
genes
G C A T

T A C G

G C A T

Article

PlantMirP-Rice: An Efficient Program for Rice
Pre-miRNA Prediction

Huiyu Zhang 1, Hua Wang 2, Yuangen Yao 1,* and Ming Yi 3

1 Department of Physics, College of Science, Huazhong Agricultural University, Wuhan 430070, China;
zhanghuiyu@webmail.hzau.edu.cn

2 School of Basic Medical Science, Hubei University of science and technology, Xianning 437100, China;
whlei@alumni.hust.edu.cn

3 School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China;
mingyi@cug.edu.cn

* Correspondence: yyg@mail.hzau.edu.cn

Received: 3 May 2020; Accepted: 15 June 2020; Published: 18 June 2020
����������
�������

Abstract: Rice microRNAs (miRNAs) are important post-transcriptional regulation factors and
play vital roles in many biological processes, such as growth, development, and stress resistance.
Identification of these molecules is the basis of dissecting their regulatory functions. Various
machine learning techniques have been developed to identify precursor miRNAs (pre-miRNAs).
However, no tool is implemented specifically for rice pre-miRNAs. This study aims at improving
prediction performance of rice pre-miRNAs by constructing novel features with high discriminatory
power and developing a training model with species-specific data. PlantMirP-rice, a stand-alone
random forest-based miRNA prediction tool, achieves a promising accuracy of 93.48% based
on independent (unseen) rice data. Comparisons with other competitive pre-miRNA prediction
methods demonstrate that plantMirP-rice performs better than existing tools for rice and other plant
pre-miRNA classification.
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1. Introduction

MicroRNAs (miRNAs) are an important type of short (approximately 20–24 nucleotides (nt))
small non-coding RNA (sRNA), and they are involved extensively in post-transcriptional regulation
of gene expression in animals, plants, and viruses [1]. In plants, the primary transcript of miRNA
gene (pri-miRNA) is mainly transcribed from intergenic regions of the genome by RNA polymerase II,
and then pri-miRNA is cleaved into miRNA precursor (pre-miRNA) with characteristic stem–loop
(hairpin) structure. Subsequently, pre-miRNA, which is exported to the cytoplasm under the action
of HASTY protein, is cleaved by Dicer-like (DCL) enzyme into a miRNA duplex, consisting of a
miRNA and miRNA* strand. miRNA duplex is further processed into mature miRNA in the cytoplasm.
Finally, mature miRNA is included into RNA-induced silencing complex (RISC), and it then mediates
the degradation or transcription inhibition of messenger RNA (mRNA) through the principle of
complementary base pairing [2–5].

It has been confirmed that plant miRNAs are crucial regulators in plant growth, development,
and stress resistance [6,7]. Particularly, Oryza sativa L. is an important crop and staple food for Asian
countries, thus Oryza sativa miRNAs attract much attention. As a typical example, Wang et al. validated
that miR164a, as a general negative regulator, is involved in rice immunity against the blast fungus by
targeting OsNAC60. Furthermore, they argued that the miR164a/OsNAC60 module may be considered
as a common immune regulator for diverse pathogens [8]. Moreover, yield of rice can be greatly
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increased by shaping inflorescence architecture through blocking miR396b with direct induction of the
OsGRF6 gene (miR396b–OsGRF6 module) [9]. The effects of miR396c–OsGRF4-OsGIF1 regulatory
module on grain size and yield of rice can be confirmed [10]. In addition, Swetha et al. revealed that
major domestication-related phenotypes are related to loss of miRNA-mediated laccase silencing in
Indian rice [11]. Transgenic microRNA-14 rice has been shown to have high resistance to rice stem
borer [12].

Identification of miRNAs is a foundation for dissecting their regulatory functions. Traditionally,
identifying miRNAs with experimental methods is inevitably time-consuming, cost-expensive, and
even leads to many miRNAs being missed [13]. Next-generation sequencing technology has made it
possible to identify miRNAs in genome-scale with high sensitivity. Currently, miRNAs are identified
based on deep-sequencing technology followed by bioinformatics analyses and/or wet methods, such
as Northern blot analyses and qPCR assay. Identification of miRNAs from deep-sequencing reads is
almost exclusively based on identification of characteristic hairpin structures of pre-miRNA sequences.
The pre-miRNA sequences are obtained by firstly mapping short sequences to genome, and then
searching those loci that may produce stable stem–loop structures [14–18]. However, in order to
improve true positive rate, many mapping loci with low density of read coverage may be directly
discarded even if their flanking sequences can perfectly form hairpin structures. Therefore, these
miRNA biogenesis-based approaches may miss some low abundance miRNAs [14–18].

