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Abstract: Post Translational Modification (PTM) is defined as the alteration of protein sequence upon
interaction with different macromolecules after the translation process. Glutarylation is considered
one of the most important PTMs, which is associated with a wide range of cellular functioning,
including metabolism, translation, and specified separate subcellular localizations. During the past
few years, a wide range of computational approaches has been proposed to predict Glutarylation
sites. However, despite all the efforts that have been made so far, the prediction performance of the
Glutarylation sites has remained limited. One of the main challenges to tackle this problem is to
extract features with significant discriminatory information. To address this issue, we propose a new
machine learning method called BiPepGlut using the concept of a bi-peptide-based evolutionary
method for feature extraction. To build this model, we also use the Extra-Trees (ET) classifier for
the classification purpose, which, to the best of our knowledge, has never been used for this task.
Our results demonstrate BiPepGlut is able to significantly outperform previously proposed models to
tackle this problem. BiPepGlut achieves 92.0%, 84.8%, 95.6%, 0.82, and 0.88 in accuracy, sensitivity,
specificity, Matthew’s Correlation Coefficient, and F1-score, respectively. BiPepGlut is implemented
as a publicly available online predictor.

Keywords: post-translational modification; lysine Glutarylation; machine learning; extra-trees
classifier; bi-peptide evolutionary features
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1. Introduction

Post-translational modifications (PTMs) of proteins are associated with various biological processes.
They also play a vital role in the diversification of protein functioning in different biological and
physiological interactions [1,2]. PTMs are associated with different functions such as systematizing
biological activities and regulating localization, and proteins interacting with other cellular molecules.
PTMs are also key components of biological processes for the transmission of the genetic code and
the control of cellular physiology. In 2016, Trost et al. [3] described the DAPPLE2 tool to predict
20 different types of PTMs from 15 online databases. DAPPLE?2 is able to make the prediction task
faster than its previous version, DAPPLE [4]. Later on, Li et al. [5] developed a new R package,
named PTMscape, that predicts PTM sites based on diverse sets of physicochemical-modified properties.
More recently, Chen et al. [6] introduced MUscADEL tools for the PTMs prediction using deep learning.
So far, more than 600 types of PTMs have been identified. Some of the most widely observed PTMs
are Acetylation [7], Propionylation [8], Sumoylation [9], Succinylation [10,11], Malonylation [12],
and Methylation [13,14] among the main 20 contributing amino acids to build proteins [15].

Lysine Glutarylation is among the recently identified PTMs. Glutarylation occurs when an
amino acid along the protein sequence interacts with a glutaryl group. Glutarylated proteins have
been identified for many metabolic procedures and mitochondrial functions in both eukaryotic and
prokaryotic cells [16]. Among the most important ones, Glutarylation dysregulation has been related
in the etiology of metabolic disorders such as cancer [17], mycobacterium tuberculosis [18], diabetes,
and brain and liver disorders [19]. Therefore, due to the tangled characteristic and limited knowledge of
Glutarylation sites, further analysis for a better understanding of the nature of Glutarylation is required.

During the past few years, a wide range of methods has been proposed to predict Glutarylation
sites using many machine learning approaches [20-25]. Recently, many deep learning models have
been used to predict different types of PTMs [6,26-29]. In one of the earliest studies, Tan et al. detected
23 Glutarylation sites in 13 unique proteins from HelLa cells [16]. They also examined 683 lysine
Glutarylation sites in 191 individual proteins. After that, Xie et al. also identifies 41 Glutarylation sites
in 24 Glutarylated proteins. They extracted features based on the composition of amino acids and
amino acid interactions and used Support Vector Machine (SVM) as their classifier [18].

