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Abstract: Epigenetic aging (EA) indices are frequently used as predictors of mortality and other 

important health outcomes. However, each of the commonly used array-based indices has 

significant heritable components which could tag ethnicity and potentially confound comparisons 

across racial and ethnic groups. To determine if this was possible, we examined the relationship of 

DNA methylation in cord blood from 203 newborns (112 African American (AA) and 91 White) at 

the 513 probes from the Levine PhenoAge Epigenetic Aging index to ethnicity. Then, we examined 

all sites significantly associated with race in the newborn sample to determine if they were also 

associated with an index of ethnic genetic heritage in a cohort of 505 AA adults. After Bonferroni 

correction, methylation at 50 CpG sites was significantly associated with ethnicity in the newborn 

cohort. The five most significant sites predicted ancestry with a receiver operator characteristic area 

under the curve of 0.97. Examination of the top 50 sites in the AA adult cohort showed that 

methylation status at 11 of those sites was also associated with percentage European ancestry. We 

conclude that the Levine PhenoAge Index is influenced by cryptic ethnic-specific genetic influences. 

This influence may extend to similarly constructed EA indices and bias cross-race comparisons. 
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1. Introduction 

Over the past 10 years, there have been significant advances in our ability to use epigenetic status 

to predict healthcare outcomes. Progress in this area has been facilitated by the development of 

methylation profiling platforms, in particular the Illumina Human-Methylation450 BeadChip (450K) 

and Infinium MethylationEpic Beadchip (Epic) arrays that are capable of assessing methylation status 

at hundreds of thousands of CpG residues simultaneously [1,2]. 

In the world of research, these arrays have been used for two distinct purposes. First, they have 

been used for discovery. Using these arrays, literally thousands of studies describing the relationship 

of methylation to illnesses, such as diabetes and heart disease, or to environmental 

exposures/consumption of substances such as cigarettes, alcohol, and pesticides have been conducted 

[3–9]. Importantly, the findings from many of these studies have been subsequently replicated in 

cohorts of other ancestries thus ensuring the generalizability of the findings across ethnic groups. 

Additionally, array-based methylation assessments have often been verified by more exact 

approaches for assessing methylation such as pyrosequencing [10]. 



Genes 2020, 11, 685 2 of 11 

 

These arrays have also been used as tools for imputing global health status. Perhaps the most 

popular of these metrics is that of “epigenetic aging” (EA). Although the concept owes its origins to 

a variety of individuals including Fraga and Esteller, the implementation of the information from 

these arrays as EA indices was described separately and independently by both Hannum and 

associates and Horvath and associates in 2013 [11–13]. At the core of their approaches, each team first 

used regression to identify a set of several hundred CpG loci whose methylation status changes, 

either increasing or decreasing, in association with chronological age in a first set of subjects. Then, 

they used the rate of change at each of these loci in array data from a second group of subjects to 

predict the apparent chronological age of the subjects with the difference between the apparent and 

actual chronological age being referred to as “accelerated epigenetic age”.  

Given the social and economic challenges of the burdens associated with aging, the use of these 

global indices has been remarkably popular. Hundreds, if not thousands of papers have used these 

indices, or some derivative of them to predict key healthcare outcomes associated with aging such as 

mortality and cardiovascular disease. More recently epigenetic indices have been developed to 

predict disease phenotypes. In particular, the “PhenoAge” DNA methylation index developed by 

Levine and colleagues was designed to overcome limitations of age focused prior measures [14]. 

Because EA indices keyed to chronological age were not found to be consistently related to 

cardiovascular disease or early onset of chronic illness [15], DNAm PhenoAge was developed using 

both chronological age and clinical measures so that it would better predict individual differences in 

lifespan and health span [16] The index reflects several known aging pathways and provides a useful 

objective marker of elevated risk for early onset morbidity and chronic illness. A potential limitation 

of the DNAm PhenoAge index, and perhaps all similarly formed indices, is the extent it was trained 

on data containing ancestry specific methylation information. If the ethnic groups whose data are 

represented in the training sets are mismatched for socioeconomic factors that also affect health 

outcomes, the resulting algorithm may inadvertently be biased, resulting in an index that is not well 

suited for comparisons across race, or for application to broad, heterogeneous samples.  

