Supplementary Material: Development of novel chemically-modified nucleic acid molecules for efficient inhibition of human *MAPT* gene expression

Madhuri Chakravarthy, Suxiang Chen, Tao Wang and Rakesh N. Veedu

Table S1. List of first-generation DNAzymes and their sequences. Red nucleotides represent nucleotides in the catalytic loop. Blue nucleotides represent the cleavage site. Blue underlined nucleotides represent the cleavage site on the target sequence.

Name	Sequence	Target Sequence	Target
	ATCTTCCA	<u> </u>	U
RNV547	GGCTAGCTACAACGA	CGAAGTG <u>AT</u> GGAAGAT	Exon 1
	CACTTCG		
	CAGCGTGA		
RNV548	GGCTAGCTACAACGA	ATGGAAG <u>AT</u> CACGCTG	Exon 1
	CTTCCAT		
	CCCCCTGA		
RNV549	GGCTAGCTACAACGA	AGGAAAG <u>AT</u> CAGGGGG	Exon 1
	CTTTCCT		
	TTGGTGCA		
RNV550	GGCTAGCTACAACGA	CTACACC <u>AT</u> GCACCAA	Exon 1
	GGTGTAG		
	TCCTCAGA		
RNV551	GGCTAGCTACAACGA	AGGACGG <u>AT</u> CTGAGGA	Exon 2
	CCGTCCT		
	TCTTAGCA		
RNV552	GGCTAGCTACAACGA	ACCTCTG <u>AT</u> GCTAAGA	Exon 2
	CAGAGGT		
	CTCCCTCA		
RNV553	GGCTAGCTACAACGA	TTAGTGG <u>AT</u> GAGGGAG	Exon 3
	CCACTAA		
	TTCTGGGA		
RNV554	GGCTAGCTACAACGA	CACGGAG <u>AT</u> CCCAGAA	Exon 3
	CTCCGTG		
	GTCTCCAA		
RNV555	GGCTAGCTACAACGA	AGCAGGC <u>AT</u> TGGAGAC	Exon 3
	GCCTGCT		
	TTTTGTCA		
RNV556	GGCTAGCTACAACGA	GGAAGCG <u>AT</u> GACAAAA	Exon 5
	CGCTTCC		
	TGTGGCGA		
RNV557	GGCTAGCTACAACGA	AACGAAG <u>AT</u> CGCCACA	Exon 7
	CTTCGTT		
	TGCTGGAA		
RNV558	GGCTAGCTACAACGA	CACCAGG <u>AT</u> TCCAGCA	Exon 7
	CCTGGTG		
	TCCCCTGA		
RNV559	GGCTAGCTACAACGA	CTCCAAA <u>AT</u> CAGGGGA	Exon 9
	TTTGGAG		

	CCGCTGCGA		
RNV560	GGCTAGCTACAACGA	TCAGGGG <u>AT</u> CGCAGCGG	Exon 9
	CCCCTGA		
	ACTTGACA		
RNV561	GGCTAGCTACAACGA	CTGAAGA <u>AT</u> GTCAAGT	Exon 9
	TCTTCAG		
	TTG CCTAA		
RNV562	GGCTAGCTACAACGA	GTGGCTC <u>AT</u> TAGGCAA	Exon 11
	GAGCCAC		
	GTTTATGA		
RNV563	GGCTAGCTACAACGA	AACATCC <u>AT</u> CATAAAC	Exon 11
	GGATGTT		
	CTGGTTTA		
RNV564	GGCTAGCTACAACGA	ATCCATC <u>AT</u> AAACCAG	Exon 11
	GATGGAT		
	TTCTCAGA		
RNV565	GGCTAGCTACAACGA	AAGTAAA <u>AT</u> CTGAGAA	Exon 12
	TTTACTT		
	GGACCCAA		
RNV566	GGCTAGCTACAACGA	GTCGAAG <u>AT</u> TGGGTCC	Exon 12
	CTTCGAC		
	GGGTGATA		
RNV567	GGCTAGCTACAACGA	CTGGACA <u>AT</u> ATCACCC	Exon 12
	TGTCCAG		
	GTGGGTGA		
RNV568	GGCTAGCTACAACGA	GGACAAT <u>AT</u> CACCCAC	Exon 12
	ATTGTCC		
	GTACACGA		
RNV569	GGCTAGCTACAACGA	GGCGGAG <u>AT</u> CGTGTAC	Exon 13
	CTCCGCC		
	TGCTGAGA		
RNV570	GGCTAGCTACAACGA	CCACGGC <u>AT</u> CTCAGCA	Exon 13
	GCCGTGG		
	AGGAGACA		
RNV571	GGCTAGCTACAACGA	CTCAGCA <u>AT</u> GTCTCCT	Exon 13
	TGCTGAG		
	CATGTCGA		
RNV572	GGCTAGCTACAACGA	CGGCAGCATCGACATG	Exon 13
	GCTGCCG		
	GTCTACCA		
RNV573	GGCTAGCTACAACGA	CATCGAC <u>AT</u> GGTAGAC	Exon 13
	GTCGATG		

