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Abstract: The accuracy of RNA secondary structure prediction decreases with the span of a base
pair, i.e., the number of nucleotides that it encloses. The dynamic programming algorithms for RNA
folding can be easily specialized in order to consider only base pairs with a limited span L, reduc-
ing the memory requirements to O(nL), and further to O(n) by interleaving backtracking. However,
the latter is an approximation that precludes the retrieval of the globally optimal structure. So far,
the ViennaRNA package therefore does not provide a tool for computing optimal, span-restricted
minimum energy structure. Here, we report on an efficient backtracking algorithm that reconstructs
the globally optimal structure from the locally optimal fragments that are produced by the interleaved
backtracking implemented in RNALfold. An implementation is integrated into the ViennaRNA
package. The forward and the backtracking recursions of RNALfold are both easily constrained to
structural components with a sufficiently negative z-scores. This provides a convenient method in
order to identify hyper-stable structural elements. A screen of the C. elegans genome shows that such
features are more abundant in real genomic sequences when compared to a di-nucleotide shuffled
background model.

Keywords: RNA secondary structure prediction; scanning algorithm; hyper-stable RNA elements

1. Introduction

Long-range base pairs are notoriously difficult to predict in RNA structures. The main
reasons are that parts of the folding process in very long RNAs, say beyond a few hun-
dred nucleotides, are likely to be influenced by co-transcriptional folding, and that RNAs
are rarely, if ever, isolated in the cell. Consequently, long-range base pairs often do not
fold as predicted by thermodynamic folding rules alone [1–3]. Performance limitations
are also a consideration for very long sequences, since the effort grows cubicly with the
sequence length n. Several tools have become available, which restrict the span of base
pairs (k, l) to l − k + 1 ≤ L, including RNALfold [4], Rfold [5], and LocalFold [6]. An alter-
native approach penalizes long-range base pairs by reducing their energy contribution [2].
The two ideas were combined in [3]. Here, a sigmoidal function is used in order to in-
terpolate between the full energy parameters and an upper bound on the base pair span.
Restrictions on the base pair span are easily incorporated into the dynamic programming
recursions [4–6]. This has the added benefit of resulting in an asymptotically linear resource
consumption, namely O(L2n) time and O(Ln) memory in terms of the sequence length
n and the maximum base pair span L. The main memory requirement can be reduced to
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O(n + L2) by writing intermediate results to the disk. This makes it possible to scan an
entire genome for local secondary structure elements.

In this contributionm we first close a gap in the implementation of the ViennaRNA
package [7,8]. The RNALfold program provides a tool for computing minimum free energy
structure with limited span in O(n + L2) memory, but it only produces local candidate struc-
tures. Here, we show that these local structures can be assembled efficiently, in O(nL) time, in
order to yield the global minimum energy structure. We then discuss an additional restriction to
unexpectedly stable local secondary structures, and, finally, sketch some application scenarios.

2. Theory
2.1. Backtracking from External Memory

Consider the problem of folding RNA structure with a maximal base pair span L, i.e.,
for every base pair (i, j) holds j− i + 1 ≤ L. In the following, we write Dkl for the optimal
sub-structure on the sequence interval [k, l] subject to the additional condition that the
interval contains a single component, i.e., a substructure that is enclosed by base pair that
itself is not contained inside any other base pair. Furthermore, we write Ckl for the minimal
free energy of a structure that is enclosed by the base pair (k, l). In order to accomodate the
so-called dangling ends appearing in the standard (Turner) energy model [9], we set

Dkl = min{Ckl , Ck+1,l + d5′(k), Ck,l−1 + d3′(l), Ck+1,l−1 + d∗(k, l)} (1)

Here, d5′( . ), d3′( . ), and d∗( . ) denote the 5’- and 3’- dangle parameters, and the dangling
mismatch energy contributions, resp. The recursions that involve Dkl correspond to an
ambiguous decomposition of the secondary structure. Thus they can be used for energy
minimization, but they cannot be translated directly for probabilistic models and partition
function calculations. In the absence of dangling end contributions, we may use Dkl = Ckl .

The basic idea of RNALfold [4] can be summarized, as follows: denote, by fk, the opti-
mal free energy of a secondary structure with maximal base pair span L on the interval
[k, n]. This quantity satisfies the recursion

fk = min

{
fk+1

mink<l≤k+L−1[Dkl + fl+1]
(2)

The first alternative shown in Equation (2) corresponds to k being unpaired (and not
subject to a dangling end contribution). The second alternative corresponds to a structure
beginning with a single component structure of energy Dkl . As noted in [4], a structure
realizing Dkl needs to be considered to be a possible part of the minimum free energy
structure only if fk < fk+1. Otherwise, the extension of a substructure on [k + 1, l′] by an
unpaired base at position k can be chosen instead. The index position l′ is determined by
an evaluation of Equation (2) in the next step of the recursion.

