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Abstract: With the high prevalence of breast cancer, it is urgent to find out the intrinsic difference
between various subtypes, so as to infer the underlying mechanisms. Given the available multi-omics
data, their proper integration can improve the accuracy of breast cancer subtype recognition. In this
study, DeepMO, a model using deep neural networks based on multi-omics data, was employed for
classifying breast cancer subtypes. Three types of omics data including mRNA data, DNA methylation
data, and copy number variation (CNV) data were collected from The Cancer Genome Atlas (TCGA).
After data preprocessing and feature selection, each type of omics data was input into the deep neural
network, which consists of an encoding subnetwork and a classification subnetwork. The results of
DeepMO based on multi-omics on binary classification are better than other methods in terms of
accuracy and area under the curve (AUC). Moreover, compared with other methods using single omics
data and multi-omics data, DeepMO also had a higher prediction accuracy on multi-classification.
We also validated the effect of feature selection on DeepMO. Finally, we analyzed the enrichment
gene ontology (GO) terms and biological pathways of these significant genes, which were discovered
during the feature selection process. We believe that the proposed model is useful for multi-omics
data analysis.
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1. Introduction

Breast cancer is the most common cancer and the main cause of cancer deaths besides lung cancer
in women [1]. The number of breast cancer patients is increasing year by year, and the proportion
of women under 40 who have breast cancer has already reached 6.6% [2]. In 2018, there were more
than 2 million new breast cancer cases worldwide [3]. At the same time, as a highly heterogeneous
disease, breast cancer is composed of different biological subtypes, with different clinical, pathological,
and molecular characteristics, as well as prognostic and therapeutic significance [4]. Therefore, the study
of breast cancer subtypes is of great significance for precision medicine and prognosis prediction of
breast cancer [5]. By understanding the molecular subtypes of breast cancer, doctors can better decide
which treatment is suitable for each patient, thus saving money for the whole medical system and
avoiding the side effects of unnecessary treatment [6].

The current research on breast cancer subtypes focuses mainly on the molecular typing. In 1999,
molecular typing of cancer was first proposed by the National Cancer Institute (NCI) [6]. In 2000,
Perou et al. first proposed the molecular typing of breast cancer and concluded that breast cancer is

Genes 2020, 11, 888; doi:10.3390/genes11080888 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-8476-8919
http://www.mdpi.com/2073-4425/11/8/888?type=check_update&version=1
http://dx.doi.org/10.3390/genes11080888
http://www.mdpi.com/journal/genes


Genes 2020, 11, 888 2 of 18

divided into four subtypes, namely luminal subtype, basal-like subtype, human epidermal growth
subtype and normal breast-like subtype [7]. Sorlie et al. further subdivided luminal subtype into
luminal A and luminal B [8]. Waks et al. classified breast cancer into three major subtypes based on
the presence or absence of molecular markers for estrogen receptor (ER) and progesterone receptor
(PR) and human epidermal growth factor 2 (HER2), namely ER+/PR+/HER2- (luminal A), HER2+,
and triple-negative breast cancer (TNBC), which have a negative indicator in all three standard
molecular markers [9]. HER2+ subtype can be further divided into two subtypes: ER+/PR+/HER2+

(luminal B) and ER-/PR-/HER2+. Tao et al. classified breast cancer into five subtypes according to
immunohistochemistry (IHC) markers, including ER, PR, and HER2 [6]. These subtypes are luminal A,
luminal B, HER2(+), TNBC, and unclear subtype.

In this article, breast cancer was divided into five subtypes, namely luminal A, luminal B, HER2(+),
TNBC, and unclear subtype, the same classification as in a published article [10]. The detailed definition
of each subtype is shown in Table 1. Luminal A is the most common breast cancer subtype, accounting
for as many as 60% of all breast cancers [11]. This subtype has the highest prognosis among several
breast cancer subtypes, and its 5-year local recurrence rate is much lower than other breast cancer
subtypes [12]. Most patients with luminal B are elderly patients. They are similar to luminal A in that
they are also sensitive to endocrine therapy. Hormone expression in patients with luminal B is reported
to be lower than that of luminal A, whereas the expression and histological grade of proliferation
markers are higher than those of luminal A [13]. HER2-positive breast cancer patients account for
about 25%, and the prognosis is poor. Most patients with advanced HER2-positive breast cancer are
most likely to metastasize to the axillary lymph nodes. In the treatment, endocrine therapy has almost
no effect on it. The TNBC subtype has ER negative, PR negative, and HER2-negative [6]. Compared
with other breast cancer subtypes, TNBC has rapid deterioration and metastasis. Because its three
receptors are negative, targeted therapy cannot be used during the treatment of this subtype, and its
prognosis is poor. Unclear subtype refers to patient samples that lack information on each of the three
IHC markers.

