Table S1: Overview of the number of pooled recipient guts per microbial sample

Genotype	Microbiome	Parasite	KNOxM	CxP	MxP	CxMxP	Replicate	Id	Guts
KNO	M1	P1	KNO_M1	C_P1	M1_P1	C_M1_P1	1	C_M1_P1_1	4
KNO	M1	P1	KNO_M1	C_P1	M1_P1	C_M1_P1	2	C_M1_P1_2	6
KNO	M1	P1	KNO_M1	C_P1	M1_P1	C_M1_P1	3	C_M1_P1_3	1
KNO	M1	P2	KNO_M1	C_P2	M1_P2	C_M1_P2	1	C_M1_P2_1	4
KNO	M1	P2	KNO_M1	C_P2	M1_P2	C_M1_P2	2	C_M1_P2_2	3
KNO	M1	P2	KNO_M1	C_P2	M1_P2	C_M1_P2	3	C_M1_P2_3	0
KNO	M1	MC	KNO_M1	C_PC	M1_PC	C_M1_PC	1	C_M1_PC_1	6
KNO	M1	MC	KNO_M1	C_PC	M1_PC	C_M1_PC	2	C_M1_PC_2	4
KNO	M1	MC	KNO_M1	C_PC	M1_PC	C_M1_PC	3	C_M1_PC_3	5
KNO	M2	P1	KNO_M2	C_P1	M2_P1	C_M2_P1	1	C_M2_P1_1	3
KNO	M2	P1	KNO_M2	C_P1	M2_P1	C_M2_P1	2	C_M2_P1_2	4
KNO	M2	P1	KNO_M2	C_P1	M2_P1	C_M2_P1	3	C_M2_P1_3	0
KNO	M2	P2	KNO_M2	C_P2	M2_P2	C_M2_P2	1	C_M2_P2_1	2
KNO	M2	P2	KNO_M2	C_P2	M2_P2	C_M2_P2	2	C_M2_P2_2	6
KNO	M2	P2	KNO_M2	C_P2	M2_P2	C_M2_P2	3	C_M2_P2_3	3
KNO	M2	MC	KNO_M2	C_PC	M2_PC	C_M2_PC	1	C_M2_PC_1	6
KNO	M2	MC	KNO_M2	C_PC	M2_PC	C_M2_PC	2	C_M2_PC_2	6
KNO	M2	MC	KNO_M2	C_PC	M2_PC	C_M2_PC	3	C_M2_PC_3	6
KNO	MC	P1	KNO_MC	C_P1	MC_P1	C_MC_P1	1	C_MC_P1_1	3
KNO	MC	P1	KNO_MC	C_P1	MC_P1	C_MC_P1	2	C_MC_P1_2	6
KNO	MC	P1	KNO_MC	C_P1	MC_P1	C_MC_P1	3	C_MC_P1_3	3
KNO	MC	P2	KNO_MC	C_P2	MC_P2	C_MC_P2	1	C_MC_P2_1	4
KNO	MC	P2	KNO_MC	C_P2	MC_P2	C_MC_P2	2	C_MC_P2_2	5
KNO	MC	P2	KNO_MC	C_P2	MC_P2	C_MC_P2	3	C_MC_P2_3	3
KNO	MC	MC	KNO_MC	C_PC	MC_PC	C_MC_PC	1	C_MC_PC_1	5
KNO	MC	MC	KNO_MC	C_PC	MC_PC	C_MC_PC	2	C_MC_PC_2	5
KNO	MC	MC	KNO_MC	C_PC	MC_PC	C_MC_PC	3	C_MC_PC_3	5
OM2	M1	P1	OM2_M1	OM2_P1	M1_P1	OM2_M1_P1	1	OM2_M1_P1_1	4
OM2	M1	P1	OM2_M1	OM2_P1	M1_P1	OM2_M1_P1	2	OM2_M1_P1_2	4

