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Abstract: Chemotherapy-induced ovarian damage and fertility preservation in young patients with
cancer are emerging disciplines. The mechanism of treatment-related gonadal damage provides
important information for targeting prevention methods. The genomic aspects of ovarian damage
after chemotherapy are not fully understood. Several studies have demonstrated that gene alterations
related to follicular apoptosis or accelerated follicle activation are related to ovarian insufficiency and
susceptibility to ovarian damage following chemotherapy. This may accelerate follicular apoptosis
and follicle reservoir utilization and damage the ovarian stroma via multiple molecular reactions after
chemotherapy. This review highlights the importance of genomic considerations in chemotherapy-
induced ovarian damage and multidisciplinary oncofertility strategies for providing high-quality
care to young female cancer patients.

Keywords: chemotherapy; gene; mutation; gonadotoxicity; fertility preservation; cryopreserva-
tion; oncofertility

1. Introduction

It is estimated that 9.2 million women were newly diagnosed with malignancy world-
wide in 2020 [1]. Among adolescents and young adults aged 15–39 years, 89,500 patients
were newly diagnosed with cancer, and 9270 mortalities were reported in the United
States [2]. In these patients, oncologic therapies can harm normal ovarian function and
result in ovarian damage [3]. Fertility preservation is now an emerging discipline that
plays a critical role in preventing infertility in the care of young cancer patients [4,5].

Chemotherapy could harm gonadal function in young cancer patients and cause
loss of the ovarian reserve [6]. The molecular mechanism of chemotherapy-induced
ovarian damage has been investigated to understand and prevent gonadotoxicity in cancer
treatment [7]. However, the genetic aspects of chemotherapy-induced ovarian damage
are still not fully understood. This article reviews the genetics of chemotherapy-induced
ovarian dysfunction and explores the gene-targeted prevention of ovarian damage.

2. Genes Involved in the Regulation of Ovarian Follicular reserve

In females, number of primordial follicles (PFs) declines towards menopause because
of their finite nature [8]. In every mammalian species, the ovarian reserve is formed early in
life and then declines regularly throughout life [9]. It is created during ovarian histogenesis
by follicular endowment [10]. Non-growing follicle endowment is composed of the forma-
tion, commitment, migration, and colonization of ovarian primordial germ cells (PGCs).
The development of the bipotential gonad is followed by sex determination, definitive
ovarian histogenesis, and follicular assembly [11,12]. Figure 1 shows the morphogenesis of
follicles from the arrival of primordial germ cells to secondary follicles. The processes and
related genes are listed in Table 1 [13–15].
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Table 1. Follicular development process and related genes.

Morphogenesis Process Genes

From ovarian stem cell to ovigerous cords
Wnt4, Rspo1, Bmp2, Bmp4, Bmp8a, Smads, KltL,

Oct4, Nanos1, Nanos3, Kit, Dazl, Bcl-x, Pin1, Pog,
Gja1, Bax

Follicular assembly

Msx1, Msx2, Dicer, Notch, Follistain, Stra8, Stag3,
Syce1, Sycp2l, Spo11, Msh4, Msh5, Dmc1, Rec8,

Atm, Lsh, Cdk2, Cbep, Hsf1, Fanc-a, Fanc-c,
Fanc-g, Bcl2, Brca1, Mcl1, Gdf9, Bmp15

Primordial follicles formation and growth

Foxl2, Ccn2, Cyp19a1, KitL, p27kip1, Figla, Pdk1,
Mcm8, Foxo3, Pten, Sohlh1, Sohlh2, Lhx8, Nobox8,

Ybx2, Tsc1/2, Diaph2/3, Ngf, Nt3, Nt4, Bdnf,
Ntrk1, Ntrk2, Ntrk3, Birc1, Becn1, Atg7

Secondary follicle formation Gdf9, Bmp15, Zp1, Zp2, Zp3, Cx43, Rspo2, Inha,
Taf4b

Advance to latter stages Esr1, Fshr, Nppc, Nprb, Kras, Erk1/2, Egfr, Bax,
Ahr, Clast4, Polg

2.1. Primordial Germ Cells Formation and Gonad Colonization

Several studies in mice have investigated important signals for primordial germ
cell specification, migration, and proliferation. The deletion of Bmp2, Bmp4, Bmp8a, and
downstream mediators such as Smad genes is related to the failure of migration or absence
of PGCs [16–20]. Oct4 expresses critical survival factors and forms pluripotent stem
cells [21]. Nanos genes also have a specific role in the migration and proliferation of PGCs.
Nanos1 ablation was related to the failure of PGC migration, and Nanos3 ablation caused
PGC migration and proliferation defects [22,23]. Kitl, Pin1, and Pog are also known to play
critical roles in the survival and establishment of PGCs [24–26].

