Dp17 and Dp10, con-
trol and trisomic mice, range from 60”–83”, with each higher than levels for corresponding
3 month old mice. This is not a general age-related decrease in locomotion or exploratory
behavior, because mice in a “no shock” (NS) group still froze only briefly, for ~6–13 s,
and those in the CS training group froze for only 7”–11”, not different from CS levels
in 3 month old mice. Together, these data suggest that both controls and trisomic mice
at this age are more sensitive to the electric shock experienced immediately upon being
placed in the novel cage than are 3 month old mice. In the CS-t groups, Dp17 and Dp10,
controls and trisomics, levels of freezing are 35”–56”, which is lower than freezing levels
in successful learning in the younger mice who all froze for >70 s (with the exception of
trisomic Dp10). This, coupled with the increased freezing in SC-t, results in no significant
difference between SC-t and CS-t (Figure 3a,b), i.e., there is no evidence of associative
learning in this paradigm in these older mice.

Table 4. Average time freezing in CFC in ~18-month-old mice. Mice were placed in a novel cage
for three minutes in a training session (SC or CS) and a testing session (SC-t or CS-t); training and
testing were separated by 60 min in the home cage. SC, shock-context; mice received the electric
shock during the training session immediately on being placed in the novel cage. CS, context-shock;
mice received the electric shock during the training session after three minutes in the novel cage.
Times are provided in seconds. NA, not available. For numbers of mice in each group and SEM of
times, see Figure 3.

SC SC-t CS CS-t NS NS-t

Dp17 Female C 25 55 10 56 NA NA

Tr 15 26 11 46 NA NA

Male C 28 61 7 88 11 39

Tr 53 83 11 107 9 12

Dp10 Female C 24 38 13 31 9 21

Tr 20 38 8 24 6 17

Male C 44 62 11 73 13 25

Tr 19 60 9 88 8 23
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Figure 3. CFC performance of 18 month old mice. (a,b) Freezing (seconds) during 3 min of shock-
context test (SC-t, black bars) and context-shock test (CS-t, grey bars). C, control; Tr, trisomic. F,
female; M, male. Difference between CS-t and SC-t within sex and DS line: ns, not significant. Error
bars represent the SEM. Number of animals, SC and CS, respectively (from Table 1): (a) FC, 7,8; FTr,
7.6; MC, 9,6; MTr, 10,11; (b) FC, 10,11; FTr, 10,10; MC, 8,10; MTr, 9,13, (c,d) Freezing during CS-t 30
second intervals for the same sex and DS lines as in (a,b). Filled circles, female control; open circles,
female trisomic; filled squares, male controls; open squares, male trisomics. *, significant difference
between females and males of corresponding genotypes, p < 0.008–0.04.

We next examined the time dependence of freezing in CS-t (Figure 3c,d). Female
mice, both control and trisomic, show lower levels of freezing than male mice of the
corresponding genotypes. This is significant for female controls at intervals 4–6 (p = 0.018,
0.007 and 0.003, respectively) and Dp10 trisomic females at intervals 2–6 (p = 0.005, 0.066,
0.002, 0.005 and 0.065, respectively).

4. Discussion

Mice are a practical model animal for the study of many human genetic diseases.
DS is particularly complicated genetically because it involves an extra copy of an entire
chromosomal arm that encodes several hundred genes [21]. Modeling DS in mice is further
complicated by the need to study the triplication of segments of the three different mouse
chromosomes that contain Hsa21 orthologous genes [43]. To date, the orthologous segment
of Mmu16 has received almost exclusive attention in DS research. This is not because the
encoded genes have been demonstrated to be more relevant to the DS phenotypes than
orthologs on Mmu17 and Mmu10, but only because the first viable trisomic mouse model,
the Ts65Dn, was trisomic for a large part of the Mmu16 segment, displayed many DS
relevant features, and was widely available more than 15 years before trisomic models for
the Mmu17 and Mmu10 regions were constructed [23,29,34]. Thus, it is important to focus
some effort on mouse models of these latter regions. Other common limitations of mouse
studies of DS include examination of a single age and single genetic background, and the
almost exclusive use of male mice. The latter has occurred, not only because it was an
accepted standard in the field, but also because challenges in breeding the Ts65Dn (males
have very low fertility, females have few and small litters with <~30% trisomic pups [33])
result in females generally being reserved as breeders.
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Here, we examined learning in three mouse models of DS, the Dp16, Dp17 and Dp10,
which together are trisomic for all Hsa21 orthologs mapping to mouse chromosomes 16,
17 and 10, respectively [34]. We used a CFC training protocol, a single shock of 0.7 mA,
which is less intense than in other DS mouse studies, where either a stronger shock, of
1.0 mA, or multiple shocks, have been used [34,36,39]. In addition, mice were tested for
learning 60 min after training, instead of the more common 24 h later. The time of 60 min
was selected to facilitate future protein expression analyses; it has been shown that the
MAPK pathway must be activated during this time for learning to occur [41,44,45]. This
also means that learning is assessed and not memory.