The idea of span-restricted structures is also of interest in the context of maximum
expected accuracy (MEA) methods [10,11]. The expected accuracy of a given secondary
structure Ψ is the sum of its base pairing probabilities p̂ij, (i, j) ∈ Ψ, plus the sum of proba-
bilities p̂k := 1−∑j<k p̂jk −∑j>k p̂kj for the unpaired positions. Instead of treating this as a
maximization problem, we mininimize Sij, the negative of the accuracy. This highlights the
similiarity of the MEA recursions with the thermodynamic folding models. MEA requires
the base pairing probabolites p̂kl as input. Therefore, these are computed with alternate
methods, e.g. the partition function version of RNALfold [4], Rfold [5], or as the average
over sequence windows that enclose the base pair of interest, as in RNAplfold [12] or
LocalFold [6]. MEA models also use the weight p̂k := 1−∑j<k p̂jk −∑j>k p̂kj for base k to
be unpaired, which leads to a slight generalization of Equation (2):

fk = min

Dk + fk+1

min
k<l≤k+L−1

[Dkl + fl+1]
(3)
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Here, an unpaired position k contributes Dk = − p̂k instead of 0, and the contributions of
a single-component structure that is enclosed by the pair (k, l) becomes Dkl = (− p̂kl) +
Sk+1,l−1. The negative expected accuracy Skl follows the Nussinov-like [13] recursion

Skl = min

(− p̂k) + Sk+1,l

min
k<j≤l

[
(− p̂kj) + Sk+1,j−1 + Sj+1,l

] (4)

with Skk := − p̂k and the convention that Sl+1,l = 0 for the empty interval. The condition for
local structure candidates also needs to be modified in order to account for the contribution
of unpaired bases and it becomes

fk < Dk + fk+1 , (5)

in the general case. Note that it is not necessary to store all of the values of the matrix Dkl in
the forward recursion. Instead, we backtrack at position k the optimal structure whenever
fk satisfies the second alternative shown in Equation (3) and only record that structure
and the values of − p̂kl for the base pairs in that structure. Optimal structures contained as
substructures in a larger one are omitted, as in the MFE case.

The same scheme applies to generalization of the MEA structures. In order to obtain
the centroid structure [14], it suffices to consider only the base pairs with p̂kl ≥ 1/2. The γ-
centroid that was proposed in [15] is obtained by p̂k ← 0 and p̂kl ← (γ + 1) p̂kl − 1. Similar
expressions pertain to the estimators discussed in [16].

2.2. Increased Memory Efficiency by Reduced Redundancy

RNALfold reduces the memory requirements of the algorithm by only keeping a small
part of the D (or C) matrices in memory, namely the range [k, k + L− 1] that is necessary
to evaluate Equation (2). Instead of storing the dynamic programming tables to enable
backtracking, RNALfold immediately backtracks a single-component structure Ψklk for k
and then stores it on disk. Here, lk is the end position of the first component of an optimal
structure on [k, n]. Because of the restriction on the span L, we know a priori that this
structure cannot reach beyond the interval [k, k + L], i.e., lk ≤ k + L. More precisely, the end
position lk is the value of l, for which the minimum in Equation (2) is attained. In the
most straighforward version, the triple (k, Ψklk , Dklk ) is written to disk, where triples of the
form (k,′ .′, Dkk) can be omitted in minimum energy directed folding, since Dkk = 0, by
definition, for all exterior bases.

In the simplest case, the substructure Ψklk are stored in dot-parenthesis notation.
Ref. [4] already noted that (together with the sequence information) these are sufficient
for constructing the globally optimal secondary structure. In the case of MEA structures,
Dkl also needs to be stored explicitly. The required disk space is O(nL). It can be reduced
by a considerable constant factor; however, since the energy of a given structure can
be evaluated in linear time. Therefore, it suffices to store structures (k, Ψklk ) that are
maximal in the sense that there is no (k′, Ψk′ lk′

), such that Ψklk is proper substructure of
Ψk′ lk′

. In addition, inthe case of MEA structures, we need the proabilities p̂j and p̂ij for the
unpaired bases and the base pairs in the candidate structure in order to be able to compute
the Dkl value for substructures that have not been explicitly stored.