In a different study, Lopez et al. proposed structural features and evolutionary information
of amino acids to predict the succinylation sites, which is closely related to Glutarylation sites
prediction [20,21]. Recently, Zhe et al. [22] developed a predictor tool named GlutPred. To predict
the Glutarylation sites, they extracted different kinds of features and applied a maximum relevance
minimum redundancy feature selection method. They also used a biased SVM classifier to build
GlutPred. At the same time, Yan et al. [23] proposed another predictor, called iGlu-Lys, to tackle this
problem. They used a wide range of features and selected the optimal features using special-position
information and amino acid pair order. They also used SVM as their preferred classifier. More
recently, Huang et al. [24] proposed a new model called MDDGlutar. To build this model, they used
sequence-based features such as Amino Acid Composition (AAC), Amino Acid Pair Composition
(AAPC), and Composition of k-spaced Amino Acid Pairs (CKSAAP). They also employed the SVM
classifier to identify the Glutarylation sites. Most recently, Hussam et al. [25] developed another tool,
named RF-GlutarySite, that uses sequence-based and physicochemical-based features and employs
Random Forest (RF) as a classifier.

Despite all the efforts that have been made so far, the overall performance of the lysine Glutarylation
site prediction task remained limited. The main challenge to enhance lysine Glutarylation site prediction
performance is the use of features that provide significant discriminatory information. In this paper,
we propose a new model called BiPepGlut that uses a bi-peptide-based evolutionary feature extraction
concept to enhance lysine Glutarylation prediction performance. We investigate the impact of several
classifiers and choose the one with the best performance to build our model. Among them, Extra-Trees
(ET) classifier outperforms other classifiers, which is used to build BiPepGlut.
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The entire methodology is described in detail in the following sections. An overview of the
general architecture of BiPepGlut is given in Figure 1. Our results demonstrate that BiPepGlut is
able to significantly enhance lysine Glutarylation prediction accuracy compared to those methods
found in the literature. BiPepGlut achieves 92.0%, 84.8%, 95.6%, 0.82, and 0.88 in accuracy, sensitivity,
specificity, Matthew’s Correlation Coefficient (MCC), and Fl-score on the employed independent
test, respectively. Such results demonstrate more than 3% improvement for sensitivity, and over 0.3
improvements for MCC compared to those reported in the previous studies. BiPepGlut is implemented
as an online predictor and is publicly available at: www.brl.uiu.ac.bd/bioglutarylation/. The data, code,
and all the Supplementary Materials used to build the BiPepGlut method are publicly available at:
https://github.com/Wakiloo7/BipepGlut.
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Figure 1. This flow chart demonstrates the general architecture of BiPepGlut. The positive and negative
sites were yielded from a public database. Features were then extracted using the bi-peptide-based
evolutionary feature extraction technique and then the useful features are selected. After that,
the Extra Tree (ET) classifier was trained using our extracted features and then evaluated using 10-fold
cross-validation and an independent test set.

2. Materials and Methods

In this section, we present our employed benchmark, how it is prepared for further experimentation,
our employed classifiers, proposed feature extraction, and measurement methods.

2.1. Dataset

In this study, we collected a Glutarylation dataset from Protein Lysine Modifications Database
(PLMD) [30]. The PLMD repository contains datasets for different PTM sites. All the PTMs recorded in
this repository are those that are interacted with the lysine amino acid along the protein sequence. It is
mainly because lysine has a high tendency to engage in PTM interaction compared to other amino
acids. This dataset contains 211 proteins, which have 715 lysine Glutarylation sites belonging to Mus
musculus (mouse) and Mycobacterium tuberculosis species. Among them, 674 sites in 187 proteins and
41 sites in 24 proteins belong to Mus musculus and Mycobacterium tuberculosis, respectively. We then cut
the protein sequences into peptides by considering window size as 21. This window size has been
widely used in the literature and shown to be the best among other window sizes [9,23,25].
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For better representation, we use an alphabet notation, where the upstream and downstream
lengths are denoted as & = 10, and the entire window size is 2& + 1 (2 X 10 + 1 = 21). The responsible
residue for the Glutarylation site is one letter notation of K (amino acid lysine). Alongside this,
a dummy residue (X) has been added on both sides of the proteins when the lysine is in the N-terminus
or C-terminus of the proteins and does not have 10 neighboring amino acids in both sides to ensure the
uniform length upstream and downstream. This process is shown in Figure 2.
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Figure 2. Illustration of lysine residues with its surrounding upstream and downstream amino acids.
(a) Lysine residues with sufficient neighboring amino acids. (b) A scenario of adding dummy residues
in N-terminus and C-terminus to have insufficient amino acids neighbors on either the upstream or
downstream segment.