2.2. Germ Cell Survival and DNA Damage Repair

Autophagy has a vital role in the regulation of follicle development. Atg7 and Becn1,
which are autophagic factors, are involved in follicular formation [27]. Gja1 encodes
connexin 43, which forms gap junctions between cells in the ovigerous cords, and plays a
role in PGC development [28]. Genes such as Spo11, Msh4, and Msh5, which are involved
in repairing DNA double-strand breaks (DSBs), may affect fertility and induce ovarian
insufficiency [29–31]. The DNA strand-related gene Dmc1 is responsible for maintaining
follicular count [32]. Another DNA DSB-related gene is Atm, which is related to the loss of
follicles and ovarian dysgenesis [33]. The role of Brca1/2, which is critical in homologous
recombination to repair DSBs, in ovarian dysfunction is still under debate. Although
several clinical studies have shown poor ovarian reserve in Brca1/2 carriers, the exact role
of Brca1/2 in the ovarian reserve has not yet been determined [34,35].

Additionally, a loss of follicles is observed after Rec8 ablation, which is a component of
the cohesion complex [36]. Loss of Cdk2, which is involved in cell cycle progression, or Cbep,
which regulates the synaptonemal complex, is related to germ cell loss [37,38]. Fanc family
genes encode proteins that interact to mediate DNA damage repair [39]. Mutations in Fanc
family genes may induce Fanconi anemia, thus also contribute to impairment of follicular
development [40–42]. Hsf1 induces the expression of heat shock proteins and initiates
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oocyte development. Hsf1 is also responsible for the anti-oxidative stress in oocytes [43,44].
Syce1 is essential for the formation of synaptonemal complexes [45]. Other meiotic gene
mutations, including Stag3, Pof1b, Pof2b, and Hfm1, have also been associated with ovarian
reserve impairment in humans [46–48].

2.3. Follicular Assembly and Turnover

Non-growing follicular assembly occurs with the degeneration of other oocytes sur-
rounded by squamous pre-granulosa cells and the basement membrane. Mutations in
several genes involved in this process could alter the ovarian reserve [15]. Figla, an oocyte-
specific transcription factor, is necessary to form primordial follicles. Ablation of this gene
results in failure of follicle formation [49]. When this gene is altered, ovarian insufficiency
can occur [50]. Neurotrophins are a family of growth factors that regulate cell survival
and follicular development. For example, Ngf, Ntrk1, and Ntrk2 affect primordial follicle
formation in mice [51]. Additionally, Nt4 and Bdnf are related to follicular assembly and
survival [52]. Nt3 and Ntrk3 also participate in the transition of follicles from the PF to the
primary stage [53].

Apoptotic pathway-related genes are also related to follicle turnover. Alterations in
Casp2 and Bcl2 have been shown to decrease the number of PFs [54,55]. Ahr and Bax play
important roles in follicle maturation and PF endowment. Bax deletion is associated with
the formation of a better ovarian reserve [56]. However, contradictory results have been
reported in the literature [57]. Deletion of Ahr, whichs is a regulator of Bax expression,
results in an increased PF count [58]. Mcl1 is another gene involved in apoptosis. Mcl1
deletion elevated superoxide levels and activated the autophagic pathway, reducing the
ovarian reserve [59].

3. Mechanism of Chemotherapy-Induced Ovarian Damage

Chemotherapy-induced ovarian damage may be transient, and menstruation may re-
cover after treatment completion. Oocytes and granulosa cells are vulnerable to chemother-
apeutic agents. The possible gonadotoxic chemotherapeutic agents used are shown in
Table 2 [7]. Each agent has a different mechanism of action on malignant cells, resulting
in the cessation of the cell cycle. With conventional chemotherapy agents, ovarian insuffi-
ciency involves PF pool depletion by apoptosis or hyperactivation mechanisms, mediated
by the ABL/TAp63 and PI3K/Akt/mTOR pathways [7].

Table 2. Ovarian damage with chemotherapeutic agents and their mechanisms of action.

