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Abstract: In about 20–30% of all women with breast cancer, an increased number of cases of breast
cancer can be observed in their family history. However, currently, only 5–10% of all breast cancer
cases can be attributed to a pathogenic gene alteration. Molecular genetic diagnostics underwent
enormous development within the last 10 years. Next-generation sequencing approaches allow
increasingly extensive analyses resulting in the identification of additional candidate genes. In the
present work, the germline molecular diagnostic analysis of a cohort of 228 patients with suspected
hereditary breast and ovarian cancer syndrome (HBOC) was evaluated. The 27 pathogenic gene
variants initially detected are listed, and their distribution in the high-risk BRCA1 and BRCA2 genes
is presented in this study. In ten high-risk patients, in whom, to date, no pathogenic variant could be
detected, an extended genetic analysis of previously not considered risk genes was performed. Three
variants of uncertain significance and one pathogenic variant could be described. This proves the
importance of extended analysis using current molecular genetic methods.

Keywords: HBOC; BRCA1; BRCA2

1. Introduction

Human genetic analyses are an integral part of everyday clinical practice due to their
scope and importance for subsequent therapeutic decisions. The introduction of high-
throughput analytical techniques allows increasingly comprehensive testing, which in turn
contributes to a better medical understanding of the disease. Around 30% of all women
with breast cancer in Germany have a family history of breast cancer. They thus fulfill
the inclusion criteria for genetic testing regarding hereditary breast and ovarian cancer
syndrome (HBOC) [1]. In hereditary breast and ovarian cancer syndrome, high-risk genes
(BRCA1, BRCA2, TP53, and PALB2) are distinguished in addition to moderately penetrant
risk genes (currently ATM, BARD1, BRIP1, CDH1, CHEK2, RAD51C, and RAD51D) [2].
In the scope of the German Consortium for Hereditary Breast and Ovarian Cancer, other
candidate genes (e.g., NBN, FANCM, XRCC2, and RECQL) are currently co-analyzed for
research purposes and their significance in contributing to breast and ovarian cancer is
under investigation [3]. Women with a BRCA1 or BRCA2 pathogenic variant develop
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disease approximately 10 to 20 years earlier than women without familial risk [4]. Due to
the increased lifetime risk of breast cancer of up to 70% [5], these women are eligible for an
intensified screening and follow-up program [2].

We performed a comprehensive statistical evaluation in a cohort of 228 patients whose
data were collected in 2012–2017 at the Institute of Human Genetics of the University
Medical Center of Freiburg in the context of molecular genetic diagnostics regarding
hereditary breast and ovarian cancer. The aim was to provide an overview of the overall
spectrum and to identify relevant and previously undetected pathogenic variants in high-
risk patients.

2. Materials and Methods
2.1. Data Collection and Risk Assessment

Initially, data were collected from 228 patients. These were fully considered in the
statistical analysis. For 213 patients, detailed information of the family history was available,
allowing an additional risk assessment using the checklist of the German Consortium for
Hereditary Breast and Ovarian Cancer [6]. In addition to the age of onset of the disease,
this checklist is based on other associated cases of the disease in the maternal and paternal
line and takes these into account with a single, double, or triple weighting. For reasons
of clarity and informative value, the score values obtained were grouped into specially
determined subgroups (Table 1). This grouping is introduced and determined exclusively
to differentiate the cohort under investigation.

Table 1. Distribution of the risk assessment of 213 patients based on the checklist of the German Consortium for Hereditary
Breast and Ovarian Cancer [7].

Risk Score 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

Number of
patients 1 2 15 47 46 36 25 12 9 8 2 5 1 1 1 1 1

∑ 18 154 41

Percentage
[%] 0.5 0.9 7.0 22.0 21.6 17.0 11.7 5.6 4.2 3.8 0.9 2.3 0.5 0.5 0.5 0.5 0.5