As a result, we have a total of 723 Glutarylation sites (positive) and 4626 Non-Glutarylation
(negative) sites. Later on, we applied CD-HIT [31] over the negative sequences to remove sequences
with high sequential similarity. In this case, we use 40% similarity cut-off as it is widely used in
the literature [23-25]. Due to the limited availability of positive samples compared to the negative
samples, the peptides with positive sites remain untouched. To provide more insight into our employed
benchmark, we produce ranking of homology in the positive and negative hits separately using CD-HIT,
which is now available at: https://github.com/Wakiloo7/BiPepGlut/tree/master/CD-HIT. In this way,
we can avoid underfitting our model in predicting positive sites. However, we use both 10-fold
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cross-validation and an independent test set to investigate the generality of our model and to avoid
bias in our model. As a result of using CD-HIT, the 1923 Non-Glutarylation sequence remains from the
original 4626 negative sites. We cross-checked positive sequences in the negative sites to make sure
about the validity of our employed benchmark. From the remaining samples, we randomly separate
90% of the samples to build the training set while the remaining 10% to build the independent test set.

2.2. Feature Extraction

Feature extraction is an important step in building an effective and accurate machine learning
model. In general, feature extraction is the method of selecting, handling, and managing a set of F
features from a given dataset. For our case, the employed data set contains protein sequences. A wide
range of feature extraction techniques has been proposed in the literature to extract discriminatory
information to represent protein sequences [20,21,32,33]. Most of the extracted features for Glutarylation
site predictions are based on the physicochemical or alphabetic sequential properties of the proteins.
However, the other sources for feature extraction such as evolutionary-based features have not been
adequately explored for the Glutarylation site prediction task [34-36]. In this scenario, we focus on
extracting evolutionary-based features using the bi-peptide method to tackle this problem.

2.3. Bi-Peptide-Based Evolutionary Feature Extraction Technique

Peptide is a molecule consisting of two or more amino acids. Peptides are usually shorter than
proteins. Our proposed concept includes bi-peptide-based evolutionary feature extraction techniques
to predict the Glutarylation sites. This technique has been effectively used for similar studies [33-40].
We extract the features straight from the Position Specific Scoring Matrix (PSSM) as one of the most
important resources to extract evolutionary information. PSSM matrix is produced as the output of the
Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST) [41]. PSI-BLAST aligns a
given peptide sequence with a protein database to identify similar sequences and produces PSSMs.
These PSSMs specify the substitution score of a given amino acid of a protein sequence compared with
other protein sequences. Such a substitution score determines the possibility of a given amino acid is
substituted to other amino acids due to evolutionary changes. In this case, we execute PSI-BLAST
using three iterations and a cut-off e-value (E) 0.001 to generate the PSSM matrix.

In this study, Glutarylated (positive) and Non-Glutarylated (negative) sites and their neighboring
amino acids (10 upstream and 10 downstream of amino acids) were allied to extract the features.
In this scenario, these neighboring amino acids are presented with the P¢(K) segment of sequences.
For example, a peptide sample can be presented as:

PE(K) =R_; R—(E,—l) ...RH)R1ORRy... R.,.(g'_]) Rig 1

The central amino acid expresses as lysine (K) is indexed as &. The downstream is indicated as R..¢
and the upstream is denoted as R_;. A substring of the protein sample is (2£ + 1), which is the entire
length of the peptide sequence. Two categories are shown in this case where each peptide samples fall

under them.
P:{ (K), if the responsible residue is a Glutarylation site

Pe(K) E{ Pé (K), otherwise @

In this scenario, the negative Glutarylated set is denoted as Pz~ (K), and the positive Glutarylated
set is denoted as P;*(K). As a result, we can introduce our benchmark dataset as:

Se(K)=S¢"(K)USe™(K) ®)

where the Glutarylated set P;:*(K) is presented in terms of S:*(K) and carries the Non-Glutarylated
set P~ (K), which is presented in terms of S:"(K) while U describes the union operator. The following
techniques are carried to produce the feature vector from our dataset.
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(i) The peptide sequence can be presented by P that is constituted as:

P=R;RyR3Ry... R @)

From the study of Schaffer et al. [41], P can be demonstrated by an L X 20 dimensional matrix,
which is shown as:

Ei1 Ers1 ... Ep
Eio Exsp ... Eps

: : @)
E1o20 E2s20 ..o Ep—2o

Here, L refers to the length of P, and E;_, j refers to 20 different amino acids that get propensity of
the amino acid residue spread.