Supplem	Supplementary information											
OM2	M1	P1	OM2_M1	OM2_P1	M1_P1	OM2_M1_P1	3	OM2_M1_P1_3	6			
OM2	M1	P2	OM2_M1	OM2_P2	M1_P2	OM2_M1_P2	1	OM2_M1_P2_1	5			
OM2	M1	P2	OM2_M1	OM2_P2	M1_P2	OM2_M1_P2	2	OM2_M1_P2_2	5			
OM2	M1	P2	OM2_M1	OM2_P2	M1_P2	OM2_M1_P2	3	OM2_M1_P2_3	5			
OM2	M1	MC	OM2_M1	OM2_PC	M1_PC	OM2_M1_PC	1	OM2_M1_PC_1	5			
OM2	M1	MC	OM2_M1	OM2_PC	M1_PC	OM2_M1_PC	2	OM2_M1_PC_2	4			
OM2	M1	MC	OM2_M1	OM2_PC	M1_PC	OM2_M1_PC	3	OM2_M1_PC_3	5			
OM2	M2	P1	OM2_M2	OM2_P1	M2_P1	OM2_M2_P1	1	OM2_M2_P1_1	4			
OM2	M2	P1	OM2_M2	OM2_P1	M2_P1	OM2_M2_P1	2	OM2_M2_P1_2	5			
OM2	M2	P1	OM2_M2	OM2_P1	M2_P1	OM2_M2_P1	3	OM2_M2_P1_3	5			
OM2	M2	P2	OM2_M2	OM2_P2	M2_P2	OM2_M2_P2	1	OM2_M2_P2_1	5			
OM2	M2	P2	OM2_M2	OM2_P2	M2_P2	OM2_M2_P2	2	OM2_M2_P2_2	6			
OM2	M2	P2	OM2_M2	OM2_P2	M2_P2	OM2_M2_P2	3	OM2_M2_P2_3	5			
OM2	M2	MC	OM2_M2	OM2_PC	M2_PC	OM2_M2_PC	1	OM2_M2_PC_1	5			
OM2	M2	MC	OM2_M2	OM2_PC	M2_PC	OM2_M2_PC	2	OM2_M2_PC_2	5			
OM2	M2	MC	OM2_M2	OM2_PC	M2_PC	OM2_M2_PC	3	OM2_M2_PC_3	6			
OM2	MC	P1	OM2_MC	OM2_P1	MC_P1	OM2_MC_P1	1	OM2_MC_P1_1	4			
OM2	MC	P1	OM2_MC	OM2_P1	MC_P1	OM2_MC_P1	2	OM2_MC_P1_2	6			
OM2	MC	P1	OM2_MC	OM2_P1	MC_P1	OM2_MC_P1	3	OM2_MC_P1_3	5			
OM2	MC	P2	OM2_MC	OM2_P2	MC_P2	OM2_MC_P2	1	OM2_MC_P2_1	6			
OM2	MC	P2	OM2_MC	OM2_P2	MC_P2	OM2_MC_P2	2	OM2_MC_P2_2	5			
OM2	MC	P2	OM2_MC	OM2_P2	MC_P2	OM2_MC_P2	3	OM2_MC_P2_3	5			
OM2	MC	MC	OM2_MC	OM2_PC	MC_PC	OM2_MC_PC	1	OM2_MC_PC_1	5			
OM2	MC	MC	OM2_MC	OM2_PC	MC_PC	OM2_MC_PC	2	OM2_MC_PC_2	4			
OM2	MC	MC	OM2_MC	OM2_PC	MC_PC	OM2_MC_PC	3	OM2_MC_PC_3	5			
T8	M1	P1	T8_M1	T8_P1	M1_P1	T8_M1_P1	1	T8_M1_P1_1	4			
T8	M1	P1	T8_M1	T8_P1	M1_P1	T8_M1_P1	2	T8_M1_P1_2	4			
T8	M1	P1	T8_M1	T8_P1	M1_P1	T8_M1_P1	3	T8_M1_P1_3	3			
T8	M1	P2	T8_M1	T8_P2	M1_P2	T8_M1_P2	1	T8_M1_P2_1	5			
T8	M1	P2	T8_M1	T8_P2	M1_P2	T8_M1_P2	2	T8_M1_P2_2	4			
T8	M1	P2	T8_M1	T8_P2	M1_P2	T8_M1_P2	3	T8_M1_P2_3	3			
T8	M1	MC	T8_M1	T8_PC	M1_PC	T8_M1_PC	1	T8_M1_PC_1	6			
T8	M1	MC	T8_M1	T8_PC	M1_PC	T8_M1_PC	2	T8_M1_PC_2	5			

Supplem	Supplementary information											
T8	M1	MC	T8_M1	T8_PC	M1_PC	T8_M1_PC	3	T8_M1_PC_3	3			
T8	M2	P1	T8_M2	T8_P1	M2_P1	T8_M2_P1	1	T8_M2_P1_1	3			
T8	M2	P1	T8_M2	T8_P1	M2_P1	T8_M2_P1	2	T8_M2_P1_2	5			
T8	M2	P1	T8_M2	T8_P1	M2_P1	T8_M2_P1	3	T8_M2_P1_3	5			
T8	M2	P2	T8_M2	T8_P2	M2_P2	T8_M2_P2	1	T8_M2_P2_1	3			
T8	M2	P2	T8_M2	T8_P2	M2_P2	T8_M2_P2	2	T8_M2_P2_2	1			
T8	M2	P2	T8_M2	T8_P2	M2_P2	T8_M2_P2	3	T8_M2_P2_3	6			
T8	M2	MC	T8_M2	T8_PC	M2_PC	T8_M2_PC	1	T8_M2_PC_1	4			
T8	M2	MC	T8_M2	T8_PC	M2_PC	T8_M2_PC	2	T8_M2_PC_2	3			
T8	M2	MC	T8_M2	T8_PC	M2_PC	T8_M2_PC	3	T8_M2_PC_3	5			
T8	MC	P1	T8_MC	T8_P1	MC_P1	T8_MC_P1	1	T8_MC_P1_1	5			
T8	MC	P1	T8_MC	T8_P1	MC_P1	T8_MC_P1	2	T8_MC_P1_2	2			
T8	MC	P1	T8_MC	T8_P1	MC_P1	T8_MC_P1	3	T8_MC_P1_3	4			
T8	MC	P2	T8_MC	T8_P2	MC_P2	T8_MC_P2	1	T8_MC_P2_1	3			
T8	MC	P2	T8_MC	T8_P2	MC_P2	T8_MC_P2	2	T8_MC_P2_2	4			
T8	MC	P2	T8_MC	T8_P2	MC_P2	T8_MC_P2	3	T8_MC_P2_3	4			
T8	MC	MC	T8_MC	T8_PC	MC_PC	T8_MC_PC	1	T8_MC_PC_1	4			
T8	MC	MC	T8_MC	T8_PC	MC_PC	T8_MC_PC	2	T8_MC_PC_2	4			
T8	MC	MC	T8_MC	T8_PC	MC_PC	T8_MC_PC	3	T8_MC_PC_3	5			