Type of Chemotherapy Agents Target Disease Mechanisms of Action

Alkylating agents

Cyclophosphamide
Ifosfamide

Nitrosoureas
Chlorambucil

Melphalan
Busulphan

Mechlorethamine

Leukemia,
breast cancer,
lung cancer,

ovarian cancer,
prostate cancer,

lymphoma,
Hodgkin’s disease

Interference with cell division via cross-linking of DNA;
Mitochondrial transmembrane potential reduction;

Inhibition of the accumulation of cytochrome c in the cytosol;
Induction of DSBs in oocytes

Vinka alkaloids Vinblastine
Vincristine

Testicular cancer,
lymphoma,

Hodgkin’s disease,
breast cancer,

germ cell tumors,
lung cancer,

Inhibition of tubulin forming into microtubules;
Low gonadotoxic risk

Alkylating agents

Cyclophosphamide
Ifosfamide

Nitrosoureas
Chlorambucil

Melphalan
Busulphan

Mechlorethamine

Leukemia,
breast cancer,
lung cancer,

ovarian cancer,
prostate cancer,

lymphoma,
Hodgkin’s disease

Interference with cell division via cross-linking of DNA;
Mitochondrial transmembrane potential reduction;

Inhibition of the accumulation of cytochrome c in the cytosol;
Induction of DSBs in oocytes
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Table 2. Cont.

Type of Chemotherapy Agents Target Disease Mechanisms of Action

Vinka alkaloids Vinblastine
Vincristine

Testicular cancer,
lymphoma,

Hodgkin’s disease,
breast cancer,

germ cell tumors,
lung cancer,

Inhibition of tubulin forming into microtubules;
Low gonadotoxic risk

Antimetabolites
Cytarabine

Methotrexate
5-fluorouracil

Leukemia,
breast cancer,

ovarian cancer,
gastrointestinal cancer

Inhibition of purine, pyrimidine becoming incorporated into
DNA; Inhibition of RNA synthesis;

Low gonadotoxic risk

Platinum agents
Cisplatin

Carboplatin
Oxaliplatin

Bladder cancer,
colorectal cancer,

head and neck cancer,
lung cancer,

ovarian cancer,
testicular cancer

DNA damage by the formation of DNA adducts, which
interfere with cellular transcription and replication, leading

to oocyte death.

Anthracycline antibiotics
Daunorubicin

Bleomycin
Doxorubicin

Lymphoma,
leukemia,

breast cancer,
sarcoma

Intercalation with DNA and prevention of its replication and
transcription via the inhibition of topoisomerase II;

Upregulation of P53 protein which induces apoptosis;
DNA DSBs leading to activation of ATM, which initiates

apoptosis

Others Procarbazine Hodgkin’s disease,
brain tumor

Inhibition of DNA methylation and RNA and protein
synthesis

DSB, double-strand breaks.

3.1. Chemotherapy-Induced DNA DSBs

Chemotherapy can result in DSBs in DNA that can be repaired by the ataxia-
telangiectasia mutated-mediated DNA damage repair pathway. However, failure of the
repair pathway results in cellular apoptosis in growing follicles and proliferating granulosa
cells [60]. P63 protein, a transcriptional factor implicated in cancer and development, is
also involved in female reproduction [61]. TAp63, which is the N-terminal transactivation
domain containing isoform of P63, is responsible for the protection of the female germ line
during meiotic arrest [62]. The P63 protein activates BAX and BAK proteins, which can
be transmitted by activating Tap73, a P53-upregulated modulator of apoptosis [63]. This
damage has been reported to occur even with low-risk gonadotoxic agents [64].

3.2. Burnout Effect

The PI3K/Akt/mTOR pathway directly influences the oocytes and pre-granulosa
cells of PFs and indirectly destroys large follicles, called the “burnout effect” [65]. This
phenomenon impairs anti-Mullerian hormone (AMH) and reduces the suppression of
the PF pool through destroying follicles, which is followed by the activation of PFs to
compensate for the decrease in the number of growing follicles [66]. This effect triggers
the growth of dormant follicles. It is affected by the upregulation of the PI3K/Akt/mTOR
pathway and substantial follicular apoptosis, which reduces AMH secretion [67].