(ii) From Equation (5), we generate the transpose matrix as:

Eis1 Exs1 oo Ern
Eio Exsp ... Eps
) . ) ©)
E1o20 Ezs20 ..o Ep—2o
with, .
Ei/—>] - E] . ,
Einj= ——"i=1,23..,Lj=12..20 @)
sp())
where,
Ej = ZZz—:iﬂ-]‘:1,2,...,20 8)

The standard deviation is calculated and denoted where E denotes the mean of Ei_) i fori=1,2,
..., 20 by the following equation.

. L
sp(F;) = J Y [EL-E] /L ©)

i=1

(iii) The newly created matrix MM is evaluated by the matrix M as well as the transpose of a matrix,
which, in turn, is a 20 x 20 matrix (20XL x Lx20 = 20 x 20 matrix) of 400 elements. The transpose
matrix MT multiplies with the main M matrix. The resulting matrix is symmetric. Therefore,
the upper or lower triangular plus the main diagonal will have all the information that is extracted
in this matrix. The triangular matrix inhibits 210 features where the first 20 comes from the
diagonal and the rest 190 ((400 — 20)/2) features are from either lower or upper triangle matrices
(190 + 20 = 210 total), as shown below.

(1)
2 ©
4 (6 (6 (10)

(151) (152) (1§3) ... (210)
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The new matrix was then converted to a vector consisting of 210 elements, which can be represented
as follows.
Poo = [@f, et ..., et .. ek, (11)

2.4. Handling Imbalanced Dataset

As explained in the Dataset Subsection, the number of Glutarylation sites (positive) is lesser than
the number of Non-Glutarylation sites (negative). There are significantly more negative samples in our
benchmark when compared to positive samples. Such an imbalance may lead the predictor to be biased
toward the negative samples. To avoid such a bias, it is necessary to balance the employed dataset.
To deal with this issue, various balancing schemes have been introduced in the literature [42—-44].

To address this issue, we up-sample positive sites (Glutarylation) instead of down-sampling
the negative sites (Non-Glutarylation). Down-sampling may reduce the important usable samples.
In this study, we use an oversampling approach by creating well-characterized synthetic data [45—-47].
To ensure the little variation based on the property of the dataset, we pick the maximum value of the
entire feature vectors. We then multiply the positive sites to 1.0001 and 1.0005, where the new value is
much closer to the original value as done in References [13,38]. Initially, we have 723 positive sites.
Multiplying 723 positive sites with 1.0001 and 1.0005 (723 + (723 x 1.0001) + (723 x 1.0005) = 2169),
the new values are much closer to the original values. We generate our newly created value in this
approach. Therefore, the number of positive sites increases to 2169, while the number of negative sites
is 1923, where the ratio between positive and negative is almost ~1. The overall balancing process is
only applied to training data while the test data remain untouched. This is how we make sure to avoid
over-fitting. Hence, the balancing strategy also contributes to diminishing bias.

2.5. Classification Techniques

Choosing the most useful classification technique is an essential step in building a machine learning
method. In this study, we have applied different kinds of classification methods. These classifiers are
also widely used in the literature and demonstrated promising results for similar studies [13,39,48-50].
In this case, we study several ensemble learning methods such as Extreme Gradient Boosting
(XGBoost) [48], Extra Tree (ET) Classifier [49], and Random Forest (RF) [25]. We also investigate several
meta-classifiers such as Adaptive Boosting (AdaBoost) [39] and a tree-based learning algorithm Light
Gradient Boosting Machine (LightGBM) [13]. We also study several of the most popular classifiers such
as the Multi-layer Perceptron (MLP) classifier, which is a popular Artificial Neural Network (ANN)
model [50].