Figure S1: Representative RT-PCR products of the *MAPT* and *GAPDH* transcripts from SH-SY5Y cells after treatment with DNAzyme at 400 nM, and 50 nM concentrations. The RT-PCR products after treatment with RNV547, RNV548, RNV549, RNV550, RNV551, RNV552, RNV553, RNV554, RNV555, RNV556, RNV557, RNV558, RNV559, RNV560, RNV561, RNV562, RNV563, RNV564, RNV565, RNV566, RNV567, RNV568, RNV569, RNV570, RNV571, RNV572 and RNV573 are shown here. The

RNA from RNV547- RNV552 treated samples were amplified using primer set 1. The RNA from RNV553-RNV556 treated samples were amplified using primer set 2. The RNA from RNV557-561 treated samples were amplified using primer set 3. The RNA from RNV562-RNV573 treated samples were amplified using primer set 4. RNV FL, full-length; UT, untreated; *GAPDH* was used as a loading control.

Figure S2: Representative RT-PCR products of the *MAPT* and *GAPDH* transcripts from SH-SY5Y cells after treatment with DNAzyme at 400 nM, 200 nM, 100 nM and 50 nM concentrations. The RT-PCR products after treatment with RNV559, RNV561, RNV563 and RNV563 are shown here. The RNA from RNV559 and RNV561 treated samples were amplified using primer set 2. The RNA from RNV563 and RNV569 treated samples were amplified using primer set 4. FL, full-length; UT, untreated; *GAPDH* was used as a loading control. [The gel in this figure is the original gel representing the gel in Figure 2 of the article. The cropped gel has been shown in Figure 2 of the article due to other unimportant samples that exist between the desired samples.].

Table S2: The average activity of 1st generation DNAzymes (at 400 nM concentration) in SH-SY5Y cells (knockdown of *MAPT* transcript).

Name	Average Activity of DNAzyme in SH-	
	SY5Y cells	
559	0%	
561	26%	
563	58%	
569	0%	

Figure S3: Representative RT-PCR products of the *MAPT* and *GAPDH* transcripts from SH-SY5Y cells after treatment with DNAzyme at 400 nM, 200 nM, 100 nM and 50 nM concentrations. The RT-PCR

products after treatment with RNV608, RNV609, RNV610, 611 and RNV612 are shown here and were amplified using primer set 4. FL, full-length; UT, untreated; *GAPDH* was used as a loading control.

Table S3. The average activity of 2nd generation DNAzymes (at 400 nM concentration) in SH-SY5Y cells (knockdown of *MAPT* transcript).

