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Abstract:  Treatments that include gemcitabine and carboplatin induce dose-limiting
myelosuppression. The understanding of how human bone marrow is affected on a transcriptional
level leading to the development of myelosuppression is required for the implementation of
personalized treatments in the future. In this study, we treated human hematopoietic stem and
progenitor cells (HSPCs) harvested from a patient with chronic myelogenous leukemia (CML) with
gemcitabine/carboplatin. Thereafter, scRNA-seq was performed to distinguish transcriptional effects
induced by gemcitabine/carboplatin. Gene expression was calculated and evaluated among cells
within and between samples compared to untreated cells. Cell cycle analysis showed that the
treatments effectively decrease cell proliferation, indicated by the proportion of cells in the G2M-phase
dropping from 35% in untreated cells to 14.3% in treated cells. Clustering and t-SNE showed that cells
within samples and between treated and untreated samples were affected differently. Enrichment
analysis of differentially expressed genes showed that the treatments influence KEGG pathways and
Gene Ontologies related to myeloid cell proliferation/differentiation, immune response, cancer, and the
cell cycle. The present study shows the feasibility of using scRNA-seq and chemotherapy-treated
HSPCs to find genes, pathways, and biological processes affected among and between treated
and untreated cells. This indicates the possible gains of using single-cell toxicity studies for
personalized medicine.

Keywords: hematopoietic stem and progenitor cells; single-cell RNA sequencing; gemcitabine;
carboplatin; myelosuppression; toxicity; adverse drug reactions

1. Introduction

The two chemotherapeutic drugs gemcitabine and carboplatin are used in the treatment of many
cancer types. Treatments that include these two drugs are harsh, and are often associated with
adverse drug reactions (ADRs) [1-3]. The dose-limiting ADRs are mainly the hematological toxicities
neutropenia, leukopenia, and thrombocytopenia. Even if doses are adjusted before administration,
there is considerable variability in hematological ADRs among patients; some show no signs of toxicity,
while others experience life-threatening levels of hematological toxicity [4-7]. Understanding the
development of these hematological toxicities is important and necessary for the implementation of
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more personalized treatment approaches in which doses are adjusted according to the patient’s risk of
toxicity before treatment.

Classical chemotherapy drugs have nonspecific mechanisms of action and generally attack
rapidly dividing cells, which is an underlying component of the associated toxicities induced by
the drugs. Human bone marrow with its rapid development of blood cells consequently comes
under severe attack, which leads to a reduced amount of mature blood cells. There are studies that
explore hematopoietic stem and progenitor cells (HSPCs) and/or bone-marrow-derived cells using bulk
transcriptome analysis [8-10]. The recent developments of single-cell analyses, including single-cell
RNA sequencing (scRNA-seq) reviewed in [11], have shown that there is more information to obtain
from cells than the average expression seen in bulk samples [12-17]. However, how the HSPCs of
human bone marrow are affected on a transcriptional level by gemcitabine and carboplatin and which
biological processes and pathways are of importance is largely unknown and unstudied.

In this study, we had the rare opportunity to analyze HSPCs selected based on CD34" in a clinical
stem cell harvest. The HSPCs were then exposed to both gemcitabine and carboplatin in vitro before
scRNA-seq analysis. This is not only one of the few analyses using this cell type, but, to our knowledge,
also the first study that evaluates the feasibility of using the scRNA-seq of HSPCs to determine effects
induced by chemotherapeutic treatments.

2. Materials and Methods

2.1. Patient Sample

The use of human HSPCs in this study was approved by the regional ethics committee in
Linkdping, Sweden (DNR 2017/384-31), and the patient gave written informed consent, as per the
Declaration of Helsinki, before inclusion. The patient had previously gone through a stem cell harvest
for a possible autologous stem cell transplantation, which was part of the standard treatment protocols
for chronic myelogenous leukemia (CML) at the time. However, these HSPCs were never used in the
patient’s treatment of CML, because of the success of the updated treatment guidelines including the
use of tyrosine kinase inhibitors. The harvest was performed with the CliniMACS® CD34 Reagent
System (Miltenyi Biotec, Bergisch Gladbach, Germany) at Linkdping University Hospital (Linkoping,
Sweden), and the HSPCs were subsequently cryopreserved.