∑ 8.4% 72.3% 19.3%

Classification Low Risk Intermediate Risk High Risk

2.2. Sequencing Methods and Bioinformatics Programs

The data collection of this work includes molecular genetic analyses from 2012 to
2017. The analysis of the high-risk genes BRCA1 and BRCA2 was performed using Sanger
sequencing until August 2013. Subsequently, the analysis procedure was changed to
next-generation sequencing (NGS). Then, in March 2015, there was another update from
the BRCA Dx panel, which included only the BRCA1 and BRCA2 genes, to the BRCA
Hc MASTR (both Multiplicom, Niel Belgium; now part of Agilent Technologies), which
includes the genes ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM,
FAM175A, MEN1, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN,
RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. After joining the German Consor-
tium for Hereditary Breast and Ovarian Cancer, the TruRisk®panel (Agilent Technologies)
was launched in January 2019. It includes the 11 core genes ATM, BARD1, BRCA1, BRCA2,
BRIP1, CDH1, CHEK2, PALB2, RAD51C, RAD51D, and TP53, as well as additional re-
search genes, and is under continuous development. The extended molecular genetic
analysis performed here using DNA isolated from peripheral blood, the TruRisk®panel,
and an Illumina MiSeq system (2 × 150 base pairs, paired end; Illumina, San Diego, CA,
US) yielded a mean target coverage for the eleven core genes of 405× with 99.9% of the
bases covered more than 20×. In silico analyses to predict the pathogenicity of DNA
variants have been performed using the following bioinformatics programs: Mutation
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Taster (http://www.mutationtaster.org/ accessed on 10 September 2021) [8], PolyPhen-2
(http://genetics.bwh.harvard.edu/pph2/ accessed on 12 May 2020) [9], FATHMM v2.3
(http://fathmm.biocompute.org.uk/ accessed on 12 May 2020) [10], SIFT (http://sift.
jcvi.org/ accessed on 12 May 2020) [11], and NetGene2 v2.4 (http://www.cbs.dtu.dk/
services/NetGene2/ accessed on 12 May 2020) [12]. Furthermore, the following databases
were used: Genome Aggregation Database version v2.1.1 (gnomAD; http://gnomad.
broadinstitute.org/ accessed on 12 May 2020), HGMD®Professional version 2020.3 (http:
//www.biobase-international.com/product/hgmd accessed on 12 May 2020), Database of
Single Nucleotide Polymorphisms version build 151 (dbSNP; http://www.ncbi.nlm.nih.
gov/projects/SNP/ accessed on 12 May 2020), PubMed (http://www.ncbi.nlm.nih.gov/
pubmed/ accessed on 12 May 2020), and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/
accessed on 12 May 2020).

3. Results
3.1. Statistical Evaluation

The average age at analysis was 50.6 years for women and 57.4 years for men. At the
time of analysis, 164 patients had breast cancer, 17 had ovarian cancer, and 7 had breast
and ovarian cancer. A total of 27 people had predictive testing performed. For 13 patients,
a reference to the respective background for the analysis performed was not possible, due
to missing information. The classification of detected sequence variants was performed
according to the standards and guidelines of the American College of Medical Genetics
and Genomics (ACMG) [13].

In total, pathogenic variants (ACMG class 5) were detected in 37 (16.2%) patients.
These were mainly found in the high-risk genes BRCA1 (54.1%, n = 20) and BRCA2 (37.8%,
n = 14). In the CHEK2 gene, two pathogenic variants were detected (5.4%, n = 2) and, in the
RAD51C gene, one pathogenic variant was identified (2.7%, n = 1). In total, eleven patients
with detected BRCA1 variants had breast cancer, five patients had ovarian cancer, and two
patients had breast and ovarian cancer. For two patients, no conclusion could be drawn
about the cancer type due to missing information. Regarding BRCA2 variants, twelve
patients developed breast cancer. One patient had breast and ovarian cancer. For one
patient, no conclusion could be drawn about the cancer type due to missing information.
BRCA1 mutation carriers are thus more likely to develop ovarian cancer than BRCA2
mutation carriers, as previously reported [14,15]. All patients carrying a pathogenic CHEK2
or RAD51C variant had breast cancer. All detected pathogenic variants are summarized
with their respective reference in Table 2. The pathogenic variants c.5609_5610delTCinsA
as well as c.7878G>C of the BRCA2 gene were initially described in the context of Fanconi
anemia disease. Later, they were associated with hereditary breast cancer. Each of the
detected pathogenic variants had been described elsewhere before.

http://www.mutationtaster.org/
http://genetics.bwh.harvard.edu/pph2/
http://fathmm.biocompute.org.uk/
http://sift.jcvi.org/
http://sift.jcvi.org/
http://www.cbs.dtu.dk/services/NetGene2/
http://www.cbs.dtu.dk/services/NetGene2/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://www.biobase-international.com/product/hgmd
http://www.biobase-international.com/product/hgmd
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/clinvar/
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Table 2. Pathogenic variants in the BRCA1, BRCA2, CHEK2, and RAD51C genes [7].