Table S2: Overview results for Pearson correlation between the number of guts per sample and OTU richness or Shannon entropy'. Raw and adjusted (adjusted for multiple

comparisons through the control of the false discovery rate (FDR)) p-values are given.

			OTU	richness		Shannon entropy'					
	DF	cor	t	р-	Adjusted	cor	t	p-value	Adjusted		
				value	p-value				p-value		
Genotype	1	0.917	2.294	0.262	0.366	0.992	7.841	0.081	0.330		
Microbiome	1	-0.510	-0.593	0.659	0.769	-0.432	-0.478	0.716	0.716		

Supplementary information												
Parasite	1	0.957	3.295	0.188	0.328	0.889	1.942	0.303	0.424			
CxM	7	0.549	1.737	0.126	0.328	0.494	1.504	0.176	0.411			
CxP	7	0.502	1.537	0.168	0.328	0.590	1.935	0.094	0.330			
MxP	7	0.055	0.146	0.888	0.888	-0.144	-0.384	0.712	0.716			
CxMxP	25	0.268	1.391	0.177	0.328	0.211	1.080	0.290	0.424			
		I				I						

Table S3: Overview forward and reverse primers used for the internal PCR.

Na		index(8	padF(10nt	linkF(
me	p5-adapter	nt))	2nt)	gene-specificprimer	Full_primer_sequence
Forw	ard					
	AATGATACGGCGACCACC	ATCGT	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACATCGTACGTATGGTA
F1	GAGATCTACAC	ACG	AATT	GT	GCGGTAA	ATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	TAGCG	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACTAGCGAGTTATGGT
F2	GAGATCTACAC	AGT	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	CGTGA	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACCGTGAGTGTATGGT
F3	GAGATCTACAC	GTG	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	GATCG	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACGATCGTGTTATGGTA
F4	GAGATCTACAC	TGT	AATT	GT	GCGGTAA	ATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	ACGAC	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACACGACGTGTATGGT
F5	GAGATCTACAC	GTG	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	ATATA	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACATATACACTATGGT
F6	GAGATCTACAC	CACc	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	GCTCT	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACGCTCTAGTTATGGTA
F7	GAGATCTACAC	AGTt	AATT	GT	GCGGTAA	ATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	GACact	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACGACACTGATATGGT
F8	GAGATCTACAC	ga	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	AAGCA	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACAAGCAGCATATGGT
F9	GAGATCTACAC	GCA	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	CGATC	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACCGATCTACTATGGTA
F10	GAGATCTACAC	TAC	AATT	GT	GCGGTAA	ATTGTGTGCCAGCMGCCGCGGTAA

	AATGATACGGCGACCACC	TGCGT	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACTGCGTCACTATGGTA
F11	GAGATCTACAC	CAC	AATT	GT	GCGGTAA	ATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	AGAGT	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACAGAGTCACTATGGT
F12	GAGATCTACAC	CAC	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	ACGCG	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACACGCGTGATATGGT
F13	GAGATCTACAC	TGA	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	GTCTA	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACGTCTAGTGTATGGTA
F14	GAGATCTACAC	GTG	AATT	GT	GCGGTAA	ATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	TCTAC	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACTCTACACTTATGGTA
F15	GAGATCTACAC	ACT	AATT	GT	GCGGTAA	ATTGTGTGCCAGCMGCCGCGGTAA
	AATGATACGGCGACCACC	GGAGA	TATGGT		GTGCCAGCMGCC	AATGATACGGCGACCACCGAGATCTACACGGAGACTATATGGT
F16	GAGATCTACAC	CTA	AATT	GT	GCGGTAA	AATTGTGTGCCAGCMGCCGCGGTAA
Reve	rse					
	CAAGCAGAAGACGGCATA	ACTAT	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATACTATGTCAGTCAGTC
R1	CGAGAT	GTC	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	AGTAG	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATAGTAGCGTAGTCAGTC
R2	CGAGAT	CGT	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	CGTAC	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATCGTACTCAAGTCAGTC
R3	CGAGAT	TCA	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	TAGCA	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATTAGCAGACAGTCAGTC
R4	CGAGAT	GAC	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	TCATA	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATTCATAGACAGTCAGTC
R5	CGAGAT	GAC	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	AGCTG	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATAGCTGCTAAGTCAGTC
R6	CGAGAT	CTA	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	CTCGT	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATCTCGTTACAGTCAGTC
R7	CGAGAT	TAC	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	GCGCA	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATGCGCACGTAGTCAGTC
R8	CGAGAT	CGT	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	CTAGC	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATCTAGCTCGAGTCAGTC
R9	CGAGAT	TCG	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	GTATG	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATGTATGACGAGTCAGTC
R10	CGAGAT	ACG	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT
	CAAGCAGAAGACGGCATA	TACAC	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATTACACAGTAGTCAGTC
R11	CGAGAT	AGT	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT

Supple	ementary information					
	CAAGCAGAAGACGGCATA	TCAGC	AGTCAG		GGACTACNVGGG	CAAGCAGAAGACGGCATACGAGATTCAGCGTTAGTCAGTC
R12	CGAGAT	GTT	TCAG	CC	TWTCTAAT	CGGACTACNVGGGTWTCTAAT

RESULTS

Table S4: Results of post-hoc analyses on body size, survival, OTU richness, Shannon entropy' and microbial community composition for the significant results of the statistical analysis (see Table 1). Raw and adjusted (adjusted for multiple comparisons through the control of the false discovery rate (FDR)) p-values are given for the results on *Daphnia* gut microbial communities.

						OUT richness			Sł	annon entr	opy'	Microbial community				
				Body s	size	Surv	ival								composition	1
			DF		Z-		Z-	р-	Adjusted	Z-	p-	Adjusted		p-	Adjusted	
				p-value	value	p-value	value	value	p-value	value	value	p-value	z-value	value	p-value	R ²
		KNO vs	1					<u><0.001</u>			0.002		3.347	0.003		
	Эс	OM2				0.001	3.31		0.003	3.588		0.007			0.009	0.069
	otyl	KNO vs	1					0.275			0.111		1.992	0.006		
	enc	Τ8				0.634	-0.48		0.275	1.530		0.167			0.009	0.073
	G	OM2 vs	1					0.052		-	0.195		-1.718	0.092		
		Τ8				<u><0.001</u>	-4.54		0.078	2.325		0.195			0.092	0.035
	ЭГ		1		-											
	ion	M1 vs M2		0.031	2.529											
	rob		1		-											
	Mic	M1 vs MC		0.633	0.912											
	Ч	M2 vs MC	1	0.227	1.654											
	ite	P1 vs P2	1			0.567	-0.57									
	ras	P1 vs PC	1			0.007	3.26									
	Ра	P2 vs PC	1			0.001	2.61									
	0	M1 vs M2	1					1.000	1.000	0.459	0.999	1.000	0.708			
e v	Ň		1					1.000		-	1.000					
om o	in F	M1 vs MC							1.000	0.018		1.000	0.375			
otyj obi	'ith		1					1.000		-	1.000					
Jen J	A	M2 vs MC							1.000	0.461		1.000	-0.337			
\odot \geq	thi		1					0.997		-	0.999					
	Wi	M1 vs M2							1.000	0.802		1.000	-0.673			