The concern regarding possible contamination by cryptic ethnic variation in EA indices is not 

hypothetical. It is well-established that methylation arrays contain significant implicit and explicit 

genotype information [17–19]. To understand how implicit genotype information becomes detectable 

on methylation arrays, it is necessary to recall that the key difference between the arrays that measure 

genetic as compared to those which measure epigenetic variation is that while both arrays 

quantitatively capture allele specific hybridization signals, the former uses regular genomic DNA 

while the latter uses bisulfite converted DNA. Because only a portion of the sequence variation is 

destroyed by bisulfite conversion, it is possible to assess explicit and implicit genetic information 

from bisulfite converted DNA. The 450 K array provides explicit genotype information at 65 genetic 

polymorphisms whose genotypic variation (e.g., an A to G polymorphism) is unaffected by the 

bisulfite conversion [20]. These 65 genotypes on the array can be used to help sort out any laboratory 

mix-ups with respect to subject identification. The implicit genotyping information is considerably 

larger and takes advantage of the fact that many of the 50 bp pair long probes hybridize to segments 

of the genome containing not only a CpG residue, but genetic polymorphisms as well. Because the 

presence of the polymorphism can directly alter the annealing temperature of a segment of DNA for 

a given C or T specific probe or indirectly by changing the amount of methylation at a given site, the 

presence of the genetic polymorphism can be inferred. The presence of many of these potential 

genetic influences is noted in the 450K and Epic annotation files [20]. In 2014, we showed how 

“genetic” information contained in the hybridization signal from the 450K analyses of 111 African 

Americans (AAs) subjects could be used to infer over 10,000 genotypes [17]. However, each ancestry 

will have its own unique set of signals with the number of potential detectable gene-methylation 

interaction effects likely to be in the millions [21,22]. 

Relevant to our current investigation, many cryptic genotypic influences are ethnically specific. 

In fact, Rahmani and colleagues have developed a program called EPISTRUCTURE for inferring 

ethnicity from the cryptic genotyping information [18]. This cryptic variation may affect important 

health related loci. For example, with respect to smoking, we have shown that almost 90% of the top 
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ranked CpG sites for predicting are affected by ethnic specific genetic variation [23]. In the 

Framingham Heart Study (FHS) Offspring Cohort, which consists of individuals of European 

ancestry, 195 of the 513 CpG sites in the DNAm PhenoAge EA Index are significantly associated with 

methylation at the well-established indicator of smoking, cg05575921 [24]. However, in AA samples, 

the Levine PhenoAge Index is only modestly associated with cotinine seropositivity and cg05575921 

inferred smoking intensity [25].  

Might discrepancies in the pattern of correlation between DNAm PhenoAge EA and health 

behaviours for those of differing ethnicity be the result of differences introduced by unacknowledged 

cryptic genetic influences? Despite being based on methylation platforms that are designed to capture 

acquired changes, both the DNAm PhenoAge index and newly described GrimAge have strong 

heritable components. The DNAm PhenoAge index has a h2 of 0.51 while the GrimAge index has a 

h2 of 0.37 with the individual subscales have heritabilities between 0.34 and 0.51. [14,26] Conceivably, 

part of the heritability could come from germline transmission of methylation signals. However, 

although epigenetic inheritance has been posited in humans, none has conclusively demonstrated 

with most experts agreeing that if it occurs, the amount of germline transmission is fairly low [27,28]. 

Accordingly, it is important to carefully examine the source of any observed heritability of EA indices 

and determine whether ethnic specific components in that heritability affects are correlates. 

In this communication, we hypothesize that some of the inconsistency across samples of 

differing races/ethnicities when examining associations of the DNAm PhenoAge EA Index with 

health behaviors; and, some of its heritability, may be the consequence of methylation being affected 

by ethnic specific genetic variation. To test this hypothesis, we examine the association of methylation 

values at individual probes from the DNAm PhenoAge EA index with ethnicity in methylation data 

from two separate cohorts. The first set of data is from a set of 203 newly born infants (112 AA and 

91 White). We then tested and extended the most significant finding to a cohort of AAs for whom we 

can infer varying degrees of European ancestry.  

2. Materials and Methods  

The genetic and epigenetic data used in this study were obtained from two sources. The list of 

the probes used in the Levine EA Index was taken from their 2018 work [14].  

The first set of data was from a set of methylation assessments of newborn cord blood DNA 

conducted by Mozhui and associates as part of their 2015 study of maternal nutrition [29]. In brief, 

after obtaining approval from the University of Tennessee Institutional Review Board (IRB 

200802719), Mozhui and colleagues obtained cord blood from 212 newborns from the University of 

Tennessee Health Center including samples from 112 AA and 91 White subjects. Methylation array 

profiling of the DNA samples prepared from these samples was conducted using the Illumina 

Humanmethylation27 BeadChip and processed using the Illumina Genome Studio (version 2009.1) 

[29]. The data were then corrected for batch effects using the COMBAT R package. The resulting M-

values for 27,577 probes (including all 513 probes from the DNAm PhenoAge EA index) for all 212 

samples were then generously posted to the NCBI NIH Gene Expression Omnibus (accession ID 

GSE64940). 