In all experiments, we used separate cohorts of female and male mice. The existence
of sex differences, in people, in the incidences of specific neurological disorders and in
drug responses has become increasingly clear [46–50]. Sex differences in rodents have been
well documented in learning strengths and weaknesses, in learning strategies, and in the
molecular responses and features subserving learning and memory [51–53]. We also exam-
ined the effects of genetic background. Most commonly mouse model studies use inbred
lines, i.e., genetically identical individuals. This homogeneity can mask differences that
may be seen when studies are extended to genetically highly diverse human populations.
The DBA/2J strain was chosen here for investigation of learning in F1 hybrids because it
has structural abnormalities in the hippocampus [54,55] and shows deficits in hippocampal
tasks, including CFC [42]. Here we found no differences in CFC performance between
females and males in the Dp16 and in Dp17 models on the original C57BL/6J background,
i.e., similar to male trisomic Dp16, female trisomic Dp16 failed, and similar to male trisomic
Dp17, female trisomic Dp17 learned as well as controls. Performance of the Dp17, both
females and males, was also unaffected by presence of the 50% DBA background (Dp16
were not tested). We note that results here for male Dp16, i.e a general failure to recognize
the context, are consistent wth those seen in CFC testing of the popular Ts65Dn mice that
are trisomic for a reduced segment of the Hsa21 orthologous region of Mmu16 [25,26].
Female Ts65Dn have not been tested in CFC.

In contrast to the Dp16 and Dp17, Dp10 mice showed sex-specific deficits, with
contributions from the genetic background. On the C57 background, while females and
males both learned successfully, male Dp10 showed a significantly lower level of freezing
than male controls. This indicates a subtle impairment, unobserved in prior studies and
uncovered here by the use of a less intense training protocol. While its practical importance
remains to be determined, it would be consistent with an observation that children with DS
may require more intensive learning strategies, longer learning times or more repetitions
in order to learn as effectively as typical children in some tasks. It is noteworthy that male
children with DS have been reported to show greater levels of cognitive impairment than
females in some tasks [56–58].

The DBA genetic background differentially influenced trisomic females and males.
Female Dp10 F1s were impaired in CFC, while male Dp10 F1s, in contrast to the C57 back-
ground, learned successfully, freezing at levels similar to controls. Thus, the hippocampal
abnormalities of the DBA strain coupled with trisomy of the Mmu10 region uncovered a
female deficit while rescuing males from the impairment seen on the C57 background.