Mirs MC I </th <th></th> <th>•</th> <th></th> <th>1</th> <th></th> <th></th> <th>0.024</th> <th></th> <th>-3.40</th> <th>0.018</th> <th></th> <th></th>		•		1			0.024		-3.40	0.018		
M2 vs MC M2 vs MC M M2 vs MC M			M1 vs MC					0.142	3		0.164	-3.395
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1			0.142		-	0.070		
NI vs M2 1 0.998 1.000 0.731 0.998 1.000 0.731 0.998 1.000 0.731 0.998 1.000 0.731 0.998 1.000 0.731 0.998 1.000 0.731 0.998 1.000 0.731 0.998 0.000 0.993 0.000 0.993 0.000 0.993 0.000 0.993 0.000 0.993 0.000 0.993 0.000 0.993 0.000 0.993 0.013 0.993 0.993 0.993			M2 vs MC					0.639	2.703		0.315	-2.957
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 T8	M1 vs M2	1			0.998	1.000	0.731	0.998	1.000	0.720
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		thir	M1 vs MC	1			0.764	1.000	1.660	0.773	1.000	1.632
$ \begin{array}{ c c c c c c c c } \hline \begin{tabular}{ c c c c } \hline Wight & KNO vs & 1 \\ 0 & M2 vs & 1 \\ 0 $		Wi	M2 vs MC	1			0.987	1.000	0.985	0.985	1.000	0.995
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			KNO vs	1			0.008			0.013		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		M1	OM2					0.142	3.626		0.164	-3.395
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		in l	KNO vs	1			1.000			0.993		
Note: Note: <th< td=""><td></td><td>Vith</td><td>T8</td><td></td><td></td><td></td><td></td><td>1.000</td><td>0.278</td><td></td><td>1.000</td><td>0.895</td></th<>		Vith	T8					1.000	0.278		1.000	0.895
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	OM2 vs	1			0.018		-	0.065		• • • •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			18	1			0.007	0.142	3.403	0.000	0.315	-2.985
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	KNU vs	1			0.297	1 000	2 262	0.293	1 000	2 254
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		M	VNO vo	1			1 000	1.000	2.303	0.007	1.000	2.334
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		hin	T8	1			1.000	1 000	0 470	0.997	1 000	0 788
NN 0 1 1000 2.235 1.000 -2.014 KNO vs 1 1 1.000 2.235 1.000 -2.014 MU 0M2 1 1.000 0.526 1.000 -2.014 KNO vs 1 1 1.000 0.526 1.000 0.106 KNO vs 1 6.634 0.634 0.634 0.543 1.000 1.974 MU T8 0 0.894 0.13 0.860 0.471 0.471 T8 1 0.001 3.52 1.000 1.481 1.000 2.077 MU P1 vs P2 1 0.894 0.13 1.481 1.000 2.077 MU P1 vs P2 1 0.134 -1.50 1.4 1.4 1.4 1.4 MU P1 vs P2 1 0.134 -1.50 1.4 1.4 1.4 1.4 P1 vs P2 1 0.206 -1.26 1.4 1.4 1.4 <td></td> <td>Wit</td> <td>OM2 vs</td> <td>1</td> <td></td> <td></td> <td>0.375</td> <td>1.000</td> <td>-</td> <td>0.513</td> <td>1.000</td> <td>0.700</td>		Wit	OM2 vs	1			0.375	1.000	-	0.513	1.000	0.700
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			T8	-			0.070	1.000	2.235	0.010	1.000	-2.014
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			KNO vs	1			1.000			1.000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ŋ	OM2					1.000	0.526		1.000	0.106
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		n N	KNO vs	1			0.634			0.543		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ithi	T8					1.000	1.860		1.000	1.974
T8 I 1.000 1.481 1.000 2.077 0 P1 vs P2 1 0.894 0.13 0.13 0.1481 1.000 2.077 0 P1 vs P2 1 0.894 0.13 0.13 0.1481 1.000 2.077 0 P1 vs PC 1 0.894 0.13 0.134 0.13 0.134		Μ	OM2 vs	1			0.860			0.471		
P1 vs P2 1 0.894 0.13 P1 vs PC 1 <0.001			T8					1.000	1.481		1.000	2.077
P1 vs PC 1 <0.001 3.52 P1 vs PC 1 <0.001 3.69 V0 P1 vs P2 1 0.134 -1.50 P1 vs PC 1 0.699 0.39 P2 vs PC 1 0.206 -1.26		NO	P1 vs P2	1	0.894	0.13						
High P2 vs PC 1 <0.001 3.69 Output P1 vs P2 1 0.134 -1.50 P1 vs PC 1 0.699 0.39 P2 vs PC 1 0.206 -1.26	asite	un K	P1 vs PC	1	<u><0.001</u>	3.52						
P1 vs P2 1 0.134 -1.50 P1 vs PC 1 0.699 0.39 P2 vs PC 1 0.206 -1.26	x Par	With	P2 vs PC	1	<u><0.001</u>	3.69						
O P1 vs PC 1 0.699 0.39 H P2 vs PC 1 0.206 -1.26	ype	M2	P1 vs P2	1	0.134	-1.50						
$\stackrel{\text{P2 vs PC}}{\ge} P2 \text{ vs PC} $ 1 0.206 -1.26	Jenot	un O	P1 vs PC	1	0.699	0.39						
	0	With	P2 vs PC	1	0.206	-1.26						

11	po po	P1 vs P2	1	0.907	0.12				
	L nid	P1 vs PC	1	0.232	1.20				
	Wit	P2 vs PC	1	0.217	1.24				
		KNO vs	1						
		OM2		0.013	2.48				
	n P1	KNO vs	1						
	/ithir	Т8		0.504	0.67				
	А	OM2 vs	1						
		Т8		0.023	-2.28				
		KNO vs	1						
	P2	OM2		<u><.0001</u>	4.08				
	hin	KNO vs	1	0.404	0.70				
	Wit	18 OM2 rrs	1	0.484	0.70				
	F	UNIZ VS T8	1	<0.001	-3.96				
		KNO vs	1		0.00				
	Q	OM2		0.255	-1.14				
	μ	KNO vs	1						
	/ith	T8		0.019	-2.35				
	S	OM2 vs	1	0.444					
		18	1	0.116	-1.57	1 000	1 000	0.000	
te	M1	PI vs P2	1			1.000	1.000	0.008	
arasi	thin	P1 vs PC	1			0.898	1.000	1.390	
e x Pa	Wit	P2 vs PC	1			0.970	1.000	1.120	
iome	M 2	P1 vs P2	1			1.000	1.000	-0.587	
icrob	hin M	P1 vs PC	1			0.664	1.000	-1.815	
X	Wit	P2 vs PC	1			0.931	1.000	-1.293	