The source and processing of the genome wide epigenetic data from the Family and Community 

and Health Studies (FACHS) have also been previously described [30,31]. In brief, the FACHS study 

was a longitudinal study of the effects of socioeconomic factors on health-related outcomes of AA 

parent-child dyads from Iowa and Georgia. During Wave 5 of this longitudinal study (2008–2010), 

the adult subjects from these dyads were interviewed and phlebotomized. The DNA from these 

samples were processed via our standard procedures, then interrogated for genome wide 

methylation using the Infinium MethylationEpic Beadchip by the University of Minnesota Genome 

Center. Standard sample and probe level quality control were conducted as previously described 

[23,25]. After quantile normalization, the resulting methylation values were exported as beta values 

for use in this study. 

The genetic information from FACHS cohort used in the ancestry index described below was 

obtained using Infinium Multi-Ethnic Global-8 Beadchip by the University of Minnesota Genome 
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Center. In short, after processing with Genome Studio, the data were subjected to quality control 

measures at both the sample and SNP probe levels using PLINK [32]. Subject data from whose self-

reported gender and biological sex were discordant or whose heterozygosity rate was greater or 

smaller than the mean ± 2SD and with a proportion of missing SNPs > 0.03 were excluded.  

The European Ancestry index (EAI) was constructed using a list of ancestry informative 

polymorphisms identified by Seldin and associates [33]. In brief, in 2009 this group identified a set of 

128 genetic markers whose genotype status could be used to infer the ancestral origins of subjects of 

anyone in the world. From their list of 128 single nucleotide polymorphisms (SNPs), we selected 13 

(rs9809104, rs385194, rs6556352, rs2504853, rs1871428, rs7803075, rs2416791, rs772262, rs9522149, 

rs4984913, rs2125345, rs7238445, rs4891825) whose major and minor allele frequencies were markedly 

discordant between those with African vs European ancestry (e.g., 10% A in one population and 90% 

A in the other population) and whose data were available from the Multi-Ethnic Global-8 Beadchip. 

We then converted their genotypes at each of those SNPs to a 1, 2 or 3 scale with 1 being the genotype 

most common in those with African ancestry and 3 being the genotype most common with European 

ancestry (e.g. AA = 1, AG=2 and GG=3 for rs385194). The scores at each these loci were averaged to 

provide an EAI score for each subject. 

All data were analyzed using the JMP suite of programs (Cary, SC) using the statistical tests (T-

tests, logistic regression, and receiver–operator characteristic (ROC) area under the curve (AUC)) 

analyses described in the text [34,35].  

3. Results 

As a first step in understanding the potential for ethnically contextual genetic effects affecting 

methylation status at the 513 loci used in the DNAm PhenoAge EA index, we analyzed the 

relationship of methylation score to ancestry using the cord blood DNA methylation data from 112 

African American (AA, 59 male and 53 female) and 91 White (41 male and 50 female) subjects profiled 

by Mozhui and associates [29]  

In total, methylation status at 223 of the 513 probes in the Levine EA index were nominally 

associated with ethnicity with methylation status at 50 of these probes being significantly associated 

(p < 0.05; t-test) after Bonferroni correction. Table 1 lists the 30 probes whose methylation status is 

most significantly associated with ancestry along with information regarding the presence of nearby 

polymorphisms from the 2016 edition of the Illumina Human-Methylation450 BeadChip annotation 

file. A listing of the complete association analyses is given in Table S1.  

Table 1. The thirty probes most significantly associated with ancestry. 