The Mmu10 region encodes orthologs of 39 Hsa21 classical protein coding genes [21].
Several among these, when mutated or altered in expression level, have been shown to
influence brain development and function, including learning and memory (reviewed
in [21,59]. In addition, four of these genes are the only Hsa21 genes known to have sex-
specific functional features. One of these is PRMT2, a protein Arg methyl-transferase
that modifies and directly activates estrogen and progesterone receptors and the thyroid
hormone receptor B, and indirectly activates the androgen receptor [60,61]. Another is
SUMO3, a member of the small ubiquitin-like modifier protein family that modifies the
Nuclear Receptor Co-repressor, NCOR2, which in turn inhibits activities of estrogen,
progesterone and androgen receptors [62–64]. Thus, overexpression of these genes in
trisomy could have consequences for sex hormone signaling and regulation.
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Two other Mmu10 Hsa21 orthologs show sex-specific phenotypes as null mutations.
The adenosine deaminase, ADAR2, regulates activities of a serotonin receptor and N-
methyl-D-aspartate (NMDA) and gamma-aminobutyric acid (GABA) receptors through
pre-mRNA editing (reviewed in [65]). An ADAR2 knockout impairs acoustic startle re-
sponse in males but not females [66]. TRPM2 (Transient Receptor Potential cation channel
subfamily M member 2) is a Ca-permeable cation channel activated by oxidative stress. In-
hibition protects from ischemia through modulation of NMDA receptor subunit expression;
knockout protects males but not females from effects of ischemia through a mechanism that
involves the androgen receptor [67,68]. While observations from knockouts cannot predict
the effects of over expression expected in trisomy, the sex-specific phenotypes suggest that
trisomy might also differently affect females and males.

Sex and trisomy-specific differences in protein expression have been demonstrated
in the hippocampus, cortex and cerebellum of 8-month-old naïve Dp10 and littermate
controls [59,69]. Proteins measured include multiple components of the MAPK, MTOR and
apoptosis pathways, immediate early gene proteins, and several subunits of ionotropic glu-
tamate receptors, in addition to other proteins known to function in synaptic plasticity and
intellectual disability. Of the ~100 proteins measured, approximately half were expressed at
levels significantly higher in the hippocampus of female control mice compared with male
controls. Superimposed on these normal sex differences, trisomy of the Mmu10 region
differentially perturbed expression in females and males; Dp10 females showed the most
differences from female controls in cerebellum and males showed the most perturbations
in the hippocampus. Which of these baseline abnormalities are deleterious, and which are
potentially compensatory, is not known; how they would respond to the stimulation to
learn remains to be determined.

Although protein measurements in [59,69] were made in naïve mice and at 8 months
of age vs. the 3 and 18 months examined here, expression abnormalities of Hsa21 orthologs
is interesting. Proteins encoded by three genes trisomic in the Dp10 were measured, two
with natural sexually dimorphic features and one without. Levels of PRMT2 were unaffected
by sex or trisomy in hippocampus but in cerebellum were affected by both: in control mice,
females had significantly lower levels than males, but in trisomic mice, females had levels
twice that of males. Levels of ADAR2 were sexually dimorphic only in hippocampus and
only in trisomic mice: in male Dp10 mice, ADAR2 levels were elevated by 50% compared
with control males, consistent with an extra copy of the gene, however in female Dp10, levels
were not different from controls. In contrast to PRMT2 and ADAR2, levels of the S100B
protein, a calcium binding protein with roles in inflammation, showed no sex differences
in controls or Dp10 and was uniformly elevated in cerebellum, hippocampus and cortex in
trisomy, consistent with gene dosage. Thus, proteins with known sex differences in function
may be associated with more complex perturbations in trisomy showing novel sex differences
in expression with brain-region specificities. Additional experiments are needed to determine
the contributions of perturbed expression of sexually dimorphic Hsa21 orthologs to the subtle
learning deficits in both female and male Dp10 mice.

5. Conclusions

The Dp10 mouse model of DS, at 3 months of age, is impaired in learning in CFC. This
impairment was uncovered, using a mild training protocol, in male Dp10 on the C57 genetic
background and in female Dp10 on the C57/DBA F1 hybrid background. In contrast, there
were no sex differences in CFC performance using this protocol in the Dp16 mice on the
C57 background or in the Dp17 mice on either the C57 or the C57/DBA backgrounds. Thus,
to identify genes contributing to learning and memory deficits in DS, it is advisable to
investigate female as well as male mice on genetic backgrounds with different cognitive
strengths and weaknesses. CFC is not an appropriate associative learning task for mice of
either sex ~18 months. Expanding preclinical evaluations of drug treatments to mice of
both sexes, multiple ages and genetic backgrounds is expensive in time and resources but
could contribute to more effective outcomes of clinical trials.
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