In this study, the implementation of these classifiers is from the Scikit-learn version 0.19.2.
To implement these algorithms through the classification model, we have used the following
hyperparameters. Among them, some are default parameters and the rest of the parameters are tuned
as required. In XGBoost, we tuned n_estimators = 300. For ET classifiers, we used n_estimator = 10,
min_sample_split = 2. For RF classifiers, max_depth = 2, random_state = 42, and n_estimators = 300.
For AdaBoost, we use n_estimators = 300 while, for LightGBM, num_leaves = 31, learning_rate = 40,
and n_estimators = 40. Lastly, for MLP, we use one hidden layer and 100 nodes, an activation function
as Relu, « = 1, max_iter = 1000, and learning_rate_int = 0.001. During the hyperparameters tuning,
among all the classifiers, we identify that the ET classifier attains the best results compared to other
classifiers. Extra Trees (ET) classifier uses an ensemble learning method, which is a type of meta
estimator that fits many decision trees similar to the RF classifier. In ET, selected features have been
chosen randomly by splitting. In many cases, ET improves predictive accuracy and diminishes the
chances of over-fitting [49,51].

2.6. Performance Measurements

In this case, we use both 10-fold cross-validation, and an independent test set to study the
performance and generality of our proposed model. We also use accuracy, sensitivity, specificity,
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MCC, and Fl-score as our performance measurements, which are used in previous studies [52,53].
Using these measurements, we will be able to directly compare our results with those reported in the
earlier studies. These measurements are formulated as follows.

GST +GS7
Accuracy (ACC) = |1- el ke 100 (12)
GS*
Sensitivity (SN) = (1 - @) % 100 (13)
o GS
Specificity (SP) = (1 - @) % 100 (14)
Gt G}
(? + GSt)
MCC = 1- (15)
G- GZ Gr-Gj
Yl S )
PR XRE
F1—score = 2% & (16)
(PR + RE)

where GS* denotes positive (Glutarylation) sites that are correctly classified, GS™ denotes negative
(Non-Glutarylation) sites that are classified correctly, GS* indicates Non-Glutarylated peptides that
are wrongly classified as Glutarylated, and GS_, shows the Glutarylated peptides that are incorrectly
predicted as Non-Glutarylated. Precision (PR) and Recall (RE) are also examined for the performance
analysis along with the Fl-score.

3. Results and Discussion

In this section, we will first present how we choose our employed classifier among a wide range
of classifiers that we studied in this case. We then compare our results with the state-of-the-art models
found in the literature and demonstrate the effectiveness of BiPepGlut. We then analyze our results.

3.1. Building Our Model by Choosing the Most Effective Classifier

In this case, we investigate and compare the performance of six machine learning algorithms:
LightGBM [13], RF [25], AdaBoost [39], XGBoost [48], ET classifier [49], and MLP classifiers [50].
The results achieved for this comparison for the 10-fold cross-validation and independent test set are
shown in Tables 1 and 2, respectively, where ACC is accuracy, SN is sensitivity, and SP is specificity.
Asshown in these tables, among these classifiers, Light GBM and ET obtain the best results. Among these
two, ET achieves relatively better results.

Table 1. Name of measuring matrices used for comparing performances based on a
10-fold cross-validation.

Model ACC (%) SN (%) SP (%) Mcc F1-Score
RF 80.2% 63.4% 96.9% 0.64 0.76
XGBoost 79.7% 67.8% 91.5% 0.61 0.76
LightGBM 82.9% 74.2% 91.5% 0.67 0.81
AdaBoost 79.2% 74.7% 83.8% 0.59 0.78
ET classifier 81.5% 70.0% 92.9% 0.64 0.79

MLP 78.7% 75.4% 82.0% 0.58 0.78
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Table 2. Name of measuring matrices used for comparing performances based on the
independent-test set.