Supplementary info	ormation						
ĄC	P1 vs P2	1		1.000	1.000	0.192	
hin l	P1 vs PC	1		0.979	1.000	1.057	
Wit	P2 vs PC	1		0.992	1.000	0.913	
1	M1 vs M2	1		0.789	1.000	1.618	
hin I	M1 vs MC	1		1.000	1.000	-0.368	
Wit	M2 vs MC	1		0.635	1.000	-1.856	
2	M1 vs M2	1		0.995	1.000	0.855	
hin H	M1 vs MC	1		1.000	1.000	-0.163	
Wit	M2 vs MC	1		0.951	1.000	-1.214	
Ų	M1 vs M2	1	-	0.794	1.000	-1.609	
hin P	M1 vs MC	1		0.999	1.000	-0.639	
Wit	M2 vs MC	1		0.984	1.000	1.009	

Table S5: Overview of relative abundances of the 40 most common OTUs in Daphnia guts from the microbiome transplant experiment. Abundances were calculated on rarefied

data. Sd: standard deviation.

Class	Order	Family	Genus	OTU	Mean	Sd
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	NA	OTU_1_Burkholderiaceae	29.94%	28.01%
Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Methylobacterium	OTU_2_Methylobacterium_sp.	6.59%	15.64%
Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	OTU_4_Streptococcus_sp.	6.09%	13.60%
Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	OTU_3_Acinetobacter_sp.	5.43%	14.72%
Alphaproteobacteria	Rickettsiales	Rickettsiales_Incertae_Sedis	Candidatus_Hepatincola	OTU_6_Candidatus_Hepatincola_sp.	3.48%	6.23%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Hydrogenophaga	OTU_9_Hydrogenophaga_sp.	2.63%	5.56%
Alphaproteobacteria	Rhizobiales	Rhizobiaceae	Shinella	OTU_5_Shinella_sp.	2.60%	9.35%
Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	OTU_7_Acinetobacter_sp.	2.25%	5.68%

Bacteroidia	Flavobacteriales	Flavobacteriaceae	Flavobacterium	OTU_10_Flavobacterium_sp.	1.97%	6.65%
Actinobacteria	Micrococcales	Microbacteriaceae	Candidatus_Limnoluna	OTU_13_Candidatus_Limnoluna_sp.	1.89%	3.04%
Bacteroidia	NA	NA	NA	OTU_12_Bacteroidia	1.76%	3.55%
Gammaproteobacteria	Betaproteobacteriales	T34	NA	OTU_11_Betaproteobacteriales	1.65%	5.84%
Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Escherichia/Shigella	OTU_15_Escherichia/Shigella_sp.	1.53%	2.67%
Actinobacteria	Micrococcales	Microbacteriaceae	Candidatus_Planktoluna	OTU_19_Candidatus_Planktoluna_sp.	1.28%	2.20%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	NA	OTU_8_Burkholderiaceae	1.26%	1.67%
Bacteroidia	Cytophagales	Cyclobacteriaceae	Algoriphagus	OTU_14_Algoriphagus_sp.	1.14%	2.60%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Polynucleobacter	OTU_22_Polynucleobacter_sp.	1.13%	1.91%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Rhodoferax	OTU_16_Rhodoferax_sp.	1.06%	2.66%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	NA	OTU_18_Burkholderiaceae	0.86%	1.97%
Bacteroidia	Flavobacteriales	Weeksellaceae	Empedobacter	OTU_24_Empedobacter_sp.	0.86%	1.35%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Polynucleobacter	OTU_27_Polynucleobacter_sp.	0.79%	4.82%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	NA	OTU_30_Burkholderiaceae	0.79%	3.00%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Burkholderia-Caballeronia-	OTU_34_Burkholderia-Caballeronia-	0 740/	1.050/
		D 11 11 1	Paraburkholderia	Paraburkholderia_sp.	0.74%	1.87%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	NA	OTU_21_Burkholderiaceae	0.67%	1.42%
Gammaproteobacteria	Betaproteobacteriales	T34	NA	OTU_17_Betaproteobacteriales	0.64%	2.81%
Bacteroidia	Flavobacteriales	Flavobacteriaceae	Flavobacterium	OTU_26_Flavobacterium_sp.	0.62%	2.50%
Gammaproteobacteria	Betaproteobacteriales	T34	NA	OTU_20_Betaproteobacteriales	0.53%	2.37%
Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	OTU_38_Acinetobacter_sp.	0.53%	1.22%
Bacteroidia	Flavobacteriales	Flavobacteriaceae	Flavobacterium	OTU_23_Flavobacterium_sp.	0.46%	3.95%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Polynucleobacter	OTU_39_Polynucleobacter_sp.	0.46%	0.85%
Mollicutes	Mycoplasmatales	Mycoplasmataceae	Candidatus_Bacilloplasma	OTU_50_Candidatus_Bacilloplasma_sp.	0.46%	3.47%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	NA	OTU_45_Burkholderiaceae	0.45%	1.00%
Gammaproteobacteria	Betaproteobacteriales	NA	NA	OTU_54_Betaproteobacteriales	0.41%	2.95%
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	Massilia	OTU_25_Massilia_sp.	0.40%	3.45%
Actinobacteria	Micrococcales	Microbacteriaceae	Aurantimicrobium	OTU_41_Aurantimicrobium_sp.	0.38%	0.51%
Bacilli	Bacillales	Staphylococcaceae	Staphylococcus	OTU_40_ <i>Staphylococcus</i> _sp.	0.36%	1.01%
Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	OTU_29_Acinetobacter_sp.	0.35%	1.09%

