Supplementary Materials: Sexual Differentiation Is Coordinately Regulated by *Cryptococcus neoformans CRK1* and *GAT1*

Kuang-Hung Liu and Wei-Chiang Shen

Figure S1. Dikaryotic filamentation of the wild-type and bilateral *crk1* mutant crosses during mating process was examined. Bisexual mating of the *MATa* wild-type P_{GPD1}::*GFP-H2B* and *MATα* wild-type strains (**A**) and *MATa crk1* P_{GPD1}::*GFP-H2B* and *MATα crk1* mutants (**B**) was conducted on V8 agar plates incubated at 26° in the dark. Colony edges of mating mixtures were photographed from 16 to 72 hr post-incubation at 100x magnification.

Figure S2. *ZNF2* mutation did not affect *CRK1* expression, but blocked dikaryotic filamentation in the bilateral *crk1* mutant cross. (**A**) *C. neoformans MAT***a** and *MAT* α strains were crossed as indicated. Mating was conducted on V8 agar plates incubated at 26° in the dark. Photos were taken 24 hr post-incubation at 100x magnification. Bilateral crosses of the *MAT***a** and *MAT* α wild-type and *znf2* mutants were conducted. Samples were collected at 0, 6, 18 and 24 hr post-incubation and subjected to gene expression analysis. *MF* α (**B**) and *CRK1* (**C**) expression during bisexual mating was examined by real-time qRT-PCR analysis. Triplicate reactions for each sample were conducted. The results were normalized to *C. neoformans GPD1* expression. (** indicates P<0.005).

Figure S3. The expression level of mating-related genes were upregulated slightly in the bilateral *crk1gat1* mating cross. Bilateral crosses involved the *MAT***a** and *MAT* α wild-type, *gat1*, *crk1*, and *crk1gat1* mutants were conducted on V8 agar plates and incubated at 26° in the dark. Samples were collected at 0, 18, and 24 hr post-incubation. The expression of *MF* α (**A**), *MAT2* (**B**), *CSA1* (**C**), and *DMC1* (**D**) was examined by real-time qRT-PCR analysis. Triplicate reactions for each sample were conducted. The results were normalized to *C. neoformans GPD1* expression. (* indicates P<0.05).

*MAT***a** WT x *MAT*α WT

MATa WT x MATa P_{GPD1}::GAT1

 $MATa P_{GPDI}::GATI \times MATa WT$

MATa P_{GPDI} ::GAT1 x MATa P_{GPDI} ::GAT1

Figure S4. Overexpression of *GAT1* did not repress dikaryotic filamenation. *C. neoformans MAT***a** and *MAT* α strains *GAT1* overexpression strains were crossed as indicated. Mating was conducted on V8 agar plates at 26° in the dark. Photos were taken at 24 hr post-incubation at 100x magnification.

Figure S5. The transcription level of $MF\alpha$ in the *GAT1* overexpression strains cross was similar to that in the wild-type cross. *C. neoformans MATa* and *MAT* α wild-type and *GAT1* overexpression strains were crossed and incubated on V8 agar plates at 26° in the dark. Samples were collected at 0 and 24 hr post-incubation. The expression of *GAT1* (**A**) and *MF* α (**B**) was examined by real-time qRT-PCR analysis. Triplicate reactions for each sample were conducted. The results were normalized to *C. neoformans GPD1* expression.

Figure S6. Dikaryotic filamentation was reduced with overexpression of *GAT1* and *CRK1*. *C. neoformans MAT***a** and *MAT* α strains were crossed as indicated. Mating was conducted on V8 agar plates at 26° in the dark. Photos were taken at 24 hr post-incubation at 100x magnification.

MATa P_{GPD1}::CRK1 x MATa P_{GPD1}::CRK1

MAT**a** P_{GPD1}::CRK1+gat1 x MATa P_{GPD1}::CRK1+gat1

Figure S7. Deletion of *GAT1* partially recovered sexual filamentation of bilateral *CRK1* overexpression cross. *C. neoformans MATa* and *MATα* strains were crossed as indicated. Mating was conducted on V8 agar plates at 26° in the dark. Photos were taken at 24 hr post-incubation at 100x magnification.