Classifier Model ACC (%) SN (%) SP (%) MccC F1-Score
RF 79.6% 41.3% 98.9% 0.54 0.58
XGBoost 80.3% 45.7% 97.8% 0.55 0.61
LightGBM 91.2% 78.3% 97.8% 0.80 0.86
AdaBoost 85.4% 76.1% 90.1% 0.67 0.78
ET Classifier 92.0% 84.8% 95.6% 0.82 0.88
MLP 84.7% 76.1% 88.0% 0.64 0.76

BiPepGlut also applies an Extra Trees (ET) classifier by using their Gini importance for computing
the importance of features. To do this, we took each feature Gini importance and selected the top-most
significant feature, according to their preference. The feature importance chart for our 210 lengths of
features is shown in Figure 3. Note that, during model development, we exclusively work with these
210 features instead of skipping any features. Corresponding to all the results, from Tables 1 and 2,
the ET [49] classifier obtains better performance compared to other classifiers. It achieves 81.5% in
accuracy, 70.0% in sensitivity, 92.9% in specificity, 0.64 in MCC, and 0.79 in F1-score. In addition, the true
positive (TP) rates are 1322, 460, and the false positive (FP) rates are 101-fold, 40-fold, and 10-fold cross
validation and an independent test set, respectively.

Importances

l_209 col 44 col 152 col 20 col 35 col 65 0l 0 ol 5 ol 27 col 189 col 170 col_67 col_200 col 11 col 94 col 72 ol 19 col_26 col_137

Figure 3. Feature importance of 210 features selected for our model development.

We also plot the Receiver Operating Characteristic (ROC) to evaluate the output quality of the
BiPepGlut both for 10-fold cross-validation and an independent test set. These plots are shown in
Figures 4 and 5, respectively.
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Figure 5. Receiver operator characteristic (ROC) curves using the independent test. The area under the

curve (AUC) for each algorithm is indicated in parentheses.

These curves denote the X-axis as a false positive rate and Y-axis as a true positive rate. As shown
in Figures 4 and 5, ET performs consistently better than other classifiers. As shown in this figure,
ET achieves the area under the curve (AUC) of 0.85 on the 10-fold cross-validation and AUC of 0.95 for
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the independent test set. Such results demonstrate the effectiveness of BiPepGlut using ET compared
to other classifiers.

3.2. Comparison with State-of-the-Art Models

We compared our method with existing predictors that obtain the best results for the Glutarylation
site prediction problem. To the best of our knowledge, we have identified three Glutarylation site
predictors with the most promising results. In 2018, GlutPred [22] was developed using multiple feature
extraction techniques along with maximum relevance and minimum redundancy feature selections to
predict the Glutarylation sites. In the same year, iGlu-Lys [23] was developed using the finest features
to predict the Glutarylation sites from the four-encodings method. Later on, RF-GlutarySite [25]
was developed using sequence-based and physicochemical features and RF classifiers to predict the
Glutarylation sites.

These three predictors are considered as the recent and most accurate predictors for the
Glutarylation site prediction problem. To reproduce their results for our benchmark, we uploaded
our sequences into their predictors and retrieved the performance of the predictors. Among these
predictors, some are using 10-fold cross-validations, and others are using 6-fold, 8-fold, and 10-fold
cross-validations during training. Consequently, their results may be exaggerated in independent test
sets filtered from the entire data. Reproducing their results, we observed that the outcomes of those
studies on independent test sets are better than assumed. Notwithstanding this, BiPepGlut was able to
exceed even those obtained results.

We compare our method with these predictors (GlutPred, iGlu-Lys, and RF-GlutarySite).
The results are shown in Table 3. As shown in this table, BiPepGlut achieves better results in
terms of MCC, and the F1-score on the training set. The MCC and F1-score exceed 0.13 over previous
predictor iGlu-Lys and 0.06 compared to RF-GlutarySite. The results of this comparison for the
independent test set is shown in Table 4.

Table 3. Comparison of the performance of BiPepGlut to existing Glutarylation predictor using
10-fold cross-validation.

Predictor Tool ACC (%) SN (%) SP (%) McCC F1-Score
GlutPred [22] 74.9% 64.8% 76.6% 0.32 0.43
iGlu-Lys [23] 88.4% 50.4% 95.2% 0.51 -
RF-GlutarySite [25] 75.0% 81.0% 68.0% 0.50 0.73
BiPepGlut 81.5% 70.0% 92.9% 0.64 0.79

Table 4. Comparison of the performance of BiPepGlut to an existing Glutarylation predictor using the
independent-test set.