Illumina Probe 

ID 
t-tests BF corrected CHR 

SNPs within 50 

bp * 

SNPs 

within 10 

bp ** 

cg08654655 2.28 x10-15 1.17 x 10-12 1   

cg18771300 3.13 x10-15 1.61 x10-12 14   

cg15344028 9.86 x10-15 5.06 x10-12 2   

cg02016419 2.05 x10-12 1.05 x10-09 17   

cg12402251 4.56 x10-12 2.35 x10-09 8   

cg04718414 5.78 x10-12 2.96 x10-09 13 rs17337675  

cg08251399 1.81 x10-11 9.29 x10-09 2   

cg12864235 2.6 x10-11 1.34 10-08 5   

cg09799873 2.26 x10-10 1.16 x10-07 19  rs73925316 

cg00862290 4.37 x10-10 2.24 x10-07 3   

cg06638451 5.77 x10-10 2.96x10-07 3 rs17059410  

cg19566405 7.70 x10-10 3.95 x10-07 17   

cg13509147 7.77 x10-10 3.99 x10-07 19   

cg20066677 1.10 x10-09 5.62 x10-07 12   

cg16713727 3.18 x10-08 1.63 x10-05 1   
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cg11618577 3.49 x10-08 1.79 x10-05 2   

cg12813792 4.94 x10-08 2.53 x10-05 20   

cg04836038 7.23 x10-08 3.71 x10-05 13   

cg27187881 8.21 x10-08 4.21 x10-05 22   

cg10795646 9.29 x10-08 4.77 x10-05 1   

cg15201877 2.32 x10-07 0.0001191 1   

cg17133388 4.10 x10-07 0.0002104 3   

cg13119609 4.64 x10-07 0.000238 19   

cg22736354 4.96 x10-07 0.0002545 6 rs28940575  

cg23159337 8.61 x10-07 0.0004416 3 rs34959916  

cg24125648 1.21 x10-06 0.000618 15 rs75056397  

cg15963417 1.38 x10-06 0.0007092 12 rs62652660  

cg09304040 1.58 x10-06 0.0008097 12   

cg09404633 1.82 x10-06 0.0009359 1   

cg10570177 2.56x10-06 0.0013111 9 rs36223203  

BF: Bonferroni, * and ** refer to the presence of polymorphisms with 50 and 10 base pairs of the CpG 

targeted by the probe. 

Although the genetic variation potentially affecting DNA methylation status at any given 

residue can be anywhere in the genome, genetic variation immediately adjacent to the CpG site is 

thought to have particularly strong effects [36]. Review of the annotation information from Illumina 

(see Table 1) shows that 7 of the 30 most significant probes have known polymorphisms within 50 bp 

of the CpG site with yet an eighth probe (cg12864235) having a SNP (rs73925316) within 10 bp of the 

CpG site specifically interrogated by the probe. Examination of that locus in the NCBI dbSNP 

database [37] shows a marked discrepancy between the allele frequencies between Africans and 

Europeans with the frequency of the G allele being 0.0484 (n = 2072) in Europeans and 0.3 in AAs (n 

= 76). Review of the dbSNP data at the other less closely located SNPs from Table 1 show similar 

ethnic specific differences in several of the 7 SNPs. 

To understand the power of methylation values at these CpG sites to predict ethnicity, we 

conducted a series of nominal logistic regression analyses. A simple model just using the information 

from the most highly associated CpG probe (cg08654655) was highly significant (p < 0.0001, R2 = 0.225, 

ROC AUC 0.80, n = 203). Stepwise addition of methylation information of the next 4 most highly 

ranked probes steadily increased the predictive power for ethnicity status to (p < 0.0001, R2 = 0.66, 

ROC AUC 0.97, n = 203). In contrast, although ethnicity had a strong effect on methylation, there was 

no effect of gender in any of the models. 

As a next step of our analyses, we tested whether methylation at the most significantly associated 

sites was associated with the percentage of European ancestry in our adult AA cohort. As a first step, 

we calculated an index of the relative amount of European ancestry using the method outlined by 

Seldin and associates. As Figure 1 shows, the relative amount of European ancestry varied widely. 

The average value of the European Ancestry Index (EAI) was 1.36 with 15 self-reported AA subjects 

averaging at least one or more of the alleles normally associated with Europeans across each of the 

13 polymorphic sites surveyed. 
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Figure 1. The Distribution of the European Ancestry Index (EAI) in the FACHS Adult Subjects (n = 

505). A score of 1 indicates the presence only alleles enriched in African subjects while a score of 3 

indicates the presence of alleles enriched in European subjects. 

We then analyzed the relationship of the EAI to methylation status at each of the 50 CpG sites 

that were significantly associated with ethnicity in the newborn cohort. Overall, 11 of the 50 CpG 

sites associated with AA ancestry among infants were also associated with the degree of AA ancestry 

in the adult FACHS subjects (see Table 2). Interestingly, five of the eleven CpG probes were among 

those associated with cg05575921 status in the prior study of the DNAm PhenoAge Index using the 

Framingham Heart Study population.  