Figure S8. *GAT1* negatively regulated *MF* α and *MAT2* gene expression during mating process. Bilateral crosses involved the *MAT***a** and *MAT* α wild-type, *gat1* mutants, P_{GPD1}::*CRK1* overexpression strains, and P_{GPD1}::*CRK1*+*gat1* mutant strains were conducted on V8 agar plates at 26° in the dark. Samples were collected at 0, 18, and 24 hr post-incubation. The expression of *MF* α (A) and *MAT2* (B) was examined by real-time qRT-PCR analysis. Triplicate reactions for each sample were conducted. The results were normalized to *C. neoformans GPD1* expression. (* indicates P< 0.05; * indicates P< 0.005).

Figure S9. Overexpression of *GAT1* and *CRK1* reduced *MF* α expression during bisexual mating. Bilateral crosses involved the *MAT***a** and *MAT* α wild-type, *crk1*, *gat1*, and *GAT1*^{T1164A} mutants, and *MAT***a** wild-type crossed with *MAT* α *crk1* + P_{*GPD1*}.:*CRK1*, and *MAT* α *crk1* + P_{*GPD1*}.:*CRK1* + P_{*GPD1*}.:*GAT1* strains were conducted on V8 agar plates at 26° in the dark. Samples were collected at 0 and 24 hr post-incubation and the expression of *GAT1* (**A**) and *MF* α (**B**) was examined by real-time qRT-PCR analysis. Triplicate reactions for each sample were conducted. The results were normalized to *C. neoformans GPD1* expression.

Primer name	Sequences (5'-3')	Description	
WC270	GCTGCGAGGATGTGAGCTGG	HYG marker	
WC271	GGTTTATCTGTATTAACACGG	HYG marker	
WC739	GTATTGACCGATTCCTTGCGGTCCGAA	HYG marker	
WC765	GATGTAGGAGGGCGTGGATATGTCCT	HYG marker	
WC885	AAATAGCTGCGCCGATGGTTT	HYG marker	
WC886	CGAACCCGCTCGTCTGGCTAA	HYG marker	
WC1130	GCAGAGAACAGTTAGAAGCC	MAT2 disruption	
WC1131	CTTCCGTGTTAATACAGATAAACCATCTGATCGATACAA	MAT2 disruption	
WC1132	CTCTCCAGCTCACATCCTCGCAGCTGAGTGGTATACCCTA	MAT2 disruption	
WC1133	GTTGCGTGTCGAACCATCTT	MAT2 disruption	
WC1734	CGGGATCCATGCTCAAGAGAATTAGTGA	MAT2 overexpression	
WC1735	CGGGGTACCTGTTGGCTGTCACTGC	MAT2 overexpression	
WC1256	TTCTGAGCCATATATCTGTC	ZNF2 disruption	
WC1257	CTTCCGTGTTAATACAGATAAACCTGTCGTAAAGGATGGAGGAG	ZNF2 disruption	
WC1258	CTCTCCAGCTCACATCCTCGCAGCCGTTAATCCAAAGTATTGAC	ZNF2 disruption	
WC1259	CAAGACCTATAAAGCGAGAT	ZNF2 disruption	
WC2432	GTTGACCCTTCCGGGGTGT	GAT1 disruption	
WC2433	TTGCTACCGACAGTTTCCCT	GAT1 disruption	
WC2434	CTTCCGTGTTAATACAGATAAACCTCTAGCCGCCGCTAGCTGCT	GAT1 disruption	
WC2435	CTCTCCAGCTCACATCCTCGCAGCGCGAATGAATAGGAGCAGTG	GAT1 disruption	
WC2436	TCAACTGCTAACAGTCCGGA	GAT1 disruption	
WC2437	GCGCGGCGGCAGAAACTTTC	GAT1 disruption	
WC2555	GCGGCCGCATGGACAAGCTTCCATGGCGCAC	GAT1 overexpression	
WC2556	GCGGCCGCGTTGAAAAGAAAGGCGCACG	GAT1 overexpression	
WC2594	ACTAGTCCTCTCAAGCCCTACGTATT	GAT1 reconstitution	
WC2595	ACTAGTGTTGAAAAGAAAGGCGCACG	GAT1 reconstitution	
WC1181	TGTAAAACGACGGCCAG	GAT1 site-directed mutagenesis	
WC2567	GGATCCCAGCAAGCCGATCCCGTTCT	GAT1 site-directed mutagenesis	
WC2573	ACTAGTGTTGAAAAGAAAGGCGCACG	GAT1 site-directed mutagenesis	
WC2604	CCCGACCAGGTGCGCCGACGAGTGAA	GAT1 site-directed mutagenesis	
WC2605	TTCACTCGTCGGCGCACCTGGTCGGG	GAT1 site-directed mutagenesis	

Table S1. Oligonucleotide primers used in this study.