Compared with the former methods, machine-learning-based methods do not require genomic
information and expression information, and mainly leverage sequence and structure features of
pre-miRNAs. Thus, machine-learning-based methods can be used for de novo prediction of miRNAs,
i.e., without using a reference genome. In fact, some of these tools have been successfully used to
distinguish pre-miRNAs from other RNA sequences [19–23]. Although, like animal pre-miRNAs,
plant pre-miRNAs also have the stem–loop structures, secondary structure of plant pre-miRNAs
is more complicated than that of animal pre-miRNAs, which makes plant pre-miRNA prediction
more difficult. This may be a reason why few of prediction tools are designed specifically for plant
pre-miRNAs. In 2010, Xuan et al. constructed a support vector machine-based (SVM-based) classifier
(PlantMiRNAPred) with positive pre-miRNAs from eight plant species. The PlantMiRNAPred SVM
performs excellently in the classification of real and pseudo plant pre-miRNAs [24]. In addition, other
tools have also be developed for plant pre-miRNA detection, such as random forest-based HuntMi [25],
decision tree-based miRNAprediction [26], and SVM-based miPlantPreMat [5]. Previously, we also
developed plantMirP for prediction of plant pre-miRNAs by incorporating five knowledge-based
energy features with 48 sequence and structure features.

Although some efforts have contributed to this area, no tool has been implemented specifically for
rice pre-miRNA prediction. We argue that the performance of plant pre-miRNA prediction can be
further improved if species-specific information embedded in sequences are artfully extracted and
characterized by well-constructed features. To do this, we present a new set of knowledge-based energy
features, then merge them with other features carefully selected from published studies to form a feature
set. Based on rice pre-miRNAs from the miRBase database, we designed a random forest-based classifier
of plantMirP-rice (hereinafter called riceMirP) to specifically predict rice pre-miRNAs. The riceMirP
exhibits a very promising performance: an accuracy of 93.48%, sensitivity of 87.91%, specificity of
98.15%, and Mathew’s correlation coefficient of 0.8710 based on independent (unseen) rice data.

2. Materials and Methods

2.1. Data Preparation

After removing sequences containing non-AUCG nucleotides, 604 Oryza sativa pre-miRNAs
were obtained from the miRBase database (release 22) (http://www.mirbase.org/) [27] and considered
as a positive dataset. We randomly selected 422 real pre-miRNAs as positive training samples
and used the others as independent positive testing samples. According to the existing method,

http://www.mirbase.org/
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negative datasets were produced from Oryza sativa protein coding sequences (CDSs) downloaded
from the PlantGDB database (http://www.plantgdb.org/). To be specific, all CDS sequences of
Oryza sativa were joined together to form a non-overlapping long sequence. Non-overlapping
segments were extracted by fragmenting this long CDS sequence. The secondary structures of
extracted segments and real rice pre-miRNAs were predicted by using RNAfold software (http:
//rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) with the default parameters. The extracted
segments are referred to as pseudo pre-miRNAs if they have hairpin structures similar to that of the
pre-miRNAs. Furthermore, in order to ensure high similarity between pseudo and real pre-miRNAs,
two criteria for randomly selecting pseudo pre-miRNAs are that: (1) the number of paired bases
(including GU wobble pairs) in the secondary structures of pseudo pre-miRNAs should not be lower
than the minimum number of paired bases in the secondary structures of real pre-miRNAs and (2) the
folding free energy of pseudo pre-miRNAs should not be higher than the maximum of the folding free
energy of the real pre-miRNAs. Finally, 502 pseudo pre-miRNAs were randomly selected as negative
training samples, and 216 pseudo pre-miRNAs as independent negative testing samples.

