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Abstract: (1) Background: Childhood rapid weight gain during development has been postulated 
as a predictor of obesity. The objective of this study was to investigate the effect of single nucleotide 
polymorphisms (SNPs) on the annual weight gain and height growth, as well as identifying possible 
lifestyle factors involved. (2) Methods: As part of the GENYAL study, 221 children (6–8 years old) 
of Madrid (Spain) were enrolled. A total of 11 SNPs associated with high childhood body mass 
indexes (BMIs) were assessed. Anthropometric measurements, dietary and physical activity data, 
were collected in 2017 and 2018. Bonferroni-corrected linear models were used to fit the data. (3) 
Results: A significant association between the Q223R LEPR and the weight growth was found, 
showing a different behavior between GA and GG genotypes (p = 0.001). Regarding lifestyle factors, 
an interaction between Q223R genotypes and total active weekly hours/week to predict the weight 
growth (kg/year) was observed (p = 0.023). In all the genotypes, a beneficial effect against rapid 
weight growth was observed, but the effect size of the interaction was much more significant in 
homozygous (GG) minor homozygous (β = −0.61 (−0.95, −0.26) versus heterozygous (AG) and wild-
type homozygous (AA) genotypes (β = −0.07 (−0.24, 0.09) and β = −0.12 (−0.32, 0.08), respectively). 
(4) Conclusions: These results may contribute to more personalized recommendations to prevent 
childhood obesity. 

Keywords: childhood obesity; nutrition precision; LEPR; Q223R; weight growth rate; gene-
environmental interaction 

 

1. Introduction 

Pediatric overweight and obesity are the most prevalent nutritional diseases worldwide, 
developing into a prominent public health problem, both in high- and low-income countries [1]. 
Recent studies have shown an increasing trend in the global standardized prevalence of this disease. 
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In this context, it is highly indicated to finding variables for the fast detection of risks in children, as 
well as to find suitable strategies aimed at fighting against obesity [2]. 

In this respect, rapid weight growth in childhood has been strongly associated with increased 
overweight and obesity risks later in life [3]. Similarly, it has been observed, an association between 
metabolic traits such as hypertension in adulthood with a rapid pattern of weight and height growth 
during childhood [4]. This is the reason why the study of the mechanisms involved in these 
phenomena can become helpful for obesity prevention strategies. 

Moreover, it is well-known that exogenous or common obesity is an acquired pathology 
associated with lifestyle and high caloric intake [1]. However, conventional treatments up to now, 
based on a marked nutritional transition as a lifestyle change, have had limited effectiveness [5]. In 
this sense, the research into the genetics of common obesity has allowed the mapping of single 
nucleotide polymorphisms (SNPs) to adiposity-related traits. Specifically, in adults, there are up to 
now more than 100 body mass index (BMI)-associated loci [6]. However, these figures are 
substantially lower for children, because there are fewer studies performed in this population and 
the potential impact of confounding factors like age and growth, in addition to genetics or 
environmental variables. [7]. Consequently, the study of the interactions between genes, weight gain, 
and lifestyle within the new concept of precision nutrition could help to optimize the nutritional 
counseling programs targeted at people with a particular genotype [8]. 

On this basis, the objective of this study was to investigate the effect of SNPs associated with 
high childhood BMI on the annual weight growth and height growth, as well as identifying possible 
lifestyle factors (dietary and physical activity) involved, in the context of the GENYAL study, to 
childhood obesity prevention. 

2. Materials and Methods 

2.1. Study Design 

This study is included in the GENYAL study for childhood obesity prevention, whose primary 
goal is to develop and validate a predictive model to identify those children who would benefit the 
most from actions aimed at reducing the risk of obesity and its complications. It is a clinical trial with 
a 5-year follow-up (2017–2021) based on nutritional education, annual anthropometric measurement 
evaluations, and data collection from questionnaires about physical activity and dietary aspects. 

The education intervention included materials with nutritional information to help parents, 
students, and teachers to make some lifestyle changes. This program was designed and given by a 
nutritionist from IMDEA-Food. 