3.3. Stromal and Microvascular Damage

The ovarian stroma can be indirectly damaged by chemotherapeutic agents [8,68].
A previous study reported chemotherapy-induced ovarian stromal fibrosis and vascular
damage [69]. Damage to blood vessels and focal fibrosis of the ovarian cortex could
be another mechanism of chemotherapy-induced ovarian dysfunction [70]. In patients
undergoing chemotherapy, the ovaries show thickening and hyalinization of the cortical
vessels [71]. This is also supported by another study that showed an inverse correlation
between ovarian vascular density and follicular apoptosis [72], thus suggesting an indirect
mechanism by which chemotherapy-induced ovarian vascular injury reduces the number
of PFs.
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3.4. Genes Related to Chemotherapy-Induced Ovarian Damage
3.4.1. DNA Damage Repair

Homologous or non-homologous DNA repair is involved in the recovery of
chemotherapy-induced DNA damage in PFs. Consequently, mutations in genes that
regulate these repair pathways could increase the susceptibility to ovarian toxicity due to
chemotherapy.

Brca1 and Brca2 are critical in the repair of DNA DSBs. Brca mutation carriers have
not only increased the risk of cancer but also fertility-related issues [73]. Brca1 mutation
carriers show lower AMH levels, but the results are contradictory between studies [74,75].
Brca2 mutations are not associated with a low ovarian reserve in these studies. On the
other hand, a retrospective study on the in vitro fertilization of Brca mutation carriers
showed no significant differences in the procedure cycles or in the number of oocytes
compared to non-carriers [76]. Additional research is warranted to define exact role of Brca
mutation in fertility preservation in patients with related malignancy. In cancer patients
with Brca mutations, poly (ADP-ribose) polymerase (PARP) inhibitors is widely used for
the treatment of cancer [77]. The use of PARP inhibitors could negatively affect embryo
development [78]. In another study, the gene expression of granulose cell markers was
decreased in patients with PARP inhibitor use [79].

Alterations of other genes involved in DNA repair, Mcm8 and Mcm9, can induce
primary ovarian insufficiency [80]. Stag3, a meiosis-specific gene, is also important in DNA
damage repair. A recent study demonstrated that variants of Stag3 are associated with
primary ovarian insufficiency [81]. Similarly, Hfm1, Nup107, and Syce1 are associated with
DNA repair and are implicated in ovarian insufficiency [45,82,83].

3.4.2. Apoptosis

Dysregulation of apoptosis results in decreased ovarian reserve and an increased
possibility of gonadal damage after chemotherapy. Nanos3, which expresses an RNA-
binding protein that regulates apoptosis to maintain a proper PF pool, was related to
ovarian insufficiency in a study of Chinese women with variant mutations [84]. In that
study, the level of NANOS3 protein was correlated with the number of PGCs. Ablation
of another important anti-apoptotic gene, Bcl2, is related to a decreased number of PGCs
in mice [55]. Pgrmc1, which is another candidate gene, has a progesterone-dependent
anti-apoptotic action, which is another candidate gene. Mutations in this gene were related
to ovarian insufficiency in a previous study [85,86].

3.4.3. Follicular Activation and Development

The possibility of ovarian damage after chemotherapy could also be increased because
of genetic mutations involved in follicular activation and development. Foxo3a inhibits
follicular activation in the ovary. Ablation of this gene in mice is related to early ovarian
dysfunction [87]. In humans, Foxo3a and Foxo1a were identified in women with primary
ovarian insufficiency in two studies [88,89]. Variants of another follicle developing gene,
Bmp15, are associated with ovarian dysfunction, as identified in multiple studies [90–92].

4. Prevention Strategy for Ovarian Damage

Fertility preservation options can be personalized in terms of patient age, desire for
conception, treatment regimen, and socioeconomic status [93]. Such options include hor-
monal medications for ovarian suppression, cryopreservation, in vitro oocyte maturation,
artificial ovaries, and stem cell technologies. Additionally, the potential ovarian protec-
tive effects of several genetic variants could be considered. Several established options
including embryo cryopreservation and oocyte cryopreservation are already in clinical use.
However, there are also experimental options including ovarian tissue cryopreservation,
oocyte in vitro maturation, artificial ovary, and stem cell technologies [93].
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4.1. Consideration for Protective Genetic Variants for Chemotherapy-Induced Ovarian Damage

Several reports have been published regarding the protective effect of gene mutations
associated with a better prognosis in terms of ovarian insufficiency. A protective effect
of reduced allele frequency of the Inha gene promoter was observed in patients with pre-
mature ovarian insufficiency [90,91]. In a study involving ovarian insufficiency, increased
expression levels of Mvh, Oct4, Sod2, Gpx, and Cat were detected after resveratrol treat-
ment [94], implying that genes related to ovarian stem cell proliferation or anti-oxidative
processes may help protect the ovary against chemotherapy-induced damage. An associa-
tion between microRNA polymorphisms and the risk of premature ovarian insufficiency
was also reported previously. Further investigations are warranted to identify significant
protective genes against chemotherapy-induced ovarian damage.