In the case of MFE structures, the energy of a stored structure can be directly evaluated
from the energy model. In the case of MEA structures; however, the base pairing probabili-
ties, or more generally the derived scores, p̂kl of all pairs (k, l) as well as the scores of the
unpaired p̂k of all unpaired positions must be available in the input. An implementation of
the MEA option is forthcoming.

So far, backtracking of the global MFE or MEA structure in not available in RNALfold.
Here, we close this gap. Backtracking starts from the 5’ end, i.e., from the end of the
file storing the candidate fragments. For a given k, the task is to find lk, such that fk =
Dk,lk + fl+1, unless fk = Dk + fk+1. In the latter case position k is unpaired and the recursion
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continues with k← k + 1. The difficulty in the first case is that there is not necessarily an
entry for k in the output of RNALfold. However, it suffices to consider the set of candidate
structure that contain position k, i.e.,

L(k) := {Ψk′ ,lk′
|k ∈ [k′, lk′ ]} (6)

For each Ψ inL(k), one can determine in linear time the corresponding candidate structures,
as follows: (1) determine the base pair (p, q) in Ψ with the smallest value of p ≥ k. If the base
following q is paired, the only candidate is the restriction Ψ[k, q]. In the case of an model
with dangling ends, both Ψ[k, q] and Ψ[k, q + 1] must be considered. The free energies
ε(Ψ[k, q]) and ε(Ψ[k, q + 1]) for these (explicitly given) sub-structures can be evaluated in
linear time. Then one has to check, for Ψ ∈ L(k) and q′ = q and, in the case of dangling
ends, also q′ = q + 1, where the structure satisfies

fk = ε(Ψ[k, q′]) + fq′+1 . (7)

The evaluation continues at position k← q′ + 1, where q′ is the first alternative for which
equality is found in Equation (7). The backtracking method is also applicable without
change to computations with constrained structures [17], since it only relies on the fact
that a structure fragment is available in the output of the forward recursion that satisfies
Equation (7).

2.3. Performance Analysis and Implementation

A naïve estimate of the CPU requirement that is required for backtracking yields an
upper bound of O(nL2), since |L(k)| contains, at most, O(L) entries of size at most O(|L|),
each of which certainly can be evaluated in linear time. However, it is not necessary to
construct the list L(k) “from scratch” in each step. Instead, for each position k, at most
one additional entry Ψk,lk is added to the list, and every other entry can be “edited” after
it has been processed for position k− 1 by removing from the 5′ end a leading unpaired
position or the base pair (k− 1, lk−1), respectively, as well as any structures trailing (k, lk+1).
Assuming that the dot-parenthesis structure has been converted into an ordered list of
base pairs, the effort to adjust a list entry requires only constant time to obtain Ψ[k, lk] from
Ψ[k− 1, lk−1]. Thus, the evaluation of the energies or MEA scores requires only constant
effort for each position that is removed. Because the total size of the stored structures is
bounded by O(nL), the total effort for backtracking is also bounded by O(nL).

The backtracking algorithm is integrated into the ViennaRNA package and it si
available for RNALfold with the command line option -b/--backtrack-global. Empiri-
cal tests, see Figure 1, show that the implementation conforms to the theoretical O(nL)
performance bound.

2.4. New Options in RNALfold

In order to better support genome-wide screens for structured RNA elements, we
added options to filter structural components, which is, maximal substructures that are
enclosed by a base pair. This is motivated, in particular, by the observation that the
secondary structures of many structured small ncRNAs are more stable than expected from
their sequence composition [18–20]. This effect is particularly pronounced for miRNAs [21].
This relative stabilization for a candidate sequence x is conveniently quantified as a z-score,
z(x) := ( f (x) − f̄ )/σf , where f (x) is the folding energy of x, and f̄ and σf denote the
mean and standard deviation of the folding energies of an ensemble of sequences with the
same sequence composition. Computing z(x) can be viewed as a regression problem in
terms of parameters that specify the composition of x [22]. Here, we use the SVM model of
RNAz 2.0 [23], which explicitly depends on dinucleotide frequencies.
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Figure 1. CPU requirements for backtracking the MFE structure in RNALfold. The performance of the implementation
ViennaRNA conforms to a linear dependence of backtracking time per nucleotide with base pair span L, i.e., tCPU ∼ ∑ nL.
Shown is the computational overhead for different window sizes L that were obtained from averaging over 100 random
sequences of length (A) 10, 000 nt and (B) 100, 000 nt. Error bars denote the standard deviation within the sets of 100 runs,
and a linear fit is depicted by a dashed black line.