Saliva samples were collected for all the schoolchildren in the initial evaluation (2017) in order 
to obtain genetic information. Given the large number of endpoints and associations examined, it was 
not possible to perform a rigorous and univocal initial estimation of the sample size. We, therefore, 
decided to use the largest possible sample according to the available resources. The inclusion criteria 
to participate in the study were: being in first or second grade of a primary school and having an 
informed consent signed by at least one of the parents. Exclusion criteria were not attending school 
during the evaluation days or having planned not to stay at the school in the following years. 

First-year follow-up has been used in this study to evaluate the evolution of these variables. 
Thus, the results shown in this paper correspond to data collected during 2017–2018. 

A sample of 221 schoolchildren (116 girls and 105 boys) in first and second grades of primary 
school (6–8 years of age) from 6 different public schools in the Community of Madrid (Spain) were 
included at the beginning of the study. The Ministry of Education of this Community was responsible 
for the sampling of the schools, covering a variety of socioeconomic statuses of the different districts 
so that the selection was representative of the household income distribution in Madrid defined by 
the Spanish National Statistics Institute [9]. 

During the second year of the monitoring (2018), 25 volunteers dropped out of the study (9 
children changed schools, 2 had family or medical problems, and 14 of them due to the loss of parents’ 
interest to participate). Then, a total of 196 children formed the new sample and were analyzed. 
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2.2. Ethical Statement 

All parents or legal guardians gave their written informed consent, in which the study 
management was described. The study protocol was approved by the Research Ethics Committee of 
the IMDEA-Food Foundation (PI:IM024) and has been registered as a clinical study in 
ClinicalTrials.gov (NCT03419520). This research follows the guidelines laid down in the Declaration 
of Helsinki. 

2.3. Outcome Variables 

2.3.1. Anthropometric Measurements 

Height was determined using a Leicester height rod with a millimetric accuracy (Biological 
Medical Technology SL, Barcelona, Spain). Body weight, fat mass (FM) percentage, and muscle mass 
(MM) percentage were assessed using a body composition monitor (BF511; Omron Healthcare Co., 
Ltd., Kyoto, Japan). Waist circumferences (WC) were taken using a nonelastic tape (KaWe Kirchner 
& Wilhelm GmbH, Asperg, Germany; range 0–150 cm, 1 mm of precision). Triceps skinfolds were 
taken following the International Society for the Advancement of Kinanthropometry guidelines [10] 
using a mechanic calliper (Holtain Ltd., Crymych, UK; 10-g/mm2 constant pressure; range 0–39 mm, 
and 0.1 mm of precision). Children were assessed at their schools early in the morning by trained 
nutritionists following standard techniques and the international WHO guidelines specific for this 
population [11]. Measurements were taken twice in a row, considering the average as the result. To 
evaluate nutritional status, the percentiles of the International Obesity Task Force (IOTF) were 
employed [12], and the results of overweight and obesity rates were unified as a single category called 
excess weight (EW). 

Based on these data, the following longitudinal variables were calculated (as the difference 
between its initial and final value): weight growth: annual change in weight (kg/year) and height 
growth: annual change in height (cm/year). From all the other anthropometric variables collected 
(BMI, FM, MM, WC, and triceps skinfolds), the annual change was scaled by the first-year value and, 
therefore, calculated as the percentage of variation (% V) as follows: %𝑉 = 𝑓𝑖𝑟𝑠𝑡 𝑦𝑒𝑎𝑟 − 𝑠𝑒𝑐𝑜𝑛𝑑 𝑦𝑒𝑎𝑟𝑓𝑖𝑟𝑠𝑡 𝑦𝑒𝑎𝑟  𝑥100 (1) 

2.3.2. Dietary and Physical Activity Data 

This information was obtained from questionnaires filled out by parents during 2017 and 2018. 
Dietary information was gathered using a 48-h food record of two nonconsecutive days: one 

weekday and one weekend day, as The European Food Safety Authority guidelines recommend [13]. 
The data were tabulated and analyzed using the DIAL software (Alce Ingeniería, Madrid, Spain) to 
obtain information about energy intake, macro, and micronutrients [14]. 