Supplementary mominat	1011					
Gammaproteobacteria	Betaproteobacteriales	Burkholderiaceae	NA	OTU_35_Burkholderiaceae	0.33%	0.72%
Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	OTU_28_Acinetobacter_sp.	0.33%	1.02%
Bacilli	Bacillales	Family_XI	Gemella	OTU_47_ <i>Gemella_</i> sp.	0.30%	2.03%

Table S6: Results Deseq analysis on class level and OTU level between main effects.

		Genotype		Microbiome			Parasite		
	KNO VS	KNO VS	OM2 VS	M1 vs	M2 vs	M1 vs		P2 vs	P1 vs
	OM2	T8	T8	M2	MC	MC	P1 vs P2	PC	PC
			Class level						
Gammaproteobacteria	0.001				< 0.001				
Alphaproteobacteria	0.002	0.003	< 0.001		< 0.001	< 0.001			< 0.001
Bacilli				0.012	0.010	0.003	0.034		
Bacteroidia	0.002	0.004			< 0.001	< 0.001			
Actinobacteria				0.025					
			OTU level						
OTU_2_Methylobacterium_sp.	< 0.001		< 0.001	0.003	< 0.001	0.001		0.005	< 0.001
OTU_3_Acinetobacter_sp.	< 0.001	0.014					< 0.001	0.003	
OTU_4_Streptococcus_sp.			0.006	0.013		< 0.001			
OTU_5_Shinella_sp.					0.036	< 0.001			
OTU_6_Candidatus_Hepatincola_sp.		0.018	0.002	0.010		< 0.001			
OTU_7_Acinetobacter_sp.	<0.001	< 0.001		0.026			< 0.001	0.001	
OTU_10_Flavobacterium_sp.	0.048	0.002							
OTU_11_Betaproteobacteriales	< 0.001	< 0.001				0.007			
OTU_12_Bacteroidia	< 0.001	< 0.001							
OTU_13_Candidatus_Limnoluna_sp.		< 0.001	0.002			0.001			
OTU_14_Algoriphagus_sp.	< 0.001	< 0.001							
OTU_15_Escherichia/Shigella_sp.				0.031		0.012			
OTU_16_Rhodoferax_sp.	< 0.001	< 0.001		0.021		0.001		0.027	
OTU_17_Betaproteobacteriales				0.010		< 0.001			
OTU_18_Burkholderiaceae			0.005			0.026			
OTU_19_Candidatus_Planktoluna_sp.	0.006	< 0.001	0.001						
OTU_20_Betaproteobacteriales				0.012		< 0.001			
OTU_22_Polynucleobacter_sp.	< 0.001		< 0.001						

Supplementary information									
OTU_24_Empedobacter_sp.	< 0.001	< 0.001	0.001						
OTU_26_Flavobacterium_sp.			0.015						
OTU_27_Polynucleobacter_sp.		< 0.001	< 0.001			0.009			
OTU_28_Acinetobacter_sp.	< 0.001	< 0.001					< 0.001		< 0.001
OTU_29_Acinetobacter_sp.							< 0.001		0.022
OTU_31_Betaproteobacteriales						< 0.001			
OTU_34_Burkholderia-Caballeronia-		-0.001							
Paraburkholderia_sp.	< 0.001	<0.001							
OTU_35_Burkholderiaceae			0.019						
OTU_37_Pseudorhodobacter_sp.	0.011						< 0.001		< 0.001
OTU_38_Acinetobacter_sp.	< 0.001								
OTU_39_Polynucleobacter_sp.		< 0.001	< 0.001						
OTU_40_Staphylococcus_sp.				< 0.001					
OTU_41_Aurantimicrobium_sp.	< 0.001	< 0.001		0.008		0.010		0.034	
OTU_42_Rhodoferax_sp.	0.005	< 0.001							
OTU_43_Shinella_sp.						0.026	< 0.001	0.045	
OTU_45_Burkholderiaceae	< 0.001	< 0.001	0.018						
OTU_46_Acinetobacter_sp.		0.018							< 0.001
OTU_47_Gemella_sp.				0.009	0.038				
OTU_48_Streptococcus_sp.	0.040								
OTU_50_Candidatus_Bacilloplasma_sp.	0.017			0.002					
OTU_52_Acinetobacter_sp.							< 0.001		< 0.001
OTU_53_Aeromonas_sp.	0.047								
OTU_54_Betaproteobacteriales				0.050	0.024				
OTU_56_Streptococcus_sp.	< 0.001					0.034			
OTU_57_Limnohabitans_sp.		0.003							
OTU_59_Burkholderiaceae		< 0.001	< 0.001						
OTU_60_GKS98_freshwater_group_sp.			0.003						
OTU_61_Cutibacterium_sp.			0.029						
OTU_62_Pedobacter_sp.							< 0.001	0.034	
OTU_63_Pseudomonas_sp.		0.007							
OTU_65_Prevotella_sp.	0.005		0.046				0.022	0.045	
OTU_66_Bradyrhizobium_sp.	< 0.001								
OTU_67_Aurantimicrobium_sp.		0.033		0.010			< 0.001		< 0.001
OTU_69_Prevotella_7_sp.	< 0.001		0.006				0.002	0.007	