Figure S4. *In vitro* cleavage of the FAM-conjugated *MAPT* RNA template composed of exon 11 region (34 nucleotides) by RNV563 and its derivatives. FL RNA, full-length; FAM-conjugated RNA; cleaved RNA; the cleaved FAM-conjugated *MAPT* RNA (22 nucleotides long). The FAM- conjugated template RNA is a small region of the *MAPT* transcript complementary to the hybridisation arms of the DNAzymes of interest. [The gel in this figure is the original gel representing the gel in Figure 3 of the article. The cropped gel has been shown in Figure 3 of the article due to other unimportant samples or unwanted spaces that exist between the desired samples.].

AO Number	AO Name	AO Sequence	Target
AO1	MAPT E1A(+11+35)	TCCATCACTTCGAACTCCTGGCGGG	Exon 1
AO2	MAPT E1A(+41+65)	TCCCCCAACCCGTACGTCCCAGCGT	Exon 1
AO3	MAPT E1A(+91+115)	TGTCACCCTCTTGGTCTTGGTGCAT	Exon 1
AO4	MAPT E4A(+1+25)	GTGTCTCCAATGCCTGCTTCTTCAG	Exon 4
AO5	MAPT E4A(+26+50)	AGCAGCTTCGTCTTCCAGGCTGGGG	Exon 4
AO6	MAPT E5A(+16+40)	TCGCTTCCAGTCCCGTCTTTGCTTT	Exon 5
AO7	MAPT E5D(+3- 22)	ctccgtggcatcgtcagcttacCTT	Exon 5
AO8	MAPT E7A(+26+50)	GGAGGGGCTGCTCCCCGCGGTGTGG	Exon 7
AO9	MAPT E7A(+46+70)	TGGCCTGGCCCTTCTGGCCTGGAGG	Exon 7
AO10	MAPT E7A(+71+95)	GTTTTTGCTGGAATCCTGGTGGCGT	Exon 7
AO11	MAPT E7A(+97+121)	TGGGTGGTGTCTTTGGAGCGGGCGG	Exon 7
AO12	MAPT E7D(+5- 20)	caagagaacgttcttcttacCAGAG	Exon 7
AO13	MAPT E9A(+1+25)	CGATCCCCTGATTTTGGAGGTTCAC	Exon 9
AO14	MAPT E9A(+111+135)	TACGGACCACTGCCACCTTCTTGGG	Exon 9
AO15	MAPT E9A(+159+183)	GGGCTGTCTGCAGGCGGCTCTTGGC	Exon 9
AO16	MAPT E9A(+196+220)	TTGGACTTGACATTCTTCAGGTCTG	Exon 9
AO17	MAPT E9A(+226+250)	TGGTGCTTCAGGTTCTCAGTGGAGC	Exon 9
AO18	MAPT E9D(+21- 4)	tcacCTTCCCGCCTCCCGGCTGGTG	Exon 9
AO19	MAPT E12A(- 5+20)	TACTTCCACCTGGCCACCTCctaga	Exon 12
AO20	MAPT E12A(+ 21+45)	CCTTGAAGTCAAGCTTCTCAGATTT	Exon 12
AO21	MAPT E12A(+46+70)	GACCCAATCTTCGACTGGACTCTGT	Exon 12
AO22	MAPT E12A(+81+95)	AGGGACGTGGGTGATATTGTCCAGG	Exon 12

Table S4. List of 2'-OMePS AOs and their sequences. In the sequences, capital letters denote bases from the exon regions, and small letters denote bases from the intronic region.

Figure S5: Representative RT-PCR products of the *MAPT* transcripts from SH-SY5Y cells after treatment with splice-modulating AOs at 400 nM, and 50 nM concentrations. The RT-PCR products after treatment with AOs 1-22 are shown here. The RNA from AOs 1-3 were amplified using primer set 2. The RNA from AOs 4-18 were amplified using primer set 3. The RNA from AOs 19-22 were amplified using primer set 4. FL, full-length; UT, untreated; SCR, scrambled sequence.