Table 2. The association of methylation at the 11 most significantly associated probes with EAI Score. 

ID p-Value Associated with Smoking in FHS a 

cg06638451 0.0002941 No 

cg04718414 0.0004285 Yes 

cg00168942 0.0008096 Yes 

cg00862290 0.0035711 No 

cg10795646 0.0104504 No 

cg19514469 0.0115081 Yes 

cg08251399 0.0149561 Yes 

cg09404633 0.0241233 No 

cg08067365 0.0354048 No 

cg07038400 0.040688 No 

cg03991512 0.0426108 Yes 
a As shown in Mills et al. (2019) [24]. FHS: Framingham Heart Study. 

4. Discussion 

Using methylation and ethnicity data from two cohorts, we found that methylation status at 

some of the sites used in the DNAm PhenoAge index is associated with ethnicity. Caveats include 

the relatively limited power of the confirmation cohort, possible confounding biases in the newborn 

population, and the possibility that some observed differences may be attributable to differential 

prenatal exposures. Finally, because the UCLA website (www.http://dnamage.genetics.ucla.edu/) 

that calculates the DNAm PhenoAge EA does not accept 27K data for imputation of the DNAm 

PhenoAge Index, we were unable to directly compare the averages and distribution of the DNAm 

PhenoAge EA predictions for these subjects. 
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Although perhaps ungainly at first consideration, the study design purposefully addressed the 

possibility of racial/ethnic confounding by using cohorts with different types of contrasts. In the first 

cohort, the contrast was between subjects. All of the blood samples came from the same source, cord 

blood, and at the same age, birth. Hence, there were no confounds with respect to age or DNA source 

making this an intuitive, easy to understand approach to identifying potential ethnic specific 

methylation variation that minimizes other potentially confounding influences. At the same time, 

this case and control approach is subject to other biases, such as the potential for White mothers to 

have greater access to pre-natal care or different prenatal experiences. Conceivably, these differences 

could be reflected in methylation differences among infants. Arguing for a genetic source for these 

differences, however, we note that local genetic variation is documented in 8 of the 30 most 

significantly affected probes. So, there is good reason to believe that genetic factors may already be 

in play at these loci at birth, and that some of the findings represent differences due to cryptic ethnic 

genetic variation rather than differential prenatal experience. Such differences have the potential to 

yield scales that reflect different influences across racial/ethnic groups. For example, in the FHS 

(White) sample, the DNAm PhenoAge EA index largely loaded on cigarette and alcohol consumption 

and this was not the case in the FACHS (AA) sample [24,25]. Since the rate of smoking and alcohol 

consumption are roughly equal in Whites and AAs [38,39], it is unlikely that differences in habits 

affected the methylation outcomes, suggesting that the DNAm PhenoAge index is operating 

somewhat differently across ethnic groups.  

In the second set of analyses, the contrast was within individual- using individuals who varied 

by age. Still, since all of these individuals are from the same cohort, the likelihood that some 

systematic bias in nutrition, substance use, community, or socio-economic adversity is differentially 

affecting individuals as a function of their EAI score is limited, although not impossible. More likely 

is that the EAI predicts the proportion of ethnic specific genetic variation that can raise or lower the 

methylation particular loci. Despite the limited number of subjects with high EAI scores, methylation 

status at 11 of the loci was significantly associated with EAI which suggests that a larger more 

informative cohort could have confirmed the associations at additional loci that did not achieve 

statistical significance in the current sample. Unexamined was the extent to which EAI was associated 

with sources of stress, including economic hardship and discrimination, that might also contribute to 

the association. 

A reasonable question is how accurate is the EAI approach that we used in this study. Certainly, 

the use of additional ethnically informative SNP information would provide more precise estimates. 

Unfortunately, of the 24 SNPs most highly predictive of White versus AA ancestry in the 2009 

manuscript by Seldin and colleagues, only 13 were included in the Global-8 Multi-Ethnic chip. Still, 

we note that all things being equal, the average value of 1.36 suggests that, on average, 18% of the 

ancestry of FACHS participants is of European origin. This figure is well in line with prior estimates 

of 24% by Bryc and associates in their analyses of 5269 self-reported AA subjects [40]. 