WC2639	GTGAGTTACCGTGTCAACAT	GAT1 site-dire	cted mutagenesis
WC3257	CCCGACCAGGTGACCCGACGAGTGAA	GAT1 site-dire	cted mutagenesis
WC3258	TTCACTCGGGTCACCTGGTCGGG	GAT1 site-dire	cted mutagenesis
WC316	TTCTGAGAGCCCTGAGT	GPD1	qRT-PCR
WC317	GGCATCAACACCAGCA	GPD1	qRT-PCR
WC566	TGAACAGGGTGGAGAAAGGTAAG	SXI1a	qRT-PCR
WC567	AGTGAAACGGTATTTGAAGGCG	SXI1a	qRT-PCR
WC572	CTCGCTCATTAGACAGCAACTCA	MFα	qRT-PCR
WC573	GAAGATGGCAGTGAAGGCGT	MFα	qRT-PCR
WC617	AGTTGATGCTATGTTAGGTGGAGGA	DMC1	qRT-PCR
WC618	CGCACAAGGTATGACAAAGCTG	DMC1	qRT-PCR
WC875	CCAGATATCAGAGCGGTGTACG	MAT2	qRT-PCR
WC876	TTTTCGGCCTTCCTCTTAGGT	MAT2	qRT-PCR
WC879	GATGCTGCCGCTTGAAATG	ZNF2	qRT-PCR
WC880	TCGCGAGACATAGGCGTATTC	ZNF2	qRT-PCR
WC1428	CAGCAATGGCCATCTTTTCTC	KAR7	qRT-PCR
WC1429	CGGTTCGTCAGCCAACAGA	KAR7	qRT-PCR
WC1440	TATGCCTCCACCAGATGT	CRK1	qRT-PCR
WC1441	GGCTGTCGGGTCTACCAATC	CRK1	qRT-PCR
WC2133	AGGTGCAGAGGTTACGGTGATT	GAT1	qRT-PCR
WC2134	TTGTCGAGCCTGGAGAATGC	GAT1	qRT-PCR
WC2717	AGCCCGAGGACAGGAACAA	PUM1	qRT-PCR
WC2718	CGTGAATGAGGGCCTTTTCA	PUM1	qRT-PCR
WC3370	AGACTCGACCACAGGCAG	CSA1	qRT-PCR
WC3371	AAAGGACAGGGTCAGGGTT	CSA1	qRT-PCR

JEC21 ID	H99 ID	Gene Name
CNA01820	CNAG_00193	GAT1
CNA06480	CNAG_00670	FZC12
CNA07670	CNAG_00791	HLH1
CNB02070	CNAG_03710	ECM22
CNC02140	CNAG_01708	GAT7
CND02990	CNAG_01173	PAN1
CNG03610	CNAG_03212	HCM101
CNG04450	CNAG_03116	HCM1
CNH00870	CNAG_05420	RGM1
CNI01910	CNAG_04359	Hypothetical protein
CNI02050	CNAG_04345	ARO8001
CNJ00250	CNAG_04583	DDT1
CNJ00280	CNAG_04586	HOB7
CNJ00300	CNAG_04588	ERT1
CNJ00330	CNAG_04594	FZC27
CNJ00670	CNAG_04630	YAP2
CNJ02030	CNAG_04774	FZC26
CNJ02610	CNAG_04836	FZC10
CNJ03310	CNAG_04908	CLR4
CNK00590	CNAG_02566	FKH2
CNM01040	CNAG_06097	Hypothetical protein
CNM02250	CNAG_06223	MIZ1

Table S2. Potential transcription factor targets of C. neoformans Crk1.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).