A 48-h physical activity record was collected, corresponding to 24 h of a weekday and an entire 
weekend day [15]. The time spent doing different activities was multiplied by the corresponding 
activity coefficient defined by the WHO [16], added, and divided by 24, obtaining the daily coefficient 
(DC).Then, the DC corresponding to a weekday was multiplied by 5, and the weekend DC by 2, and 
both results were added and divided by 7, thus obtaining the median individual physical activity 
coefficient (IPAC) per individual as follows: 𝐷𝐶 = (𝑅𝐴𝑇 (ℎ) 𝑥 1) + (𝑉𝐿𝐴𝑇 (ℎ) 𝑥 1.5) + (𝐿𝐴𝑇 (ℎ) 𝑥 2.5) + (𝑀𝐴𝑇 (ℎ) 𝑥 5) + (𝐼𝐴𝑇 (ℎ) 𝑥 7)24 ℎ  (2) 

𝐼𝑃𝐴𝐶 = (𝐷𝐶 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥 5) + (𝐷𝐶 𝑜𝑓 𝑤𝑒𝑒𝑘𝑒𝑛𝑑 𝑥 2)7  (3) 

Rest activities time (RAT), very light activities time (VLAT), light activities time (LAT), moderate 
activities time (MAT), and intense activities time (IAT). 
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The total active weekly hours (TAWH) were calculated by considering the time invested in 
moderate and vigorous extracurricular activities reported by parents and 2 additional curricular 
hours, which were typically performed at school as physical education and sports classes. 

The differences in caloric intake, lipid intake, and TAWH between year 1 and year 2 (Δ) were 
calculated as the annual change and measured in kJ, g, and hours per week, respectively. 

2.3.3. Selection of Single Nucleotide Polymorphisms 

For the purpose of this study, 11 SNPs (BDNF-AS rs925946, ETV5 rs7647305, FTO rs7190492, 
GNPDA2 rs10938397, KCTD15 rs368794, LEPR rs1137101 (Q223R), MC4R rs17782313, NEGR1 
rs2568958, SEC16B rs10913469, TCF7L2 rs7903146, and TMEM18 rs6548238) were selected. These 
SNPs were included by considering their specific relationship with childhood BMI according 
previous research, having been identified by genome-wide association studies (GWAS) and the 
absence of linkage disequilibrium between them. 

2.4. DNA Extraction and Genotyping 

DNA was obtained from saliva samples collected the same day of the anthropometric 
evaluation. Genomic DNA was extracted according to the protocol described by Stratec® INVISORB® 
Spin Tissue Mini Kit (INVITEK Molecular GMBH, Berlin, Germany). For genotyping, the DNA 
samples were loaded in TaqMan® OpenArray® Real-Time PCR plates (Life Technologies Inc., 
Carlsbad, CA, USA) already configured with the specific selected SNPs with specific waves for each 
allele marked with a different fluorophore to determine the genotype. This process was made using 
the OpenArray® AccuFill™ System (Life Technologies Inc., Carlsbad, CA, USA). Once it was ready 
to be used, a PCR was run, and the chips were read in the QuantStudio® 12K Flex Real-Time PCR 
instrument (Life Technologies Inc., Carlsbad, CA, USA). The results were analyzed using the 
TaqMan® Genotyper software (Life Technologies Inc., Carlsbad, CA, USA), which assigns the 
genotype automatically to each sample according to the amount of detected signal for each 
fluorophore. Data analysis was made by TaqMan Genotyper Software v1.3 (autocaller confidence 
level > 90%). Call rates for all SNPs were >96%, and genotype frequencies were in Hardy-Weingberg 
equilibrium (p > 0.05). 

2.5. Statistical Analysis 

A descriptive analysis characterized the sample. Qualitative data were presented as percentages 
and absolute frequencies, while quantitative data were expressed as mean ± standard deviations. 
Linear models were used to test the associations between the annual anthropometric changes and the 
11 SNPs studied. The genetic variable was included through a co-dominant model with treatment 
contrasts and using the wild-type genotype as a reference level in order to provide greater flexibility 
to fit the data. The models were adjusted by sex and age as covariates p-values were corrected by the 
Bonferroni method for the 11 SNPs. 