2.2. Feature Extraction

The sequences (character strings) of real and pseudo pre-miRNAs are submitted into RNAfold to
predict secondary structures (structure strings) with the default parameters (Figure 1). The character
strings and structure strings of real and pseudo pre-miRNAs are reversed to obtain the corresponding
reversed strings (Figure 1). As previously mentioned, in the predicted secondary structure, paired or
unpaired nucleotides indicated by “(“ in 5′ end and “)” in 3′ end are indistinguishably represented
by “(“ [20,28,29]. Then, the Needleman–Wunsch algorithm is used to align structure strings and the
corresponding reversed structure strings. The symbol of “-” is used to fill the gap between the aligned
structure strings (Figure 1). The aligned character strings are obtained according to the positions of “-”
in the aligned structure strings (Figure 1). The aligned character strings are divided into 20 segments
and the ratios of character pair w (w ∈ {AA, AU, AG, AC, UU, UG, UC, GG, GC, CC, A-, U-, G-, C-}) are
calculated in each segment. The ratios of character pair w in the s-th segment for positive and negative
samples are added up, respectively, and denoted by Pw(s) and Nw(s) Finally, position-dependent
potentials Uw(s) of character pair w in the s-th segment are calculated according to formula below:

Uw(s) = − ln
[

Pw(s)
Nw(s)

]
(1)

Here Pw(s) and Nw(s) are required to be larger than 0. w runs through all possible character pairs,
and s runs through all segments. Finally, a set of energy scores for a given sample is obtained according
to the following formulae:

S(w) =
∑

s
Uw(s) (2)

S(s) =
∑

w
Uw(s) (3)

These energy scores of S(w) and S(s) are known as the knowledge-based energy score 1 (hereinafter
called energy score 1) in order to distinguish them from the pre-existing knowledge-based energy
features presented in our previous study [29]. The flowchart of feature extraction for knowledge-based
energy score 1 is displayed in Figure 1.

http://www.plantgdb.org/
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
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2.3. Performance Evaluation

In a classification problem, four measures of the sensitivity (Se), specificity (Sp), accuracy (Ac),
and Mathew’s correlation coefficient (MCC), are widely used to evaluate the prediction model, and
they are calculated according to the following definitions [30–32]:

Se =
TP

TP + FN
(4)

Sp =
TN

TN + FP
(5)

Ac =
TP + TN

TP + FP + TN + FN
(6)

MCC =
(TP TN) − (FN FP)√

(TP + FN) (TN + FP) (TP + FP) (TN + FN)
(7)

Here TP (true positive) and FP (false positive) are the number of correctly- and incorrectly-predicted
samples in positive samples, while TN (true negative) and FN (false negative) are the number of correctly-
and incorrectly-predicted samples in negative samples. The receiver operating characteristic (ROC)
curve is plotted for visualizing classification performance. Then, the area under the receiver operating
characteristic (AUC) curve is used as a comprehensive measure to evaluate the classification algorithm.

2.4. Input, Output, Dependencies, Platforms, and Application Scenarios

RiceMirP, a random forest-based classifier, is implemented in Perl (v5.24.1) and R (v3.2.2), with
the recommended versions in parentheses. The Random Forest algorithm is implemented by the
randomForest R package (v4.6–14). RiceMirP is available as a stand-alone package where all necessary
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scripts and data (including data used in this study) are contained. The local package of riceMirP is
freely available to the academic community at https://github.com/yygen89/riceMirP. RiceMirP can
run on both Windows and Linux platforms. RiceMirP is designed in an easy-to-use manner and is an
installation-free software. Before running riceMirP, the dependencies of Perl, R, and randomForest R
package are required to be preinstalled in local machines. RiceMirP requires three FASTA-formatted
input files: the first two files containing nucleotide sequences of positive and negative training samples,
respectively, and the last one containing nucleotide sequences of testing samples. The output file of
riceMirP includes the three-column contents of the identifier, predicted label (positive or negative), and
corresponding score for each testing sample. Please make sure that the identifier for each sequence in
FASTA-formatted files is unique. Generally, a higher score indicates that the testing sample is more
likely to be a predicted label. RiceMirP can be applied to a sequence classification problem—for a given
sequence, what is the likelihood of this given sequence being positive. For miRNA prediction from
small RNA sequencing data, riceMirP, in conjunction with another kind of miRNA biogenesis-based
approach, can further reduce the false-positive rate.