Table 1. The detailed definition of breast cancer subtypes.

Breast Cancer Subtypes IHC Markers

luminal A ER/PR+, Her2−
luminal B ER/PR+, Her2+
HER2(+) ER/PR−, Her2+

TNBC ER/PR−, Her2−
unclear lacking

With the explosive growth of massive biological data, the transformation of traditional biological
statistical methods to computer-aided methods makes machine learning become an important part of
predicting cancer prognosis [14]. If all the features in these samples are used to classify and regress,
it will lead to overfitting. Feature selection or reduction, which attempts to find the subset of features
that gives the model the best performance, is one of the solutions [15]. Utilizing the feature selection
method can remove the obviously irrelevant and redundant gene features and improve the performance
of the model. Furthermore, fewer features usually mean better interpretability and higher training
speed in deep neural networks.

At present, the commonly used feature selection methods are mainly divided into the following
three types: filter, wrapper, and embedded [16]. These categories are mainly based on the combination
of search process of feature selection and construction process of classification models [17]. The filter
methods are independent of the classifier and only rely on the intrinsic attributes of the data to select
relevant features [18]. In the wrapper methods, the classification score of the features by the classifier
is measured during the selection process, and the feature selection step depends on the classifier [19].
In other words, the wrapper feature selection method is to select the most fruitful feature subset for the



Genes 2020, 11, 888 3 of 18

given classifier. In the embedded methods, the step of selecting the optimal feature subset is embedded
in the construction of the classifier, and the selection process can be regarded as the combined space of
feature subsets and hypotheses [16]. They are completed in the same optimization process. It means
that feature selection is automatically carried out during learner training. In general, when comparing
complex wrappers and embedded methods to the filtering methods, the computational complexity of
the former two methods is always higher, and the performance is not as good as the simple filtering
method [20].

With the continuous development and improvement of high-throughput technology, there are
increasingly more types of omics data obtained through high-throughput technology. Based on
these omics data, there have been many studies on the classification of breast cancer subtypes.
Brian D. Lehmann et al. used gene expression data to perform cluster analysis to determine the subtypes
of triple-negative breast cancer [21]. Sorlie et al. achieved the classification of breast cancer subtypes
by constructing a gene expression pattern based on hierarchical clustering [22]. Each type of omics
data itself usually provides a list of differences associated with the disease [23]. However, the analysis
of one type of omics data is limited to correlation, mainly reflecting the reaction process rather than
the causal process. Multi-omics data are expected to improve the characterization of cross-molecular
biological processes, and can provide more comprehensive insights into the biological systems being
studied [24]. The use of multi-omics data for cancer classification has been recently suggested [25].
Multi-omics data have been used to solve different problems such as precision oncology [26], driver gene
identification [27], regulatory genomics [28], and drug response prediction [29]. Artificial intelligence
in cancer science includes not only classification but also diagnostics [30] as well as prediction of
clinical features or identification of interactions. Most importantly, it includes research integrating
multi-omics data type [31]. A further example, such as in [32], could be likewise included, as well as
the one in [33]. However, there are currently few studies on the classification of breast cancer subtypes
based on multi-omics data. Tao et al. used multiple kernel learning (MKL) based on multi-omics
data to classify breast cancer subtypes [6]. MKL is a method widely used in multi-omics data fusion,
which can improve the classification performance of original (Support Vector Machine) SVM [34].
For the classification of breast cancer subtypes, various kernels are generated and normalized using
different omics data. Subsequently, after training the MKL model based on these kernels, other
multi-omics data can be used to predict based on the trained model.