After finding statistical significance with the LEPR rs1137101 (Q223R) SNP, interaction models, 
adjusted by sex and age, were also considered (annual anthropometric changes, dietary and physical 
activity variables) for this particular SNP in order to gain some insight on the possible involvement 
of other variables. The association of weight growth with other environmental variables was also 
investigated through linear models adjusted by sex and age. For paired proportion comparisons 
(normal versus excess weight for the three rs1137101 genotypes), a sex and age-adjusted logistic 
regression was used. All statistical tests were considered bilateral with a significance level of 0.05. 
Estimated parameters (betas and odds ratios) were obtained with 95% confidence intervals. Statistical 
analyses were performed using the software R version 3.4 (www.r-project.org). 

3. Results 

The average basal age of participants was 6.75 ± 0.73 years. The global height and weight 
growths were 5.70 ± 0.99 cm/year and 3.23 ± 1.75 kg/year, respectively. No differences between sexes 



Genes 2020, 11, 560 5 of 12 

 

were found (p > 0.05). A significant increase in the percentage of excess weight in children was 
identified after the second year of evaluation (25.40% to 26.53%; p < 0.001), mainly due to the 
overweight component (16.29% to 18.88%; p = 0.008). 

No statistically significant associations were found between the 11 SNPs studied and annual 
anthropometric change variables in the codominant linear models adjusted by sex and age 
(Supplementary Table S1), except between the Q223R LEPR and the weight growth and the annual 
change in waist circumference. 

Given these results, we focused on the Q223R LEPR. The Q223 genotype frequencies were AA 
(wild-type homozygous) 31.82%, AG (heterozygous) 50.45%, and GG (homozygous) 17.73%. Table 1 
shows the average ± SD change in the total anthropometric variables split by genotype and the β and 
p-values estimated between these variables and the SNP in the codominant model adjusted by sex 
and age. 

Table 1. Average anthropometric change by genotype, and the association identified between these 
variables and the presence of the Q223R LEPR single nucleotide polymorphism (SNP). 

Anthropometric 
variables 

AA 1 AG 1 GG 1 β (CI) 2 P 

Weight growth 
(kg/year) 

3.52 ± 1.79 2.8 ± 1.49 3.99 ± 2.08 −0.72 (−1.26, −0.18); 0.42 (−0.3, 1.13) 0.001 

Height growth 
(cm/year) 

5.77 ± 0.85 5.56 ± 1.06 5.94 ± 1,00 −0.21 (−0.52, 0.1); 0.23 (−0.18, 0.64) 0.063 

%V BMI  3.36 ± 5.04 1.63 ± 4.30 3.63 ± 4.87 −1.73 (−3.23, −0.23); 0.24 (−1.76, 2.23) 0.027 
%V FM  2.37 ± 13.71 0,00 ± 14.72 1.91 ± 11.76 −2.21 (−6.72, 2.3); −1.09 (−7.06, 4.89) 0.623 
%V MM  6.81 ± 4.87 7.74 ± 5.05 6.76 ± 5.04 0.62 (−0.92, 2.15); 0.51 (−1.43, 2.45) 0.723 
%V WC 3.8 ± 4.35 1.51 ± 3.91 3.7 ± 4.13 −2.3 (−3.61, −0.99); −0.16 (−1.91, 1.6) <0.001 

%V Triceps fold 2.76 ± 17.55 −1.93 ± 15.68 3.57 ± 12.86 −4.78 (−9.88, 0.33); 1.17 (−5.64, 7.99) 0.075 
%V= percentage of variation between year 1 and year 2. FM = fat mass, MM = muscle mass, and WC 
= waist circumference. 1 Mean ± SD. 2 Betas (confidence intervals) are provided for both AA/AG and 
AA/GG. AA (wild-type homozygous), AG (heterozygous), and GG (homozygous). 