The regression approach, in contrast to shuffling, allows for a very fast (and determin-
istic) computation of the z-score zC

kl of the sub-structure that is enclosed by the base pair
(k, l). This can be used in two ways to restrict the predicted structure to components with
zC

kl below a user-defined threshold z∗: (1) one can already restrict the forward recursion
Equation (2) to base pairs enclosing components with a sufficiently negative z-score (pre-
filter), and (2) one can suppress components with an insufficient z-score in the backtracking
step (post-filter). The two methods are not equivalent. For example, in case (2), it is possible
that larger component structure with better MFE but below-threshold z-score is computed
at the expense of a smaller structure with better z-score.

Both of the methods have been implemented in RNALfold. The restriction of the
forward recursion is accessed with the new option RNALfold --zscore-pre-filter. Backtrack-
ing is then unaffected by the restriction to components that surpass the z-score threshold.
As an alternative, filtered backtracking of the unmodified RNALfold output (post-filter)
is performed in default mode, i.e., whenever this option is omitted. For combinations of
z-score filtering and backtracking of global MFE structures, as described in Section 2.1;
however, RNALfold automatically activates the newly implemented restriction of the for-
ward recursion. This is due to the fact that all of the structural alternatives that constitute
the global solution are required for successful backtracking. Furthermore, RNALfold de-
faults to omit locally optimal structures if they are constituents of another, larger structure
with less free energy. This might be undesirable for predictions with z-score filtering, as the
substructure may exhibit a lower z-score than the larger, enclosing structure. The novel
option RNALfold --zscore-report-subsumed can be used in order to alleviate this effect.

3. Application: Scanning Genomes for “Hyper-stable” RNA Structures

Some of the early surveys for ncRNAs used GC content and folding energy as in-
dicators of structured RNAs. This approach was successful in particular in A/T-rich
genomes of hyperthermophiles, such as Methanococcus jannaschii or Pyrococcus furiosus [24].
The extended version of RNALfold now makes it particularly easy to scan genomes for
unexpectedly stable local structure.

As a show-case application, we screened the genomes of nematode Caenorhabditis elegans
(Assembly WBcel235, Genome Assembly ID GCA_000002985.3) for highly stable component
structures. For a given cut-off value −z∗, we recorded all of the components with a z-score
z ≤ −z∗ and compared the results to the ncRNA annotation available at Ensembl Release-
101. In terms of the annotated elements, we found that there are only marginal differences
between the two alternative strategies for z ≤ −2, see Figure 2. As expected, recall decreases
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in a class-specific manner as the z-scores become more negative. In particular, microRNAs
persist longer than other classes of ncRNAs.

100

102

104

106

2 4 6 8 10 12 14 16 18 20 22 24 26 28

-z

# 
L

oc
al

ly
 S

ta
bl

e 
St

ru
ct

ur
es

C.elegans ncRNAs pseudo-genome

A z ≤ -2 z ≤ -4 z ≤ -5

tR
N

A
rR

N
A

m
iR

N
A

sn
R

N
A

sn
oR

N
A

o
th

er

tR
N

A
rR

N
A

m
iR

N
A

sn
R

N
A

sn
oR

N
A

o
th

er

tR
N

A
rR

N
A

m
iR

N
A

sn
R

N
A

sn
oR

N
A

o
th

er

0

20

40

60

80

100

C
ov

er
ag

e 
of

 n
cR

N
A

s 
[%

]

z-score (pre-filter) z-score (post-filter)

B

Figure 2. Predictions on the C. elegans genome. (A) Cumulative z-score distribution of predicted blocks with pre-filtering
and default z-score threshold of z ≤ −2.0 and window length L = 150. Shown are all predicted blocks for the entire
C.elegans genome (black line) and those that sufficiently overlap with annotated ncRNAs (yellow line). The pseudo-genome
(lightblue line) denotes blocks that were predicted on a di-nucleotide shuffled C. elegans genome. (B) Comparison of
prediction coverage (L = 150) of the two z-score filter methods. Shown is the percentage of annotated ncRNAs that are
sufficiently overlapped by the predicted locally stable structures at different z-score filter thresholds.