Gene DNA Level Protein Level Cancer Type Reference

BRCA1
(NM_007294.4)

c.68_69del p.(Glu23Valfs*17) BC, 1 patient Struewing et al., 1995 [16]
c.181T>G p.(Cys61Gly) BC, 3 patients Friedman et al., 1994 [17]
c.191G>A p.(Cys64Tyr) BC + OC, 1 patient Couch et al., 1996 [18]

c.213-12A>G OC, 1 patient Hoffman et al., 1998 [19]
c.427G>T p.(Glu143*) BC, 1 patient Shattuck-Eidens et al.,

1997 [20]
c.1510del p.(Arg504Valfs*28) BC + OC, 1 patient Machackova et al., 2008 [21]

c.3481_3491del p.(Glu1161Phefs*3) OC, 1 patient Struewing et al., 1995 [16]
c.4183C>T p.(Gln1395*) OC, 2 patients Langston et al., 1996 [22]
c.4689C>G p.(Tyr1563*) BC, 1 patient Serova et al., 1996 [23]

c.4986+3G>C p.(Met1663Valfs*14) BC, 2 patients Adem et al., 2003 [24]

c.5080G>T p.(Glu1694*) BC, 1 patient
unknown, 1 patient

Shattuck-Eidens et al., 1997
[20]

c.5266dup p.(Gln1756Profs*74) BC, 2 patients Simard et al., 1994 [25]
c.5510G>A p.(Trp1837*) OC, 1 patient Couch et al., 1996 [18]

BRCA2
(NM_000059.3)

c.110C>G p.(Ser37*) BC, 1 patient Tung et al., 2015 [26]
c.1002del p.(His334Glnfs*15) BC + OC, 1 patient Borg et al., 2010 [27]

c.4131_4132insTGAGGA p.(Thr1378*) BC, 1 patient Delgado et al., 2002 [28]
c.5603_5606del p.(Asp1868Valfs*5) BC, 1 patient Li et al., 2019 [29]

c.5609_5610delTCinsA p.(Phe1870*) BC, 1 patient
Howlett et al., 2002 (Fanconi

Anemia) [30]
Tea et al., 2014 (Breast

Cancer) [31]

c.5645C>A p.(Ser1882*) BC, 1 patient
unknown, 1 patient De Benedetti et al., 1998 [32]

c.5682C>G p.(Tyr1894*) PC, 1 patient Risch et al., 2001 [33]
c.6408_6414del p.(Asn2137Lysfs*29) BC, 1 patient Tamboom et al., 2010 [34]

c.6998dup p.(Pro2334Thrfs*6) BC, 1 patient Tedaldi et al., 2017 [35]

c.7878G>C p.(Trp2626Cys) BC, 2 patients
Barber et al., 2005 (Fanconi

Anemia) [36]
Lindor et al., 2012 (Breast

Cancer) [37]
c.8575del p.(Gln2859Lysfs*4) BC, 1 patient Martin et al., 2001 [38]

c.9352_9353del p.(Met3118Valfs*31) BC, 1 patient Sun et al., 2017 [39]

CHEK2
(NM_007194.4) c.1100del p.(Thr367Metfs*15) BC, 2 patients Bell et al., 1999 [40]

RAD51C Deletion Exon 5-9 BC, 1 patient Schubert et al., 2019 [41]