In this study, DeepMO, a model using deep neural networks based on multi-omics data,
was employed to classify breast cancer subtypes. DeepMO contains a type-specific encoding subnetwork
to learn the features of each omics type and combines features of each omics type, and a classification
subnetwork is used to classify different breast cancer subtypes. In this study, the input of DeepMO
contains mRNA data, DNA methylation data, and copy number variation (CNV) data, and the output of
DeepMO is the predicted molecular subtypes of breast cancer. The workflow of DeepMO is illustrated
in Figure 1. We compared the performances of binary classification based on multi-omics data and
single omics data. Moreover, the performances of binary classification using DeepMO and MKL [6]
were also compared. Then, we compared the performances of multi-classification based on multi-omics
data and single omics data. Additionally, the performance of DeepMO on multi-classification was
compared with some state-of-the-art data integration methods. Furthermore, we analyzed the effect
of feature selection, and validated its role in classification using deep neural networks based on
multi-omics data. Finally, we also analyzed the enriched gene ontology (GO) terms and biological
pathways of these significant genes discovered during the feature selection process.
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Figure 1. The workflow of DeepMO.

2. Materials and Methods

2.1. Data Sources

In this study, the data on breast cancer were collected from The Cancer Genome Atlas (TCGA) [35],
which is currently a very commonly used database in the field of cancer, and contains a comprehensive
range of cancer types, including various omics data and clinical data of more than 10,000 cancer
patients. Among these data from TCGA, three types of omics data including mRNA, DNA methylation,
and CNV data were used to compare the performance of different models. The details of the three
types of omics data used are shown in Table 2.

Table 2. The summary of breast cancer data.

Data Type Number of Samples Number of Features Summary

mRNA 606 13,195 RNA sequencing level 3 data
DNA methylation 606 14,285 DNA methylation 450k level 3 data

CNV 606 15,186 The Affymetrix SNP 6.0 array data
with GRCH 38 (hg38) genome data
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There are 606 samples containing the three types of omics data simultaneously. Each type of
omics data contains different levels of complementary information, so different aspects of breast cancer
subtypes can be obtained from different perspectives. These breast cancer samples were divided into
5 subtypes, as shown in Table 3, including 277 cases of luminal A, 40 cases of luminal B, 11 cases of
HER2(+), 70 cases of triple-negative breast cancer (TNBC), and 208 cases of unclear.

Table 3. The numbers of distinct breast cancer subtypes.

Breast Cancer Subtypes Number of Samples

luminal A 277
luminal B 40
HER2(+) 11

TNBC 70
unclear 208

In addition, before performing feature selection, we normalized these data. For transcriptome
data, we used the expression value from TCGA and excluded genes with missing values exceeding
200 samples. For DNA methylation data, only the regulatory relationship between gene transcription
and related promoter hypermethylation or hypermethylation was considered. For CNV data, we used
CNV annotation in PennCNV [36] to convert the ID of probes to gene symbols, and then merged the
corresponding values according to the mapping relationship between probes and genes. In this study,
we represented each type of omics data as a matrix with two dimensions, where the rows represent
genes and the columns represent the subtypes of the samples.

2.2. Feature Selection

In general, a deep learning model does not need to select features separately because it can be
done through the weight of the neural network. However, due to the “large p small n” paradigm [37]
in the omics data, where p is the number of features and n is the number of samples, it is not too fruitful
to use the deep learning model to train the network weights on the omics data directly. Therefore,
we assumed that the feature selection algorithm of omics data can further improve the deep neural
network models [38]. This is so because, as we all know, the feature selection method can remove
the obvious irrelevant and redundant gene features and improve the performance of the model.
Furthermore, fewer features usually mean better interpretability and higher training speed in deep
neural networks.

In this study, we used the chi-squared test [39] (denoted as Chi2) to select important features.
The Chi2 evaluates whether a feature in two mutually exclusive classes has a statistically significant
difference [40]. For each omics type, we performed the chi-squared test separately and ranked features
according to their p-value in hypothesis testing using corresponding samples of each classification task.
Then, for each omics data, we selected the top-k feature as the input of the deep neural network. In our
experiments, the value of k was set to 5000, which means that 5000 features of each omics data were
input into the deep neural network.