A comparison of the real data with a pseudo-genome that are generated by dinucleotide-
shuffling [25] shows that the number of local structures that are more stable than a given
z-score threshold z∗ decreases exponentially with −z∗, as in Figure 2A. The real data only
follow the same distribution for small −z∗, but they show a tail with a smaller slope for
large values of −z. This indicates that the genome is enriched in “hyperstable” RNA
structures. A comparison of the distribution with annotated ncRNAs (including long
non-coding RNAs, which are not expected to be particularly heavily structured over their
whole length) suggests that this tail, indeed, corresponds to structured RNAs. The data
also indicate that the vast majority of the approximately 57,000 “hyper-stable” elements
with z-scores below −8 have remained unannotated. Approximately 41,000 (>70%) of
those elements are predicted within low-complexity and repeat regions, as detected by
RepeatMasker, while only 222 partially overlap with annotated coding sequences. For the
former, we find that a large number of the predicted hyper-stable elements overlap with
repeat classes/families that are annotated as DNA transposon (11,561), Simple Repeats
(7977), and Satellite (7832). Long terminal repeats (LTR) are overlapped by 417 hyper-stable
elements, while general low complexity regions, LINEs, and SINEs are overlapped by 153,
55, and 14, respectively. Low complexity repeats have previously been described to form
highly stable structures and they have been studied, in particular, in the context of triplet
repeat expansion diseases [26].

We further compared our predictions for the A/T-rich genomes of hyperthermophiles
against the 32 candidate ncRNAs of length 49–238 nt listed in Klein et al. [24]. Here,
we find that using default settings (L = 150, −z∗ = −2.0), both approaches, pre- and
post-filter, predict locally stable elements that overlap with at least 10% for virtually
all of the candidate ncRNAs. The only exception is Mj8, which is not detected by the
post-filter method. When requiring 50% overlap, the pre- and post-filter approach de-
tects 21 and 22 out of a total of 22 candidate ncRNAs for Pyrococcus furiosus, respectively.
For Methanococcus jannaschii, pre- and post-filter yields nine and eight of a total of 10 can-
didate ncRNA loci. With 12 and 10 out of 22 candidate ncRNA loci in P. furiosus for pre-
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and post-filter, respectively, approximately one half is fully overlapped (100%) by our
predictions. This is similar to the predictions for M. jannaschii, where we find seven and
four out of 10 candidate ncRNA loci, respectively. When we increase the window length
to L = 250 to accomodate the lengths of the queries, all 10 candidate ncRNAs in M. jan-
naschii, and the majority (20 for pre-filter, 18 for post-filter) of the 22 candidate ncRNAs in
P. furiosus are detected with an overlap of 100%. For the elements that fully overlap with
the candidates, the majority of z-scores is larger than −3.0, where the lowest z-score found
is about −4.8. Still, among our pre-filtered predictions are a further 927 (P. furiosus) and
3007 (M. jannaschii) locally stable structures with z < −4.8, which account for 2.5% and
4.5% of the genomic DNA, respectively. A closer investigation reveals that approximately
29% (P. furiosus) and 22% (M. jannaschii) of these predicted elements overlap, at least in
part, with other annotated ncRNAs, including rRNAs amd tRNAs. On the other hand,
about 35% and 27% partially overlap with protein coding regions in the two genomes,
respectively. This leaves 338 elements at 136 distinct non-coding loci in P. furiosus and
1609 elements at 287 loci in M. jannaschii as novel ncRNA candidates.

4. Conclusions

In this contribution, we have described an algorithm to reconstitute the MFE RNA sec-
ondary structure with limited base pair span from locally optimal structures. The method is
applicable to effectively arbitrarily long RNA sequences and it closes the gap in the current
toolkit that is provided by the ViennaRNA package. Arguably, the exact computation of
such span-restricted MFE is of limited interest, since most RNA molecules of practical
interest do not exceed the length range tractable without span restrictions. Furthermore,
RNALfold and RNAplfold are primarily intended to scan entire genomic regions and
provide local information, i.e., tasks for which local predictions that were provided by
RNALfold could be used. However, the overlapping nature of these predictions is inconve-
nient, in particular, in the context of annotation, where one would like a partition of the
input sequence into disjoint local structures. In order to become interpretable, the output
of RNALfold therefore requires some form of postprocessing to reconcile overlapping local
structures. The span-restricted MFE structure by construction consists of a partioning into
pairwise disjoint components, i.e., base pair enclosed domains. Because the backtracking
procedure that is described here has a running time of O(nL), it is asymptotically optimal
in the sense that postprocessing tools cannot be much faster, since the total amount of
output of the forward recursion is also of size O(nL).

The new backtracking functionality makes it easy to scan genome-scale data set for
unusually stable structure. First and foremost, this provides a potentially useful pre-
filter for other, more computationally demanding methods that search for specific types
of non-coding RNAs, in particular microRNAs. However, Figure 2 also indicated that
there is a large number of “hyper-stable” secondary structure elements that deserve more
attention in their own right. The bulk of the hyperstable structures in C. elegans falls into
repetitive elements. Earlier studies of structured ncRNAs explicitly excluded repetitive
DNA. Our results suggest that these deserve more detailed attention in future research.
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