BC = breast cancer; OC = ovarian cancer; PC = pancreatic cancer

3.2. Graphical Representation of the Pathogenic Variants in the BRCA1 and BRCA2 Genes

In the BRCA1 gene, 70% of the pathogenic variants are located in the functional RING
domain at the N-terminus (6 of the 20 pathogenic variants) or in the BRCT domains at
the C-terminus (8 of the 20 pathogenic variants) (Figure 1). Furthermore, one pathogenic
variant was detected in the nuclear localization sequence (c.1510del, p.(Arg504Valfs*28))
and another pathogenic variant (c.4183C>T, p.(Gln1395*)) in the coiled-coil domain in the
region of the serine cluster (Figure 1). For the BRCA2 gene, the pathogenic variants are
mainly located in the BRC repeat domain (Figure 2), where 7 of the 14 detected pathogenic
variants are found. Another four pathogenic variants are located in the functional domains
at the C-terminus (Figure 2). Equal numbers of them are located in the helical domain and
in the oligonucleotide binding fold (Figure 2).
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Figure 1. Localization of detected pathogenic variants in the BRCA1 gene (RefSeq NM_007294). (A) Gene representa-
tion with exon and intron indication (light and dark blue, respectively)—bold numbers: exon numbering; numbers in
parentheses: cDNA positions. (B) Protein representation—different colored shapes: functional domains; RING: really
interesting new gene domain; NLS: nuclear localization sequence; SCD: serine cluster domain; BRCT: BRCA1 C-terminus
domain. Pathogenic variants are indicated in red; bold notation of pathogenic variant: dual occurrence; superscript
three: triple occurrence.
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Figure 2. Localization of detected pathogenic variants in the BRCA2 gene (RefSeq NM_000059). (A) Gene representation
with exon and intron indication (light and dark grey, respectively)—bold numbers: exon numbering; numbers in parentheses:
cDNA positions. (B) Protein representation—different colored shapes: functional domains; BRC repeat: BRC repeat domain;
HD: helical domain; OB: oligonucleotide binding fold; NLS: nuclear localization sequence; TR2: tower domain. Pathogenic
variants are indicated in red; bold notation of pathogenic variant: dual occurrence.
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Seventeen of the twenty detected pathogenic variants in the BRCA1 gene (=85.0%)
and eleven of the fourteen detected pathogenic variants in the BRCA2 gene (=78.6%) can
be localized in the conserved regions of the genes. These are essential for correct protein
structure and function. Thus, in the presence of such a pathogenic variant in the case of a
missense variant, a loss of function of the protein can be assumed.

3.3. Evaluation of the Molecular Genetic Analyses of the High-Risk Patient Group

Because of the further development of sequencing technologies, a renewed and ex-
tended gene analysis with the TruRisk®panel of the German Consortium of Hereditary
Breast and Ovarian Cancer was performed for ten patients who showed a particularly
high-familial-risk constellation without the detection of a pathogenic variant. As a result,
four variants could be detected (Table 3).

Table 3. Identified DNA variants as a result of the extended genetic analysis [7].

Gene Transcript ID/RefSeq DNA Level Protein Level dbSNP MAF Classification
ACMG

ATM ENST00000675843.1/NM_000051.4 c.7327C>T p.(Arg2443*) rs121434220 3.983 × 10−6 Class 5
BARD1 ENST00000260947.9/NM_000465.4 c.212G>T p.(Cys71Phe) rs1064793959 3.185 × 10−5 Class 3

MUTYH ENST00000456914.7/NM_001048174.2 c.919C>T p.(Arg307Trp) rs759822330 2.388 × 10−5 Class 3

SMARCA4 ENST00000344626.10/NM_003072.5 c.2275-3C>A rs117611401 2.521 × 10−3 Class 3

Pathogenic ATM variants increase the risk for breast cancer by 2–3 times [42]. Evidence
regarding an increased risk of prostate or pancreatic cancer cannot be confirmed currently
due to insufficient data [43,44]. Pathogenic BARD1 variants also lead to increased risk for
Ewing sarcoma, osteosarcoma, and neuroblastoma, in addition to an increased risk for
breast cancer [45–47]. The MUTYH and SMARCA4 genes are among the candidate genes of
the TruRisk®panel. In addition to MUTYH-associated polyposis (MAP) and the associated
increased risk for colon cancer, pathogenic MUTYH variants have been described to confer
increased risks for, among others, urinary bladder and gastric cancer [48]. Pathogenic
variants in the SMARCA4 gene are increasingly associated with small-cell carcinoma of the
ovary, hypercalcemic type, or adenocarcinomas of the lung and endometrium [49–51].