The fact that 5 of the CpG sites whose confounding by ethnic specific genetic variation was 

confirmed in the second set of analyses were also significantly associated with epigenetic smoking in 

prior studies of the FHS is not unexpected. Recently, we reported a set of analyses that showed that 

cg05575921 and a GrimAge sub-index (packyears), but not the DNAm PhenoAge EA index strongly 

predicted smoking status in the FACHS cohort [25]. The finding that the methylation signal at these 

loci is affected by ethnic specific variation supports the assertion that confounding may have 

diminished the association between the DNAm PhenoAge EA index and health behaviour in the 

FACHS cohort relative to white samples. We also note that none of these sites were significantly 

associated with smoking in any of our two prior genome wide studies of smoking in AAs [23,41]. 

The findings in this manuscript further emphasize the need to understand the genomic basis for 

the genetic x methylomic (i.e. GxMeth effects) interactions. The existence of these GxMeth effects has 

been known for many years. In 2010, Mill and colleagues noted widespread allele specific 

methylation skewing [42]. In 2013, Illumina posted a product note to their website that indicated that 

over half of the (273,660 of the 485,577 total) probes in the 450 K array had one of more significant 

GxMeth interaction effects [43]. Since then, a number of studies have shown that the genetic variation 
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detected by these platforms is widespread, has significant impact, and can be used to predict ethnicity 

[18,23,43,44]. Still, it is important to note that these arrays only assess a fraction of the 28 million CpG 

sites in the human genome [45]. Therefore, whole genome bisulfite sequencing approaches will be 

needed to establish a comprehensive understanding of the large and fine scale methylomic 

regulation. If successful, these studies may lead to the development of precision medicine tools for 

the treatment of certain developmental disorders which result from defective genomic imprinting or 

cancer [46]. 

What is not clear from this study is what proportion of the signal in the DNAm PhenoAge EA 

index, loads on ethnicity. In part, that is because the process involved in its derivation is complex and 

relies on data from a number of cohorts each of which possess unique ascertainment and 

demographic characteristics. Still, the results from the current study combined with the fact that 51% 

of the DNAm PhenoAge EA index is reported to be heritable, provide a conceptual challenge to the 

hope that it would provide a relatively pure index of the impact of acquired effects of the environment 

on the epigenome.  

Are other recently developed EA indices that use methylation arrays also subject to ethnic 

specific genetic effects? The Brenner Frailty index bases its prediction on the information from a 

relative handful (34) of CpG sites [47]. If the amount of confounding is proportional to the number of 

probes, then the effects on this index are likely less severe. In addition, many of the CpG sites in their 

index, such as cg04987734 and cg05575921, load specifically on smoking and drinking consumption 

and have no known ethnic bias in their set points [48,49]. In contrast, the GrimAge index, which also 

has considerable heritability, uses information from over 1000 CpG probes [26]. However, the 

identity of those probes has not been publicly disclosed, making examination of contamination by 

cryptic ethnic variation difficult. 

The policy implications of this study are potentially significant. In essence, we show that a 

number of loci the DNAm PhenoAge index can be used to predict ethnicity and thereby that some of 

its prediction of health outcomes in general population samples may be secondary to health 

disparities between Blacks and Whites or other ethnic groups. Concerns about potentially different 

patterns of correlates are also relevant to health advice based on these measures. For example, 

companies using EA indices commercially to provide estimates of biological age and indicate the 

need for products such as vitamin supplements [50], may need to reconsider the quality of advice 

being provided to non-Whites. Because supplements are relatively non-toxic, this may be of minor 

concern at present. However, use of these or similar tools in more extensive medical decision making 

could be more consequential. Likewise, if these tools are used to guide changes in Federal or State 

policy, or allowed to influence insurance costs, the financial consequences for groups showing higher 

scores due to contamination by cryptic ethnic variation could be substantial.  

5. Conclusions 

In summary, we report that the DNAm PhenoAge EA index contained some ancestry specific 

information. Although measures of EA are useful in a variety of research contexts, particularly when 

focused on homogeneous samples, we suggest the need for caution in the use of this and similar tools 

in situations that explicitly or implicitly involve comparisons across racial or ethnic groups. It is 

possible that effects of contamination by cryptic ethnic variation are limited to main effects that could 

be corrected statistically. Conversely, there is reason to worry that effects of contamination by cryptic 

ethnic variation may also extend to patterns of association. In that case, observations and 

recommendations regarding predictors and consequences of EA measures may need to be carefully 

replicated with multiple ethnic groups to directly test the extent of generalizability. Alternatively, 

efforts to ensure that EA measures are free of contamination by cryptic ethnic variation, equally 

applicable to multiple ethnic groups, and responsive to similar predictors across ethnic groups may 

require some revision of the EA measures that are currently in widespread use.  

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/11/6/685/s1, Table 

S1: Supplemental Table 1. 
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