2.3. The Classification Model Based on Multi-Omics Data Integration

In this study, we used a deep neural network model to classify breast cancer subtypes based
on multi-omics data. The model consisted of two parts, including encoding subnetworks and a
classification subnetwork that is the same as that presented in [29]. For this problem, the deep neural
network model consisted of three encoding subnetworks and a classification subnetwork. After each
omics type learning from its encoding subnetwork, the learned features were concatenated and input
into the classification subnetwork. The entire deep neural network mode was trained as a whole.
The whole process of the model can be described as follows.
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2.3.1. Learning Features by Encoding Subnetworks

For each omics data type, the features are learned by corresponding encoding subnetwork using
corresponding omics data as input. Each type of omics data has its feedforward encoding subnetwork,
which has a fully connected layer with a Relu activation function, to map the input space to the
feature space. To regularize the model and enhance the training process, the encoding subnetworks
use dropout and batch normalization, respectively. The input of each encoding subnetwork is one
corresponding omics data and the output is the learned features. In this study, we used three omics
data types to classify breast cancer subtypes, including mRNA data, DNA methylation data, and CNV
data. Each of them is a N × M matrix with N samples and M features. In the integration step, the
learned features of the different types of omics data were concatenated for obtaining the integrated
representation of multi-omics, which was further smoothed by using the l2 normalization. For example,
if the output of the three encoding subnetworks are three N ×K feature matrices with N samples and K
selected features, the output of late integration is a N × 3K representation matrix.

2.3.2. Cancer Subtype Classification by Classification Subnetwork

The learned features are used as the classification subnetwork to predict subtypes of breast cancer,
using the concatenated presentation as input. In order to classify the subtypes of different breast cancer,
the classification model utilizes a classification layer with dropout and weight decay for regularization.
For binary classification, the classification subnetwork uses the Sigmoid activation function and the cost
function is Binary CrossEntropy (BCE) loss. For multi-classification, we utilized Softmax regression
and CrossEntropy loss instead.

2.4. Performance Measurements

In this study, we verified the performance of DeepMO on both binary classification and
multi-classification. For binary classification, we used accuracy (Acc) and area under the curve
(AUC) as performance measurements. The data of binary classification have two types of samples,
positive and negative, which are represented by P =

{
P1, P2, . . . , PN

}
and N =

{
N1, N2, . . . , NM

}
,

respectively. Among them, the number of positive samples is N and the number of negative samples is
M. To make some concepts easier to understand, some terms are defined as follows. The number of the
correctly predicted positive samples is denoted as TP (true positives), and the number of the rest of
the positive samples is denoted as FP (false positives). Similarly, we can define TN (true negatives)
as the number of the correctly predicted negative samples and FN (false negatives) as the number of
the negative samples. On this basis, sensitivity is defined as Equation (1), and specificity is defined
as Equation (2). Since the number of different breast cancer subtype samples is imbalanced and the
neural network is sensitive to the imbalance of data, the accuracy of binary classification is calculated
as Equation (3). AUC is defined as the area under the ROC curve and it is no more than 1. The closer
AUC is to 1, the better the performance of classification. For multi-classification, we used accuracy
as the performance measurement and it can be calculated as Equation (4), where Nr represents the
number of samples that are correctly predicted among all subtypes and Nt refers to the total number of
all samples.

Senb =
TP

TP + FN
(1)

Speb =
TN

TN + FP
(2)

Accb =
Senb + Speb

2
(3)

Accm =
Nr
Nt

(4)
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3. Results

In our experiments, we first measured the performance of binary classification of any two breast
cancer subtypes. Then, we compared the performances of multi-classification based on multi-omics
data and single omics data. Additionally, the performance of DeepMO on multi-classification was
compared with some state-of-the-art data integration methods. Furthermore, we analyzed the effect
of feature selection, and validated its role in classification using deep neural networks based on
multi-omics data. Finally, we also analyzed the enrichment gene ontology (GO) terms and biological
pathways of these significant genes discovered during the feature selection process. The code is
available at https://github.com/linyq2117/DeepMO.

3.1. The Performance of Binary Classification

To investigate the performance of DeepMO on binary classification, we compared the results
by using single omics data and combining three omics data based on DeepMO to classify any two
subtypes of breast cancer, including (1) luminal A versus luminal B, (2) luminal A versus HER2(+),
(3) luminal A versus TNBC, (4) luminal A versus unclear, (5) luminal B versus HER2(+), (6) luminal B
versus TNBC, (7) luminal B versus unclear, (8) HER2(+) versus TNBC, (9) HER2(+) versus unclear,
and (10) TNBC versus unclear. Specifically, the mean accuracy and AUC of 5-fold cross-validation
were used as the measurements. These accuracy and AUC values on any two subtypes of breast cancer
by using different types of omics data are shown in Tables 4 and 5. From these tables, we can see that
using multi-omics data can get the best accuracy and AUCs in the classification of most two subtypes
of breast cancer.