4.2. Genetic Screening of Candidate Markers

Traditional biochemical markers for ovarian reserve include AMH level, follicle-
stimulating hormone concentrations, inhibin-B level, and antral follicle count on ultra-
sound [7]. However, due to the development of genetic testing, several candidate genes for
ovarian insufficiency are being investigated [85]. Fmr1 and Brca testing can be performed
easily in genetic clinics. Patients with mutations in these genes are at a higher genetic risk
at baseline [95]. Evaluation of other frequent genetic variants, including Nobox, Figla, Bnc1,
Sohlh1, Sohlh2, Foxo3, and Hfm1, could help identify individuals with increased genetic risk
of ovarian damage due to chemotherapy. Next-generation sequencing could be considered
in ovarian reserve testing by using targeted gene panels, whole-exome sequencing, or
whole-genome sequencing [96]. The application of this technique is the future of genetic
evaluation of patients who are at high risk of ovarian dysfunction after chemotherapy.

4.3. Other Options for Prevention of Ovarian Damage
4.3.1. Gonadotropin-Releasing Hormone (GnRH)

Ovarian suppression using GnRH agonists before or during chemotherapy has protec-
tive effects on the ovaries by regulating the secretion of FSH and luteinizing hormone [97].
Ovarian suppression with this method protects ovarian function in young patients treated
for lymphoma, breast cancer, and other diseases [98–100]. GnRH analogs have two possi-
ble theoretical mechanisms [101–103]. First, it involves decreasing the sensitivity of PFs
entering the growing pool to gonadotoxicity. Furthermore, it constitutes the direct anti-
apoptotic effect of GnRH agonists on ovarian germline stem cells. In combination with
other modalities, the use of GnRH agonists, including oocyte or embryo freezing, may be a
good option [104].

4.3.2. AMH

In a previous study, the initiation of PF growth was inhibited when human ovarian
cortical tissue was cultured with recombinant AMH [105]. Combining recombinant AMH
with the cyclophosphamide metabolite in an ex vivo culture system maintained a high
number of PFs in the ovaries [65]. AMH usually has limited activity in the ovaries, because
it is an endogenous hormone.

4.3.3. AS101

AS101 is a non-toxic immune modulator that acts on the PI3K/Akt/mTOR path-
way [106]. AS101 was shown to diminish apoptosis in granulosa cells in an in vivo
study [107]. AS101 was also related to a reduced follicle activation, thereby increasing
follicle reserve and rescuing fertility after cyclophosphamide treatment [107].

4.3.4. Imatinib

Imatinib is a tyrosine kinase inhibitor that selectively inhibits the ABL kinase do-
main of the bcr-abl oncogenic protein [108]. As PF depletion is mainly mediated by the
ABL/TAp63 and PI3K/Akt/mTOR pathways, imatinib might prevent ovarian dysfunction
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caused by these pathways [109]. Many studies have investigated the protective effects of
imatinib, but conflicting results have been reported [110–112].

4.3.5. Sphingosine-1-Phosphate

Sphingosine-1-phosphate (S1P) inhibits the ceramide-promoted apoptotic pathway
by increasing vascularity and angiogenesis and reducing PF apoptosis [72,113]. Co-
administration of S1P with cyclophosphamide and doxorubicin was associated with a
lower rate of apoptosis in mice [114]. It also showed a protective effect in mice treated
with dacarbazine [115]. However, contradictory results were also reported in another
study [116].

4.4. Cryopreservation
4.4.1. Embryo Cryopreservation

Embryo cryopreservation is the most well-established method for preserving fertil-
ity [117]. Embryo freezing should be considered in patients who desire fertility preservation
if there is adequate time for ovarian stimulation and if a partner or donor sperm is avail-
able [118]. Previous studies have demonstrated that embryo vitrification methods are better
than slow freezing in pregnancy and live birth rates [119–121]. This option is not adequate
for prepubertal girls because it requires ovarian stimulation. In studies comparing the
fertilization and live birth rates of in vitro fertilization and embryo cryopreservation in
patients with cancer, contradictory results were observed [122–125].