3. Results

3.1. The Algorithm for the Prediction of Rice Pre-miRNAs

As we all know, for machine-learning-based classification and prediction, it is a quite crucial
and challenging task to extract appropriate features to train a model. In our previous study, a set
of knowledge-based energy features was constructed by tactfully combining a widely-used k-mer
scheme in bioinformatics with distance-dependent potential in statistical physics [29]. In addition,
knowledge-based energy features have been demonstrated to have very high discriminatory power [29],
which suggests that relative position (or distance distribution) information of k-mer pairs is very
valuable. In this study, we extend the distance-dependent potential presented previously [29] to
position-dependent potential, and then construct a new set of knowledge-based energy features (energy
score 1) (see details in Materials and Methods). In addition to the 34 novel features presented here, in
order to further improve prediction performance, we also collect 49 sequence and structure features
from previously-published studies. Full features used in riceMirP are listed in Table 1.

In order to train the prediction model, 422 known Oryza sativa pre-miRNAs (the positive training
dataset) and 502 “pseudo” pre-miRNAs (the negative training dataset) were merged together to obtain
a training dataset (see details in Materials and Methods). Based on this training dataset, 4-, 6-, 8-, and
10-fold cross-validations (CVs) were performed to evaluate performance of riceMirP. The ROC curves
of 4-, 6-, 8-, and 10-fold CVs overlapped almost completely (Figure 2), which shows that riceMirP is
very robust. Furthermore, the AUC values of 4-, 6-, 8-, and 10-fold CVs were 0.9787, 0.9785, 0.9782, and
0.9779, respectively (Figure 2), which indicates that riceMirP is a very promising tool. It is worth noting
that if only using knowledge-based energy score 1 (including 34 features), the AUC value of the 10-fold
CV was still as high as 0.936 (Figure 2). This result demonstrates that the above-mentioned features
of energy score 1 constructed based on position-dependent potential have very high discriminating
power. Moreover, an independent (unseen) testing dataset including 182 positive and 216 negative
samples was randomly selected to evaluate the prediction performance of riceMirP (see details in
Materials and Methods). As shown in Figure 3, riceMirP with full features had a promising Ac of
0.9348, Se of 0.8791, Sp of 0.9816, and MCC of 0.8710.

We compared riceMirP to the state-of-the-art plantMirP, which was recently designed especially
for prediction of plant pre-miRNAs. Based on the same training dataset of riceMirP, the 10-fold CV
was implemented for riceMirP and plantMirP, respectively. Figure 4 shows that the AUC values of
riceMirPp and plantMirP were 0.9779 and 0.9686. Therefore, riceMirP performs better to plantMirP in
rice pre-miRNA classification.

https://github.com/yygen89/riceMirP
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Table 1. Full features used in plantMirP-rice (riceMirP)

No. Feature Description Origin

1–34 Energy score 1 Obtained from position-dependent potentials with
character pair w. Novel

35 Energy score 2 Obtained from distance-dependent potentials with
3-mer pairs. plantMirP

36–45 Ratio of Unpaired bases
in sub-region

The secondary structure is divided into 10 parts, and
the ratio in each part is calculated. plantMirP

46 Size of biggest bulge A bulge contains at least three adjacent unpaired
bases. plantMirP

47 n_loops/L n_loops denotes the number of loops, L is the length
of sequence. plantMirP

48 n_stems/L A stem consists of at least three continuous paired
bases. plantMirP

49 %(|G| + |C|) (|G| + |C|)/L * 100, here |X| denotes the number of X in
sequence. miPred

50–65 %XY |XY|/(L − 1) * 100, |XY| is number of dinucleotide XY
in sequence. miPred

66 dG MFE/L, MFE is minimum of free energy of the
secondary structure. miPred

67 MFE1 (MFE/L)/%(|G| + |C|) miPred
68 MFE2 (MFE/L)/n_stems miPred

69 dP = tot_bases/L tot_bases is number of base pairs in the secondary
structure. miPred

70 MFE3 (MFE/L)/n_loops microPred

71–73 |X − Y|/L |X − Y| is the number of base pairs, (X − Y)∈[(A − U),
(G − C), (G − U)] microPred

74 Avg_bp_stem tot_bases/n_stems, n_stems denotes the number of
stems. microPred

75–77 %(X − Y)/n_stems %(X − Y) = |X − Y|/tot_bases microPred

78 pb/nb The ratio of paired nucleotides to unpaired
nucleotides. miRD

79 MCPN Maximum of consecutive paired nucleotides. ZmirP [33]

80 n_bulges/L n_bulges is the total number of bulges in the
secondary structure. ZmirP