Figure S6. A. Representative RT-PCR products of the *MAPT* transcripts from SH-SY5Y cells after treatment with AO4, AO5, AO6, and AO19 at 400 nM, 200 nM, 100 nM and 50 nM concentrations. B. Representative RT-PCR products of the *MAPT* and *GAPDH* transcripts from SH-SY5Y cells after treatment with AO4, AO5, AO6, and AO19 at 50 nM, 25 nM, 12.5 nM and 6.25 nM concentrations. AO4 targets exon 4, AO5 and AO6 target exon 5, and AO19 targets exon 12 of the *MAPT* transcript. The RNA form AO4, AO5 and AO6 treated samples were amplified using primer set 2. The RNA from AO19 treated samples were amplified using primer set 4. FL, full-length; UT, untreated; SCR, scrambled sequence; *GAPDH* was used as a loading control. [The gel in this figure is the original gel representing the gel in Figure 4 of the article. The cropped gel has been shown in Figure 4 of the article due to unwanted spaces that exist on the gel.].

Figure S7. Densitometry analysis of RT-PCR products (three replicates) using AO4, AO6, AO7 and AO19 showed downregulation and exon-skipping of *MAPT* transcript in SH-SY5Y cells *in vitro*. Concentrations of AOs used include 400 nM, 200 nM, 100 nM and 50 nM. The error bars represent the standard error of mean. B. Densitometry analysis of RT-PCR products (more than two replicates) using AO4, AO6, AO7 and AO19 showed downregulation and exon-skipping of *MAPT* transcript in SH-SY5Y cells *in vitro*. Concentrations of AOs used include 50 nM, 25 nM, 12.5 nM and 6.25 nM. The error bars represent the standard error of mean.

Figure S8. A. Representative RT-PCR products of the MAPT transcripts from SH-SY5Y cells after treatment with AO4 50 nM concentration and incubation of AO for 24 h, 48 h and six days. AO4 targets exon 4 of the *MAPT* transcript. **B**. Representative protein products of the *MAPT* and *GAPDH* transcripts from SH-SY5Y cells after treatment with AO4 at 50 nM concentrations and incubation of AO for 24 h, 48 h and six days. AO4 targets exon 4 of the *MAPT* transcript. The RNA from AO4 treated samples for the RT-PCR were amplified using primer set 2. FL, full-length; UT, untreated; SCR, scrambled sequence; *GAPDH* was used as a loading control. [The gel in this figure is the original gel representing the gel in Figure 5 of the article. The cropped gel has been shown in Figure 5 of the article due to unwanted spaces, other unimportant samples, and non-specific bands that exist on the gel and membrane.].

Figure S9. A. Representative protein products of the *MAPT* and β -*actin* transcripts from SH-SY5Y cells after treatment with AO4 at 50 nM concentrations and incubation of AO for 24 h, 48 h and six days. AO4 targets exon 4 of the *MAPT* transcript. **B.** Densitometry analysis of the western blot (three replicates) shown in A of this figure. The error bars represent the standard error of mean. **C.** Representative protein products of the *MAPT* and β -*actin* transcripts from SH-SY5Y cells after treatment with RNV563 at 400 nM concentrations and incubation of DNAzyme for 24 h, 48 h and six days. RNV563 targets exon 9 of the *MAPT* transcript. **D.** Densitometry analysis of the western blot (three replicates) shown in C of this figure. The error bars represent the standard error of mean.

Table S5. List of primers used, their sequences and the expected product lengths.

Primer Set	Primer pairs	Primer Sequences	Expected product length
MAPT	MAPT6_Ex0Fa	5' TCCTCGCCTCTGTCGACTAT 3'	Variant 2/8= 340 bp
Primer	MAPT6_Ex3R	5' TCCTTCTGGGATCTCCGTGT 3'	