Table 4. The accuracy of any two breast cancer subtypes with different types of omics data and
multi-omics data by DeepMO. Bold numbers are the best performance of binary classification.

Breast Cancer Subtypes mRNA Methylation CNV DeepMO

luminal A vs. luminal B 0.820 0.596 0.788 0.859
luminal A vs. HER2(+) 0.790 0.609 0.795 0.980

luminal A vs. TNBC 0.867 0.906 0.815 0.925
luminal A vs. unclear 0.814 0.853 0.617 0.875
luminal B vs. HER2(+) 0.840 0.743 0.804 0.890

luminal B vs. TNBC 0.911 0.895 0.889 0.924
luminal B vs. unclear 0.801 0.746 0.763 0.893
HER2(+) vs. TNBC 0.788 0.635 0.840 0.904

HER2(+) vs. unclear 0.748 0.697 0.660 0.969
TNBC vs. unclear 0.826 0.852 0.693 0.895

Mean 0.820 0.753 0.766 0.908

Table 5. The area under the curve (AUC) values of any two breast cancer subtypes with different
types of omics data and multi-omics data by DeepMO. Bold numbers are the best performance of
binary classification.

Breast Cancer Subtypes mRNA Methylation CNV DeepMO

luminal A vs. luminal B 0.944 0.790 0.903 0.923
luminal A vs. HER2(+) 0.998 0.992 0.989 0.995

luminal A vs. TNBC 0.935 0.940 0.897 0.946
luminal A vs. unclear 0.904 0.930 0.679 0.951
luminal B vs. HER2(+) 0.967 0.956 0.943 0.970

luminal B vs. TNBC 0.973 0.952 0.963 0.968
luminal B vs. unclear 0.938 0.930 0.883 0.957
HER2(+) vs. TNBC 0.968 0.928 0.954 0.960

HER2(+) vs. unclear 0.986 0.987 0.977 0.996
TNBC vs. unclear 0.920 0.958 0.786 0.955

Mean 0.953 0.936 0.898 0.962

https://github.com/linyq2117/DeepMO
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In addition, to exclude the possibility of overfitting, we selected some newly annotated samples
from TCGA as independent test data. The numbers of distinct breast cancer subtypes in test dataset are
shown in Table 6. We trained our models on original data and tested them on independent test data.
The accuracy and AUC on test data using DeepMO are shown in Table 7. We can observe that results
on independent test data are similar to those on cross-validation, and it indicates that our models do
not overfit.

Table 6. The numbers of distinct breast cancer subtypes on test data.

Breast Cancer Subtypes Number of Samples

luminal A 51
luminal B 10
HER2(+) 2

TNBC 24

Table 7. The accuracy and AUC of any two breast cancer subtypes with multi-omics data by DeepMO
on test data.

Breast Cancer Subtypes Accuracy AUC

luminal A vs. luminal B 0.775 0.759
luminal A vs. HER2(+) 0.962 0.999

luminal A vs. TNBC 0.936 0.977
luminal B vs. HER2(+) 0.900 0.975

luminal B vs. TNBC 0.908 0.970
HER2(+) vs. TNBC 0.852 0.950

Mean 0.889 0.938

In this study, we compared the performance of binary classification by using MKL and DeepMO.
As above, accuracy and AUC were used as the classification performance measures. These accuracy
and AUC values on any two subtypes of breast cancer by using MKL and DeepMO are shown in
Figures 2 and 3. As can be seen from these figures, DeepMO outperformed MKL in all cases.Genes 2020, 11, x FOR PEER REVIEW 9 of 19 
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Figure 2. The accuracy by using multiple kernel learning (MKL) and DeepMO on binary classification.
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3.2. The Performance of Multi-Classification

To better evaluate the performance of the proposed model, we used the model to predict breast
cancer subtypes based on multi-classification. First, we compared the accuracy of multi-classification
between DeepMO using single omics data and multiple omics data. The mean accuracy of 5-fold
cross-validation on all subtypes of breast cancer by using single omics data and combining three omics
data is shown in Figure 4. From the figure, we can conclude that DeepMO was superior to single omics
data on multi-classification.Genes 2020, 11, x FOR PEER REVIEW 10 of 19 
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Figure 4. The accuracy by using single omics data and multi-omics data.