Supplementary information								
OTU_70_Sphingomonas_sp.	< 0.001							
OTU_72_Limnohabitans_sp.	0.004		0.018					
OTU_74_Rothia_sp.	0.005					0.009		
OTU_75_Haemophilus_sp.	< 0.001					0.020		< 0.001
OTU_76_Gemmobacter_sp.	0.038					0.004	0.027	
OTU_77_Burkholderiaceae			0.042					
OTU_78_Cutibacterium_sp.					0.023			
OTU_79_Neisseria_sp.	0.038				0.003			
OTU_83_Gemmobacter_sp.	< 0.001					< 0.001		< 0.001
OTU_87_Flavobacterium_sp.	0.015				0.019			
OTU_88_Legionella_sp.					0.029			
OTU_90_Veillonella_sp.	< 0.001		0.007			0.004	0.044	
OTU_91_Streptococcus_sp.				0.036				
OTU_92_Paenibacillus_sp.		0.014						
OTU_100_Shinella_sp.	< 0.001				< 0.001			
OTU_102_Shinella_sp.					< 0.001	0.032		

Table S7. Significant results of the statistical analysis on the effect of genotype, microbiome treatment, parasite community treatment and their interactions on body size, survival and alpha-diversity variables (OTU richness, Shannon entropy'). Obtained P-values were adjusted for multiple comparisons through the control of the false discovery rate (FDR). Significant data (p < 0.05) is indicated in bold. Highly significant data (p < 0.001) are underlined. Raw and adjusted (adjusted for multiple comparisons through the control of the false discovery rate (FDR)) p-values are given for the results on *Daphnia* gut microbial communities.

	DF	Body	Survival	OTU richness		Shannon entropy'		Microbial community composition			
		size									
		p-value	p-value	p-value	Adjusted	p-	p-value	Adjusted	R ²	p-value	Adjusted
					value			p-value			p-value
Genotype	2	0.857	<u><0.001</u>	<u><0.001</u>	<u><0.001</u>		<u><0.001</u>	<u><0.001</u>	0.075	0.002	0.014

Microbiome	2	0.034		0.279	0.348	0.843	0.859	0.030	0.296	0.414
treatment										
Parasite treatment	2	0.334	0.002	0.298	0.348	0.216	0.379	0.029	0.266	0.414
Genotype x	4	0.240		0.0043	0.015	0.001	0.004	0.066	0.146	0.414
Microbiome										
treatment										
Genotype x Parasite	4	0.086	0.003	0.4831	0.483	0.690	0.859	0.048	0.539	0.539
treatment										
Microbiome	4	0.079		0.2080	0.348	0.020	0.047	0.053	0.430	0.502
treatment x Parasite										
treatment										
Genotype x	8	0.478		0.2461	0.348	0.859	0.859	0.122	0.197	0.414
Microbiome										
treatment x Parasite										
treatment										

Figure S1. Effect of the genotype x parasite interaction on OTU richness. Colours indicate the different genotypes. Error bars indicate standard error.

Figure S2: Effect of microbiome (M1 and M2) for donor and recipient samples on OTU richness. Error bars indicate standard error. Colours indicate the different microbiome treatments. OTU richness in the M1 inoculum (mean=38.333, sd=13.051) was, on average, lower compared with the M2 inoculum

Figure S3: PCA of the gut microbial communities of recipients using weighted UniFrac distance for the donors (P1 and P2) and matching recipients (M1 x P1, M2 x P2) using weighted UniFrac distance for donor/recipient type and parasite treatment. Analyses on donor (P1 and P2) and matching recipient (M1 x P1, M2 x P2) bacterial communities, showed a significant difference in structure for P1 (p=0.005; R2=0.147), but not for P2 (p=0.783; R2=0.330). Bray-Curtis ordinations revealed that both P1 and P2, showed complete segregation between donors and recipients (Figure 7b), indicating that the donors and recipients for both the P1 and P2 treatment were differently structured (Figure 7b), however non-significant for P2.