The main anthropometric, dietary, and physical activity characteristics according to Q223R 
genotypes of the children collected during both year 1 and year 2 (2017 and 2018) are summarized in 
Table 2. 

Table 2. Anthropometric, dietary, and physical activity characteristics of the study population 
according to Q223R genotypes in year 1 and 2. 

 
Q223R LEPR YEAR 1 1 Q223R LEPR YEAR 2 1 

AA (WT) AG GG AA (WT) AG GG 
Anthropometric variables 

Weight (kg) 26.61 ± 5.80 25.79 ± 5.48 29.06 ± 7.27  29.55 ± 6.58 28.52 ± 6.33 32.63 ± 8.83 
Height (cm) 124.8 ± 6.39 124.08 ± 6.28 126.77 ± 6.40  130.13 ± 6.65 129.74 ± 6.43 132.47 ± 6.32 
BMI (kg/m2) 16.98 ± 2.79 16.58 ± 2.30 17.85 ± 3.06  17.33 ± 3.00 16.8 ± 2.49 18.32 ± 3.60 
Fat mass (%) 20.86 ± 7.50 19.69 ± 6.40 22.79 ± 8.40  21.07 ± 7.89 19.41 ± 6.38 22.46 ± 9.17 
Muscle mass 

(%) 
28.07 ± 3.14 27.92 ± 3.05 28.29 ± 2.27  29.57 ± 2.79 29.86 ± 2.45 30.14 ± 1.95 

WC (cm) 59.57 ± 6.96 58.88 ± 6.69 62.77 ± 8.79  61.42 ± 8.09 59.47 ± 7.29 64.09 ± 9.79 
Triceps fold 

(mm) 
12.75 ± 5.28 11.68 ± 4.60 14.27 ± 5.53  12.89 ± 5.70 11.35 ± 4.97 14.4 ± 6.53 

Dietetic variables 
Caloric Intake 

(kJ) 
8046.57 ± 
1385.79 

7634.55 ± 
1376.41 

7548.55 ± 
1502.81 

8322.52 ± 
1637.54 

8110.42 ± 
1495.15 

7668.04 ± 
1670.83 

Lipids (g) 85.45 ± 21.09 78.64 ± 18.66 77.27 ± 23.17 86.81 ± 23.27 85.77 ± 22.27 75.5 ± 16.95 
SFA (g) 28.71 ± 8.38 27.03 ± 7.57 26.84 ± 8.30 29.1 ± 8.38 28.64 ± 8.50 25.39 ± 6.48 

Proteins (g) 78.89 ± 16.05 74.68 ± 13.35 75.59 ± 12.59 88.05 ± 21.33 86.45 ± 17.27 84.64 ± 28.65 
Carbohydrates 

(g) 
199.97 ± 34.53 194.82 ± 46.06 193.21 ± 36.53 204.27 ± 45.57 195.61 ± 42.8 195.24 ± 45.87 
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Physical activity variables 
TAWH 

(hours/week) 
4.14 ± 1.96 3.68 ± 1.75 3.33 ± 1.63 4.75 ± 2.35 4.09 ± 2.42 4.3 ± 2.05 

IPAC  1.59 ± 0.12 1.59 ± 0.10 1.57 ± 0.11 1.52 ± 0.08 1.53 ± 0.09 1.51 ± 0.08 
1 Mean ± SD (standard deviations). WC = waist circumference, SFA = saturated fatty acids, TAWH = 
total active weekly hours, and IPAC= individual physical activity coefficient. WT = wild-type. 

Concerning the basal nutritional status at the first year by Q223R genotype, as shown in Figure 
1, the percentage of children with excess weight was greater in the GG than in the AG and AA of this 
SNP. It shows an increased risk in GG carriers (AA/AG odds ratio (OR) = 0.49 (0.24, 0.99); AA/GG OR 
= 1.41 (0.62,3.23); p = 0.021. 

 
Figure 1. Differences in schoolchildren’s nutritional status according to the wild-type homozygous 
(AA), heterozygous (AG), and homozygous (GG) genotypes of Q223R. The GG homozygous showed 
the highest prevalence of overweight plus obesity. The figures presented are taken from basal results 
(2017). Excess weight comprises obesity and overweight rates. 