Due to the imbalance of class, which had an effect on the neural network, we took some measures
to cope with it. In this study, we used both the undersampling and oversampling methods to reduce
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the effect of imbalanced data. We selected samples by the weight of each subtype and the weight was
reciprocal to the number of each subtype. Therefore, the subtype with smaller samples had more
probability to be selected. This may make our model applicable to imbalanced data. To evaluate this
method, we removed all samples of one subtype each time, and performed multi-classification again.
The results are shown in Figure 5. The accuracy of DeepMO is relatively stable and it indicates that
imbalanced data have no dramatic impact on our model.
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Figure 5. The accuracy of DeepMO when removing one subtype each time.

To further evaluate the performance of DeepMO on multi-classification, we selected some
state-of-the-art methods of omics data integration, including the logistic regression model/multinational
model with Elastic Net (EN) regularization [41] and Random Forest (RF) [42] in the concatenation and
ensemble frameworks apart from MKL [6]. They were denoted as ConcateEN, ConcateRF, EnsembleEN,
and EnsembleRF, respectively. The accuracy of multi-classification using different methods is shown in
Figure 6. We can observe that DeepMO outperformed other methods in multi-classification.
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3.3. Analysis of the Effect of Feature Selection

We utilized the chi-squared test to select the top 5000 important features before integrating
multi-omics data using deep neural networks for reducing features and increasing training speed.
The top 5000 features of three omics data types for multi-classification are shown in the Supplementary
Materials. Furthermore, we assumed that the feature selection algorithms can further improve the
deep neural network model. To better evaluate the ability to classify each subtype, we compared
the results with and without feature selection both on binary and multi-classification. The results
of multi-omics data integration using deep neural networks with and without feature selection are
shown in Figures 7 and 8. From Figure 7, we can conclude that using feature selection can improve the
accuracy on binary classification. From Figure 8, it is clear that when using feature selection, the AUC
on binary classification can also be improved.

Additionally, our experiments indicated that feature selection can improve accuracy on
multi-classification. The accuracy without and with feature selection on multi-classification is 0.771
and 0.782, respectively.Genes 2020, 11, x FOR PEER REVIEW 12 of 19 
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Figure 8. The AUCs of multi-omics data integration using deep neural networks with and without
feature selection.

3.4. Analysis of Selected Genes

3.4.1. Cluster and Biological Analysis of Selected Genes

To better analyze the important genes selected by the feature selection method, we displayed
a heatmap depicted by the top 30 genes selected by feature selection on different omics data.
For each omics data, the top 30 genes were ranked by p-values of the chi-squared test in increasing
order. These heatmaps in Figures 9–11 show the important genes in three types of omics data
for multi-classification. It can be observed that the subtypes of breast cancer can be more clearly
distinguished in mRNA and DNA methylation data. Moreover, we can observe that some genes
appeared in several omics data, such as CDK12, GRB7, ORMDL3, PSMD3, STAC2, and STARD3.
These genes may be significant in classifying breast cancer subtypes.

Some significant genes have been reported in related literature. ER coactivator MED1 was a novel
crosstalk point for the HER2 and ERα pathways. Its expression was positively correlated to HER2
status of tumors from tissue microarray analysis of human breast cancers [43]. XBP1 was activated
in TNBC and played a key role in the tumorigenicity and progression in TNBC [44]. Through the
high protein expression of the known marker GRB7, HER2-positive tumors were clearly distinguished
from other tumors. It was a positive marker of HER2-positive tumors [45]. STARD3 was related to the
growth and survival of cancer cells amplified by HER2, and has no effect on other cancer cells [46].
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3.4.2. Enrichment of Selected Genes