MAPT Primer Set 2	MAPT6_Ex3F MAPT6_Ex7R	5' GTGACAGCACCCTTAGTGGA 3' 5' GCGGGGTTTTTGCTGGAATC 3'	Variant 2/8= 307 bp
MAPT Primer Set 3	MAPT6_Ex5F MAPT6_Ex11R	5' AAGACGGGACTGGAAGCGAT 3' 5' TGCTCAGGTCAACTGGTTTGT 3'	Variant 2/3/5= 555 bp Variant 4/7/8= 462 bp
MAPT Primer Set 4	MAPT6_Ex10F MAPT6_Ex13Ra	5' TTAGCAACGTCCAGTCCAAGT 3' 5' AGGTTGACATCGTCTGCCTG 3'	Variant 2/3/5= 968 bp
GAPDH Primer set	GAPDH For GAPDH Rev	5' GGACTCATGACCACAGTCCATGC 3' 5' TTACTCCTTGGAGGCCATGTGGG 3'	492 bp

Table S6. The PCR conditions for each primer set.

	Temperature	Time	
	55°C	30 min	
MAPT Primer Set 1	94°C	2 min	
(50 ng each)	94°C	30 s	
	55°C	1 min	28 cycles
	68°C	2 min	
	Temperature	Time	
	55°C	30 min	
MAP1 Primer Set 3 &	94°C	2 min	
(50 ng ogch)	94°C	30 s	
(50 lig each)	60°C	1 min	34 cycles
	68°C	2 min	
	Temperature	Time	
MADT During on Cat 2 %-	55°C	30 min	
MAP I Frimer Set 2 &	94°C	2 min	
(50 mg osch)	94°C	30 s	
(50 lig each)	60°C	1 min	30 cycles
	68°C	2 min	
	Temperature	Time	
GAPDH Primer set	55°C	30 min	
(12.5 ng each)	94°C	2 min	
	94°C	30 s	16 cycles

Table S7. List of primers used, their binding co-ordinates, the expected full-length product size and the exon-skipped product size.

MAPT Primer Set	Primer pairs	Primer binding Co- ordinates	Expected full-length product size	Exon skipped product size
1	MAPT6_Ex0Fa MAPT6_Ex3R	Exon 0 (+283 +302) Exon 3 (+79+60)	Variant 2/8= 340 bp	∆Exon1=190bp
2	MAPT6_Ex3F MAPT6_Ex7R	Exon 3 (+2+21) Exon 7 (+99+80)	Variant 2/8= 307 bp	ΔExon4=241bp ΔExon5=251bp
3	MAPT6_Ex5F MAPT6_Ex11R	Exon 5 (+21+40) Exon 11 (+33+13)	Variant 2/3/5= 555 bp Variant 4/7/8= 462 bp	ΔExon7 Variant 2/3/5=428bp Variant 4/7/8=335bp ΔExon9 Variant 2/3/5=289bp

Figure S10. Exon map of the *MAPT* variants found in the human brain and the primer binding sites of the primer sets used in this study.