Linear regression models, adjusted by sex and age, were applied to find out possible factors 
involved in weight growth. Basal BMI, Δcaloric intake, Δlipid intake, and ΔTAWH were significantly 
associated with the weight growth variable (β = 0.416 (0.269, 0.563), p = 6.33 e-14; β = −0.0008 (−0.002, 
−0.0002), p = 0.016; β = −0.016 (−0.035, −0.003), p = 0.012; and β = −0.12 (−0.323, 0.0841), p = 0.012, 
respectively). Nevertheless, when we studied how these association were modulated by the presence 
of Q223R across the interaction models, only the annual change in the total active weekly hours 
(ΔTAWH) remained significative (p = 0.023). According to this interaction, the GG homozygous 
genotype reduced, on average, 0.61 kg/year the weight growth for each hour per week of moderate 
to vigorous physical activity (β = −0.61 (−0.95, −0.26). In the case of the AG and AA genotypes, the 
slopes were much smaller and not significant (β = −0.07 (−0.24, 0.09) and β = −0.12 (−0.32, 0.08), 
respectively) (Figure 2). 
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Figure 2. Interaction between Q223R genotypes and ΔTAWH (total active weekly hours/week) to 
predict weight growth (kg/year). In all the genotypes, a beneficial effect against rapid weight growth 
was observed with the increase of the time per week of moderate to vigorous physical activity in the 
schoolchildren, but the effect size of the interaction was much more significant in GG minor 
homozygous. 

4. Discussion 

The GENYAL study found a high prevalence of overweight and obesity, as also having been 
shown in the literature review at both the regional [17] and national levels [18]. In addition, it was 
observed that the percentage of children with excess weight increased as they advanced through the 
school stages. These results further support the need to keep looking for new forms of preventive 
strategies and targeted treatments in order to increase their effectiveness. [19]. The study of gene-
nutrients and gene-environment interactions is one of the proposed strategies framed within the 
emerging concept of precision nutrition [20]. 

After the evaluation of the effect of 11 SNPs associated with high childhood BMI on the annual 
weight and height gain, this study has identified the presence of the LEPR Q223R SNP as a weight 
growth predictor during childhood, and further possible factors involved have been evaluated. 
Regarding the children’s nutritional status during the first-year evaluation, it could be observed that 
the GG homozygous carriers for this variant were those that showed the highest percentage of obesity 
and being overweight. 

Leptin, a hormone encoded by the LEP gene, acts as a marker of energy reserves in the 
hypothalamus through regulating both appetite and energy homeostasis [21,22]. Its regulatory effects 
are mediated by the binding and activation of the long leptin receptor isoform. The Q223R 
polymorphism, an arginine (A)-to-glutamine (G) transition at position 223 in the LEPR gene, consists 
of a nonconservative change within the extracellular domain-coding region in the gene. Evidence 
suggests that the resulting conformational changes of the protein influence the LEPR functions and 
could lead to an abnormal downstream signaling pathway of JAK2 due to a leptin receptor 
deficiency. The consequences of these abnormalities are leptin resistance and, therefore, an 
attenuated leptin signaling [23]. Accordingly, it would result in a more significant presence of obesity 
by Q223R genotype, as we have seen in this study, as well as in previous researches in both pediatric 
[24,25] and adulthood populations [26–28]. However, the functional outcomes for this genetic variant 
remain poorly defined [29]. The existence of contradictory results [30,31] may be explained either by 
the gender influence [32] or the underpowered available studies [33]. 

Rapid weight gain in childhood has been associated with a significant risk for metabolic 
syndrome later in adulthood, and therefore, it is a critical target for the prevention of overweight and 
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obesity at an early age [34,35]. The current study found a significant association between a greater 
childhood weight growth and the presence of the LEPR Q223R minor allele. This association may 
indicate a genetic susceptibility to rapid weight growth in homozygotes for the minor allele (GG) in 
comparison to the heterozygous status (AG). Gallicchio L et al. also found significant differences 
between AG and GG but only for basal BMI in adults [36]. In this case, we hypothesize that the effects 
produced by this SNP on weight growth differs from the number of risks alleles and follow a 
nonadditive pattern. This observation could be related with the sample size and with some cellular 
genetic interference mechanisms due to a co-dominant effect. To our knowledge, this study is the first 
reference to the issue, and it could be of great significance in order to assist as a potential predictor 
of growth and development among school-aged children. 