To further understand the differences between breast cancer subtypes, we conducted an enrichment
analysis of the differential genes screened from the omics data. We selected the top 1000 genes by
chi-squared test on each omics data. Then, the whole set of human genes was employed as the
background among the union of selected genes from three omics data using Metascape [47] against the
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway databases to understand the
differences in breast cancer subtypes. Metascape is a free gene annotation and analysis resource that
can help biologists understand one or more gene lists. The results of KEGG pathways Enrichment
are shown in Figure 12. We can see that the most significantly enriched pathway was Cell cycle.
In addition, the most significantly enriched biological processes (BPs), cellular components (CCs),
and molecular functions (MFs) were cell adhesion, chromosomal region, and calcium ion binding
(see Tables S1–S3, Supplementary Materials).
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To further analyze the relationship between GO terms of biological processes (GO_BP), we selected a
rich set of terms and presented them as a network graph, where terms with similarity >0.3 were connected
by edges. We chose the term with the best p-value from each of the 20 clusters. Each cluster did not
exceed 15 terms, and the total did not exceed 250 terms. The network was visualized using Metascape,
where each node represents an enriched term and is colored first by its cluster ID (Figure 13a) and then by
its p-value (Figure 13b). From Figure 13, we can see that the most significant clusters are related to cell
cycle and cell morphogenesis. Cell cycle is a series of events that lead to cell division, and the cell cycle
helps to show the lowest level of cell growth. Cell morphogenesis is the basis of many aspects of cell
function during development, including cell division and differentiation. Therefore, cell cycle and cell
morphogenesis reflect differences in cell growth between different breast cancer subtypes.
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containing more genes tend to have a more significant p-value.
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4. Discussion

In this study, we utilized DeepMO, a method using deep neural networks and multi-omics late
integration to classify breast cancer subtypes. First, we used the chi-squared test to select features that
are closely related to labels. Afterward, we validated its performance both on binary classification
and multi-classification. For binary classification, we compared accuracy and AUC obtained by
DeepMO using single omics data and multiple omics data. We also compared DeepMO with MKL.
The results showed that our proposed model based on multi-omics data performed best in most cases.
For multi-classification, we first compared DeepMO using multi-omics data and single omics data and
found that using multi-omics data can obtain better accuracy. We also compared DeepMO with other
data integration methods, including ConcateEN, ConcateRF, EnsembleEN, EnsembleRF, and MKL.
The compared results indicated that DeepMO was superior to all these methods. Furthermore,
we compared the performance of DeepMO with feature selection and without feature selection.
The results indicated that feature selection can improve DeepMO. Subsequently, we plotted the
heatmap of some important genes, which visually showed that DNA methylation and mRNA data can
distinguish breast cancer subtypes more clearly. Finally, we analyzed pathways and gene ontology,
including KEGG, GO_BP, GO_CC, and GO_MF, and found most significant terms and similarity
among them.

Feature selection is an effective approach to removing irrelevant and redundant gene features
and reducing the dimension. In our model, although encoding networks can learn important features
from the original gene features and achieve the reduction of features, there are still too many features
inputting into encoding networks, which makes it difficult and slow to train the network weights.
In addition to considering the complexity of the algorithm, we assumed that the deep neural network
models may be further improved by feature selection algorithms. The results in Section 3.3 indicated
the positive effects of feature selection on our model and proved our assumption well.

As we all know, the hyperparameters in deep neural networks, such as the number of nodes in the
hidden layers, mini-batch size, learning rates, weight decay, the number of epochs, and dropout rate,
have an important impact on the performance of the neural network. However, in this study, we only
used the default or moderate values and did not adjust the hyperparameters. Therefore, the result may
be better after tuning hyperparameters and selecting better values. Additionally, the imbalance of data
had an effect on the neural network. In this study, we used both the undersampling and oversampling
methods to reduce the effect of imbalanced data. We selected samples by the weight of each subtype
and the weight was reciprocal to the number of each subtype. Therefore, the subtype with smaller
samples had more probability to be selected. This can solve data imbalance to some extent.

5. Conclusions

The purpose of this study was to classify breast cancer subtypes by using deep neural networks
based on multi-omics data from TCGA. The classification results show that, by using the proposed
model, integrating multi-omics datasets can improve the performance as compared to using single
omics data for classifying breast cancer subtypes. Moreover, the proposed model is superior to other
state-of-the-art methods on binary classification and multi-classification. At the same time, through the
analysis of important genes and pathways, we tried to find some biological explanations for the
differences between breast cancer subtypes, and provide guidance for exploring the biological models
of breast cancer subtypes. We believe that the proposed model is useful for multi-omics data analysis.
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Table S1: Results of GO_BP Enrichment, Table S2: Results of GO_CC Enrichment, Table S3: Results of GO_MF
Enrichment, Table S4: The top 5000 features of three omics data types for multi-classification, Figure S1: Bar graph
of GO_BP, Figure S2: Bar graph of GO_CC, Figure S3: Bar graph of GO_MF.
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