The detected ATM variant is a class 5 pathogenic variant generating a premature
stop codon. The databases HGMD®Professional 2020.3 and ClinVar contain several
entries describing the variant as pathogenic [52,53]. For the BARD1 variant c.212G>T,
the sequence variant interpretation tools SIFT, Polyphen2, and MutationTaster predict
a putative deleterious effect of the variant. In the ClinVar database, the variant was re-
ported five times, most recently in November 2018, and interpreted with unclear sig-
nificance in all cases. There is no entry in the HGMD®Professional 2020.3 database
for this specific pathogenic variant, but there are two entries for other variants at the
same position with a different nucleotide exchange (c.212G>A; c.212G>C). The variant
c.212G>A p.(Cys71Tyr) RefSeq NM_000465.4 is described as a disease-causing variant, and
the variant c.212G>C p.(Cys71Ser) RefSeq NM_000465.4 as a questionable pathogenic vari-
ant [54,55]. The patient in whom the pathogenic ATM variant and the BARD1 variant of
uncertain significance were detected had breast cancer at the age of 39 and ovarian cancer
at the age of 48.

The MUTYH variant c.919C>T can also be classified as a class 3 variant. The programs
SIFT, MutationTaster, and FATHMM indicate a probably deleterious effect of the variant,
whereas Polyphen2 describes a possible deleterious effect.

The SMARCA4 variant c.2275-3C>A is an intron variant with possible influence
on the splicing process. It has been reported nine times in the ClinVar database with
varying classifications, most recently in May 2019 as a probably benign variant. The
prediction programs Human Splicing Finder version 3.1 and NNSplice indicated a most
likely influence on the splicing process at the acceptor site. The program NetGene2 version
2.4 predicted no change in splicing efficiency. There is currently no entry for this variant
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in the HGMD database or in the German Consortium of Hereditary Breast and Ovarian
Cancer BRCA2006 database.

4. Discussion

The further development of analytical methods opens up a multitude of new possibili-
ties. The analysis of the present cohort shows that within a five-year period, the standard
analysis method has evolved from Sanger sequencing to next-generation sequencing. This
high rate of technical change results not only in a large amount of data with different se-
quence variants but also in a steady stream of new candidate genes, the clinical significance
of which is sometimes still unclear at the time of analysis. A large data resource is needed
to achieve an assessment of candidate genes in terms of their clinical relevance and to
incorporate them into routine diagnostics. At the same time, a more comprehensive panel
diagnosis increases the probability to detect a variant of clinical relevance. However, the
more genes are sequenced, the more variants of uncertain significance can be identified,
which in turn cannot be clearly classified clinically. Thus, the challenge lies in the risk
calculation and the statement of clinical evaluation. The diagnostic range may change
over a few years, and a possible extended second or third analysis, and a re-evaluation
of already described varieties, based on current scientific knowledge, may be useful. A
possible recommendation would be a routine review as well as a supplement of the molec-
ular genetic diagnostics according to the current state of research, for example in a 5- to
10-year rhythm. Currently, mostly only case–control studies are available for interpretation,
which could promote misinterpretation. In order for the statements to gain a higher level
of evidence, further investigations are needed, for example, in the context of prospective
cohort studies. These are another important aspect to illustrate the existing possibility of
multifactorial inheritance and pathogenicity, which may be causative for the disease. In
this context, a single variant would moderately increase the risk of disease, whereas the
presence of additional variants could potentiate the risk of tumor development. In addition,
with many pathogenic variants detected, there is not only an increased risk for breast or
ovarian cancer, but also other associated tumor diseases are possible. The statement of a
genotype–phenotype relationship is also becoming increasingly important. Thus, different
ovarian cancer cluster regions (OCCRs) and breast cancer cluster region (BCCRs) can be
formulated for both the BRCA1 and BRCA2 genes. These are characterized in this specific
region by a significantly higher rate of breast or ovarian cancer compared to the other
entity [56,57]. In addition to mutation position analysis, there are other considerations for
predicting specific cancer risks. For example, the prospective cohort studies from the Inter-
national BRCA1/2 Carrier Cohort Study (IBCCS), Breast Cancer Family Registry (BCFR),
and Kathleen Cuningham Foundation Consortium for Research Into Familial Breast Cancer
(kConFab) suggest that both family history and variant location in the gene influence cancer
risk [58–60]. Further research is needed in this regard. The present cohort analysis shows
that familial clustering of breast and ovarian cancer can be accounted for by analyzing
additional risk genes. It is worthwhile to revisit the variants found after a certain period of
time (e.g., 5–10 years) as well as to extend the analysis in unexplained cases to verify the
results with the current state of science, even if only one patient out of 228 benefits from it.
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