4.4.2. Oocyte Cryopreservation

Oocyte cryopreservation is also considered a standard technique for fertility preser-
vation in adeolescents and young adults with cancer [126]. The development of freezing
techniques in assisted reproductive techniques has improved oocyte cryopreservation
outcomes similar to those obtained with fresh oocytes [127,128]. It can also be utilized
for women who are unmarried or do not want sperm donation. Vitrification was more
effective than slow freezing in reducing cellular damage and chilling injury during the
freezing process [129,130]. The combination of oocyte cryopreservation and ovarian tissue
cryopreservation can enhance fertility [131].

4.4.3. Ovarian Tissue Cryopreservation and Transplantation

Ovarian tissue cryopreservation could be considered for fertility preservation in
children or young patients with cancer who need immediate treatment and do not have
enough time for ovarian stimulation. Using this technique, a large number of oocytes can
be preserved, and the hormonal functions of the ovary can be protected [132]. Slow freezing
has been established as the preferred method for ovarian tissue cryopreservation rather than
vitrification [133]. Ovarian activity was restored in 92.9% of the cases after transplantation
of cryopreserved ovarian tissue by using the slow-freezing method [134]. Owing to the
possible contamination of the ovarian tissue with malignant cells, this procedure is not
utilized for patients with ovarian or hematologic malignancies [135,136].

5. Future Perspectives

The mechanism of chemotherapy-induced ovarian damage is not completely under-
stood. Several studies have demonstrated that genes related to apoptosis or accelerated
follicle activation are related to ovarian insufficiency. However, contradictory results
have been reported. Validation of genetic profile screening for estimating susceptibility to
chemotherapy-related ovarian damage may be further warranted. Patients with genetic
variants involved in DNA repair or follicle activation can be screened before the initiation
of cancer treatment via genetic testing. The establishment of genetic screening for fertility
preservation could be helpful for young patients with cancer. Various other options are
still under investigation.
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Whole-ovarian transplantation has the benefit of immediate revascularization fol-
lowing blood vessel anastomosis [137,138]. Successful whole-ovarian cryopreservation
and transplantation have been reported in animal studies [139–142]. However, potential
injury due to hypothermic damage to blood vessels and difficulties in dispersing enough
cryoprotective agents make it challenging in clinical practice.

In vitro maturation (IVM) can be used in patients with cancer who lack adequate time
for ovarian stimulation or prepubertal girls who need immediate treatment. This requires
immature oocyte retrieval and cryopreservation at an immature stage or a post-IVM mature
state [143]. Several attempts have been reported; however, only a few live births have been
reported after IVM procedures in patients with cancer [144–146].

Artificial ovaries can be useful for developing mature oocytes via in vitro culture of
oocytes, isolated follicles, and ovarian tissue [147,148]. In animal models, this approach re-
stored endocrine function, enabling in vivo follicle development and successful pregnancy;
however, there have been no successful reports in humans [148,149]. Ovarian stem cells
are under investigation for use in fertility preservation. Previous studies have reported
successful detection and isolation of ovarian stem cells in animals and humans [150,151].
However, it is not commonly applied in clinical practice because of insufficient evidence in
humans and ethical issues related to the use of oocytes and embryos [152]. Further studies
are required to implement these approaches in clinical practice.

6. Conclusions

Fertility preservation in cancer patients is becoming more important; however, the
effects on ovarian damage differ according to the type of agent and from patient to patient.
Molecular mechanisms involved in cancer therapy-induced ovarian damage have been
studied by many researchers. Understanding the molecular etiology of treatment-induced
ovarian dysfunction can aid in identifying targets to prevent and reduce gonadal damage
during cancer treatment and increase the number of options for fertility preservation.

The adoption of state-of-the-art genetic testing, including next-generation sequencing,
has led to surprising developments in understanding the genomic aspects of ovarian
insufficiency. The concept of precision medicine could be utilized to treat cancer and screen
patients who have gonads vulnerable to chemotherapeutic agents, making it possible to
plan individual fertility preservation options. As the genomic alterations of chemotherapy-
induced ovarian damage continue to be investigated, mutations altering related molecular
pathways may provide reliable information about reproductive potential.

Additionally, several novel therapies could be utilized in combination with standard
FP techniques, or they may be used alone in the future. These strategies can assist young
women who are not eligible for conventional methods because of their age or limited time
before the initiation of disease treatment.
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