81 Avg_bp_stem The ratio of number of base pairs to n_stems. ZmirP
82 MFE4 dG/tot_bases ZmirP
83 MFE5 dG/n_bulges ZmirPGenes 2020, 11, x FOR PEER REVIEW 7 of 12 
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3.2. Comparison with Other Competitive Methods

In order to test whether riceMirP can be used for other plant pre-miRNA prediction, we compared
riceMirP with competitive pre-miRNA prediction methods. In addition, to avoid any possible bias
from data used in riceMirP, all comparisons were performed based on the data of other tools or the
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data from the third party. We firstly compared riceMirP to plantMirP based on the training dataset
of plantMirP. Likewise, the performance comparison between two tools was visualized by the ROC
curve of 10-fold CV (Figure 5). It is evident that riceMirP is slightly superior to plantMirP in plant
pre-miRNA prediction.
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Further, we compared riceMirP with miPlantPreMat, which is an SVM-based classifier for
identifying plant pre-miRNAs and the corresponding mature miRNAs. Similarly, in order to avoid
potential effects from dataset, we firstly used the dataset (“mirPlantPre19_single.txt” & “negData.txt”) of
miPlantPreMat to train a prediction model for riceMirP. Then, the dataset (“mirPlantPre20_single.txt”)
of miPlantPreMat was considered as a positive testing dataset, and submitted into miPlantPreMat and
riceMirP for prediction, respectively. Because there is no negative testing dataset in the package of
miPlantPreMat, the negative samples from third-party (i.e., PlantMiRNAPred) were collected as an
independent negative testing dataset, and then directly submitted into riceMirP and miPlantPreMat
for prediction. In this way, the Ac, Sp, and Se values of riceMirP and miPlantPreMat were obtained,
respectively. Obviously, riceMirP achieved better classification performance than miPlantPreMat in
plant pre-miRNA prediction (Figure 6).

Finally, we compared riceMirP with triplet-SVM, microPred, and PlantMiRNAPred. In particular,
PlantMiRNAPred is designed specifically for prediction of plant pre-miRNAs, and achieves >90%
accuracy on multiple plant datasets. Likewise, the training dataset (“train_negative_980_seq.txt” &
“train_positive_980_seq.txt”) of PlantMiRNAPred was used as a training dataset to train model for
riceMirP. Then, 11 testing datasets of PlantMiRNAPred were submitted into riceMirP to calculate
prediction accuracy. These testing datasets of PlantMiRNAPred included three parts: the known plant
pre-miRNAs from eight species, which were used for evaluating the ability of identifying the real
pre-miRNAs; the 1142 negative testing samples, which were used for testing the ability of identifying
the pseudo hairpins; and the updated dataset, which were used to observe the ability of discovering new
plant pre-miRNAs. Because there is no stand-alone version of PlantMiRNAPred, and the web-server of
PlantMiRNAPred was not available, classification results reported previously [24] are directly adopted
for comparison. For all testing datasets (except the “updated aly”), the accuracies of riceMirP were
higher than those of PlantMiRNAPred (Figure 7). Furthermore, the overall accuracy of riceMirP was
much better than those of microPred and triplet-SVM (Figure 7). The above-mentioned results indicate
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that the schemes of feature extraction and algorithm presented here are universal and are not limited
to rice.
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4. Conclusions

In this study, a promising random forest-based classifier, riceMirP, was constructed specifically
for predicting rice pre-miRNAs by combining 34 novel knowledge-based energy features with 49 other
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existing sequence and structure features extracted from published studies. Particularly, riceMirP was
superior to the state-of-the-art plantMirP in rice pre-miRNA prediction, which suggests that it is useful
to construct a prediction tool specifically for rice pre-miRNAs. In addition, the extensive comparisons
with existing pre-miRNA prediction methods, such as plantMirP, miPlantPreMat, PlantMiRNAPred,
triplet-SVM, and microPred demonstrated that riceMirP also exhibits higher classification performance
in other plant pre-miRNA prediction. Moreover, these above-mentioned results also illustrate that
the novel knowledge-based energy features (i.e., energy score 1) proposed here have very high
discriminatory power, and that the scheme of feature extraction presented here is universal and
is not limited to rice. Taken together, the results obtained in this study might be beneficial for
subsequent researches.
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