The results presented in this study are in agreement with other researches in which adults 
carrying the G allele show a more significant weight growth over the years [36–38]. In this respect, 
the identification of the Q223R genetic profile in both adults and children could be of interest to 
personalized interventions. This result might be explained by the impaired regulation of satiety, 
produced by the polymorphism due to a decreased leptin action or leptin resistance. A study in 
Brazilian children identified an association between Q223R and a higher caloric intake, which 
reinforces this idea [39]. Besides, it has been observed that leptin could serve both as a hormonal 
signal within the hypothalamic-pituitary-gonadal axis by regulating growth hormone, as well as a 
skeletal growth factor [40]. 

Interaction studies were conducted in order to determine possible factors that could influence a 
faster weight growth in Q223R carriers by considering some of the evaluated dietary and exercise 
variables. In this way, a significant interaction between the total active weekly hours and the 
polymorphism, when regressing the weight growth, was identified. This finding suggests that 
children with minor homozygous genotypes were those who might benefit the most from increasing 
the time dedicated to moderate and vigorous exercise, thus indicating a possible protective effect 
against rapid weight growth. The findings observed in this study mirror those of the previous 
research. For instance, in a nutritional intervention study in prepubescent Polish children, it was 
observed that, after a lifestyle change program where a physical activity plan targeted to weight loss 
was included, AA homozygous individuals lost less weight than the GG carriers [41]. 

Leptin receptors, apart from being located in the central nervous system, are traced in other body 
tissues, such as skeletal muscle. It has been postulated that this is where leptin regulates glucose and 
fatty acid metabolism [42]. Moreover, there is experimental evidence supporting that aerobic exercise 
is effective in modulating leptin sensitivity in skeletal muscles. This fact could reverse the variant 
effect. Walsh S. et al. observed differences in body compositions after a resistance training 
intervention depending on the genetic profile; adults with the G allele gained more considerable 
muscle and fat mass volume than the AA carriers [43]. Such observations could clarify the interaction 
between SNP and weight growth according to the amount of total active weekly hours. It is, therefore, 
likely that a physical activity intervention could regulate the pattern of weight growth, mainly in 
Q223R carriers. 

A part of Q223R LEPR SNP, there were no statistically significant associations between any of 
the other 10 SNPs and annual weight gain and/or height growth. There is a lack of studies on this 
issue based on the literature, except for rs7647305 ETV5. Tu W et al. showed a significant association 
between rs7647305 ETV5 and quick weight increases in 6 to 17-year-old European-American children 
through six years of follow-up [44]. The differences in the methodological approach and the age range 
of the children may explain the disparity in the results. 

Finally, the current investigation was limited by the sample size and the use of dietary and 
physical activity questionnaires, which have been criticized. Nevertheless, in the absence of better, 
lower cost and high-throughput tools, it can offer valuable information, although it should be 
interpreted with caution [45]. In addition, the assessment of leptin receptor concentrations in blood 
would be useful in interpreting the results of this study. However, biochemical parameters were not 
collected in this study. 



Genes 2020, 11, 560 9 of 12 

 

While further work is required to confirm the interactions observed in this research, we consider 
that the identification of this SNP might provide useful input for personalized and individualized 
early interventions. Notwithstanding, we propose the design and validation in a larger cross-study 
focused on physical activity intervention as a main prevention and intervention variable. On the other 
hand, the GENYAL study to childhood obesity prevention is a longitudinal study through primary 
schooling, which will allow the evaluation of the long-term effects of this polymorphism. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/11/5/560/s1: Table 
S1: Associations results between the 11 SNPs studied and anthropometric annual change variables in the 
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