Score 1482 b	its(802)	Expect Ide 0.0 81	entities 1/818(99%)	Gaps 1/818(0%)	Strand Plus/Plus	
Query	1259	GTTGACCTGAGCAAGGTGAG	CCTCCAAGTGTGGCTCATT	AGGCAACATCCATCAT	AAACCA	1318
Sbjct	62	GTTGACCTGAGCAAGGTGAC	CTCCAAGTGTGGCTCATT	AGGCAACATCCATCAT	AAACCA	121
Query	1319	GGAGGTGGCCAGGTGGAAGT	TAAAATCTGAGAAGCTTGA	CTTCAAGGACAGAGTC	CAGTCG	1378
Sbjct	122	GGAGGTGGCCAGGTGGAAGT	TAAAATCTGAGAAGCTTGA	CTTCAAGGACAGAGTC	CAGTCG	181
Query	1379	AAGATTGGGTCCCTGGACAA	ATATCACCCACGTCCCTGG	CGGAGGAAATAAAAAG	ATTGAA	1438
Sbjct	182	AAGATTGGGTCCCTGGACAA	ATATCACCCACGTCCCTGG	CGGAGGAAATAAAAAG	ATTGAA	241
Query	1439	ACCCACAAGCTGACCTTCCG	GCGAGAACGCCAAAGCCAA	GACAGACCACGGGGCG	GAGATC	1498
Sbjct	242	ACCCACAAGCTGACCTTCCG	GCGAGAACGCCAAAGCCAA	GACAGACCACGGGGCG	GAGATC	301
Query	1499	GTGTACAAGTCGCCAGTGGT	TGTCTGGGGACACGTCTCC/	ACGGCATCTCAGCAAT	GTCTCC	1558
Sbjct	302	GTGTACAAGTCGCCAGTGGT	TGTCTGGGGGACACGTCTCC	ACGGCATCTCAGCAAT	GTCTCC	361
Query	1559	TCCACCGGCAGCATCGACAT	TGGTAGACTCGCCCCAGCT	CGCCACGCTAGCTGAC	GAGGTG	1618
Sbjct	362	TCCACCGGCAGCATCGACAT	TGGTAGACTCGCCCCAGCT	CGCCACGCTAGCTGAC	GAGGTG	421
Query	1619	TCTGCCTCCCTGGCCAAGCA	AGGGTTTGTGATCAGGCCC	CTGGGGCGGTCAATAA	TTGTGG	1678
Sbjct	422	TCTGCCTCCCTGGCCAAGCA	AGGGTTTGTGATCAGGCCC	CTGGGGCGGTCAATAA	TTGTGG	481
Query	1679	AGAGGAGAGAGATGAGAGAG	TGTGGaaaaaaaaaGAATA	ATGACCCGGCCCCCGC	сстстс	1738
Sbjct	482	AGAGGAGAGAGAATGAGAGAG	TGTGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ATGACCCGGCCCCCGC	cctctg	541
Query	1739	CCCCCAGCTGCTCCTCGCAG	GTTCGGTTAATTGGTTAAT		GTCACT	1798
Sbjct	542	CCCCCAGCTGCTCCTCGCAG	GTTCGGTTAATTGGTTAAT	CACTTAACCTGCTTTT	GTCACT	601
Query	1799	CGGCTTTGGCTCGGGACTTC	CAAAATCAGTGATGGGAGT	AAGAGCAAATTTCATC	TTTCCA	1858
Sbjct	602	CGGCTTTGGCTCGGGACTTC	CAAAATCAGTGATGGGAGT	AAGAGCAAATTTCATC	TTTCCA	661
Query	1859	AATTGATGGGTGGGCTAGTA		aaCATTCAAAAACATG	GCCACA	1918
Sbjct	662	AATTGATGGGTGGGCTAGTA		AACATTCAAAAACATG	GCCACA	721
Query	1919	TCCAACATTTCCTCAGGCAA	ATTCCTTTTGATTCTTTT	TCTTCCCCCTCCATGT	AGAAGA	1978
Sbjct	722	TCCAACATTTCCTCAGGCAA	ATTCCTTTTGATTCTTTT	tcttccccctccatgt	ANAANA	781
Query	1979	GGGAGAAGGAGAGGCTCTGA	AAAGCTGCTTCTGGGGGAT	TTCAAGGGACTGGGGG	TGCCAA	2038
Sbjct	782	NGGAGAAGGANAGGCTCTGA	AAAGCTGCTTCTGGGGGGAN	TTCAAGGGACTGGGGG	TGCCAA	841
Query	2039	CCACCTCTGGCCCTGTTGTG	GGGGGTGTCACAGAGGCAG	2076		
Sbjct	842	CCACCTCTGGCCCTGTTGT-	-GGGGTGTCACANAGGCAG	878		

Figure S11. Sequence alignment of the full length band (968bp product) from RNV563 treated samples and the longest *MAPT* isoform, variant 2. .

Figure S12. A. Exon 3- Exon 5 region of the sequencing of the FL (307 bp) product from AO4 treated sample. **B**. Exon 3- Exon 5 region of the sequencing of the exon-skipped (241 bp) product from AO treated sample.