Predictor Tool ACC (%) SN (%) SP (%) McCC F1-Score
GlutPred [22] 75.4% 51.8% 78.5% 0.22 0.33
iGlu-Lys [23] 88.5% 51.4% 95.3% 0.52 -
RF-GlutarySite [25] 72.0% 73.0% 70.0% 0.43 0.72
BiPepGlut 92.0% 84.8% 95.6% 0.82 0.88

As shown in Table 4, BiPepGlut consistently performed better than other models investigated in
this study. Our results demonstrate that the BiPepGlut achieves over 3% better ACC compared to these
studies. Sensitivity and the F1-score improved by 11.8% and 0.16, compared to RF-GlutarySite [25].
As shown in this table, BiPepGlut comes with prominent outcomes in all matrices and performs better
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than those methods found in the literature. The significant improvement in sensitivity for our model
demonstrates that BiPepGlut is able to identify Glutarylation sites by much more than those reported in
previous studies. Given the performance of Glutarylation sites prediction, BiPepGlut can be considered
as the most successful model compared to other studies found in the literature.

We also illustrate the barplot in Figure 6, which highlights the difference between the performance
of BiPepGlut compared to GlutPred [22], iGlu-Lys [23], and RF-GlutarySite [25] in terms of accuracy.

160
BD 4
—1
I
I
EU 4
Q
qD 4
20 1 o
D - —_—
GlutPred iGlu-Lys RF-Glutarysite BiPepGlut

Figure 6. Comparing the results achieved using barplot among our model, BiPepGlut, GlutPred [22],
iGlu-Lys [23], and RF-GlutarySite [25].

Results illustrated in this figure demonstrate the effectiveness and accuracy of BiPepGlut in
predicting Glutarylation sites compared to those methods found in the literature. BiPepGlut is
implemented as an online predictor and is publicly available at: www.brl.uiu.ac.bd/bioglutarylation/.
In addition, the data, code, and all the Supplementary Materials used to build BiPepGlut metis are
publicly available at: https://github.com/Wakiloo7/BipepGlut.

3.3. Web Server Implementation

We implemented BiPepGlut as a user-friendly and easy-to-use webserver. BiPepGlut is publicly
available to use at: www.brl.uiu.ac.bd/bioglutarylation/. To use this predictor, the user has to provide
a peptide sequence in fasta (.fsa) format. After uploading the sequence in BiPepGlut, PSSM files are
generated from the server by using simultaneous iterations of PSI-BLAST where features are extracted
and trained using the benchmark dataset. The goal of this predictor is to facilitate Glutarylation
prediction. Figure 7 present the screen-shot of our online predictor.
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Figure 7. Screen-shot of BiPepGlut homepage.
4. Conclusions and Future Direction

In this study, we proposed a new method called BiPepGlut to predict the Glutarylation sites.
To build BiPepGlut, we used bi-peptide-based evolutionary feature representation. We also used the
Extra Tree classifier to build this model. Our results demonstrate that BiPepGlut can accurately predict
the Glutarylation sites from Non-Glutarylation sites and improve the prediction results.

In the future, we aim to explore a wider range of features and include structural-based features
to tackle this problem [39,54]. Such features are shown to be effective in solving similar problems
in different studies. We also aim at comparing our extracted features with a wider range of feature
extraction methods such as those extracted using iFeature [55] or BioSeq-Analysis [56,57]. In addition,
we aim to find larger benchmarks that can allow us to use more advanced and complicated classifiers,
such as Deep Learning, Convolutional Neural Network (such as Deeplnsight [58]), and Recurrent
Neural Network to enhance prediction accuracy even further. Itis important to highlight that employing
a larger benchmark will also enable us to provide more general and consistent results. Our future
direction is to employ a larger benchmark as soon as it becomes available to further investigate the
generality of our model. BiPepGlut is implemented as an online predictor and is publicly available at:
www.brl.uiu.ac.bd/bioglutarylation/. In addition, the data, code, and all the Supplementary Materials
used to build BiPepGlut metis are publicly available at: https://github.com/Wakiloo7/BipepGlut.
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