2.2. Cell Culture and Treatments

The cryopreserved HSPCs were thawed in a 37 °C water bath and washed with pure RPMI 1640
(Gibco, Life Technologies, Paisley, UK). After this, the cells were cultured at high density (1 million
cells/mL) to acclimatize after thawing in tissue-culture-treated (TC-treated) T-25 flasks using StemMACS
HSC Expansion Media XF, human (Miltenyi Biotec) supplemented with StemMACS HSC Expansion
Cocktail, human (Miltenyi Biotec), and kept at 37 °C in a humidified atmosphere containing 5% CO,
for 48 h.

Gemcitabine (Toronto Research Chemicals, Toronto, Canada), carboplatin (Toronto Research
Chemicals), or no drug (as a control) were used for the MTT assay (Molecular Probes, Life Technologies,
Paisley, UK) to derive the appropriate drug concentrations for the scRNA-seq experiments. The MTT
was mainly carried out as previously described [18], however with some changes. Briefly, 100 pL
of culture media with 3 x 10° cells/mL was added to a TC-treated 96-well-plate were nine different
concentrations of gemcitabine and carboplatin in triplicates had been respectively added as 5 pL
and 10 pL dilutions in sterile-filtered Milli-Q® to yield the final concentrations listed in Table 1.
Triplicate wells where cell suspension was added to the respective volumes of sterile-filtered Milli-Q®
without any drugs were used as controls. Triplicates of media without any cells were added to the
respective volumes of sterile-filtered Milli-Q® without any drugs were used as blanks. Following 24 h
of incubation 10 uL of MTT (5 mg/mL) was added to each well after which the plates were incubated for
another 4 h. Then the formazan salt crystals were dissolved with the addition of 100 pL solution of 10%
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SDS with 0.01 M HCL to each well and incubated overnight. Lastly, the VersaMax ELISA Microplate
Reader (Molecular Devices LLC, San Jose, CA, USA) was used for measuring the absorbance at 580 nm,
the blank was subtracted from the other measurements. The absorbance was then normalized to
the plate controls representing 100% viability. From this the half-maximal inhibitory concentration
(ICsp)-values with 95% confidence intervals (CI) were calculated using three parameters non-linear
curve fits in GraphPad Prism version 8.3.0 for Windows (GraphPad Software, La Jolla, CA, USA).

Table 1. Final concentrations of gemcitabine (ng/mL) and carboplatin (ug/ml) in the MTT assay.

Drug Dilution Factor 1 2 3 4 5 6 7 8 9
Gemcitabine 4.00 47,619.05 11,904.76 2976.19 744.05 186.01 46.50 11.63 291 0.73
Carboplatin 4.00 1227.27  306.82 76.70  19.18 4.79 1.20 030 0.07 0.02

For the actual drug treatments and scRNA-seq experiment, the HSPCs were thawed and
acclimatized in media for 48 h, as above. Then dead cells were removed using the Dead Cell Removal
Kit (Miltenyi Biotec) following the manufacturer’s instructions. After this, the HSPCs were seeded at a
concentration of 5 x 10° cells/mL in TC-treated 6 well-plates using a volume of 2 mL/well. The cells
were subsequently treated for 24 h under four different conditions: Carboplatin High—treatment with
150 pg/mL; Carboplatin Low—treatment with 18.75 ng/mL; Gemcitabine—treatment with 25 ng/mL;
and Control—100 uL sterile-filtered Milli-Q® (since the drugs were diluted in sterile-filtered Milli-Q®
and added as 100 pL). These final treatment conditions were selected based on the results from the
MTT assay (see the results Section 3.1—Patient Characteristics and the MTT Assay).

2.3. Single-Cell RNA Sequencing

After the 24 h treatments, the samples were concentrated to roughly 2500 cells/pL in sterile-filtered
PBS supplemented with 0.1% BSA (Sigma-Aldrich, St. Louis, MS, USA) and vigorously pipetted to
ensure a single-cell suspension (visually confirmed). From the four samples, we extracted single
cells and prepared sequencing libraries using the ddSEQ™ Single-Cell Isolator (Bio-Rad, Hercules,
CA, USA) together with the SureCell™ Whole Transcriptome Analysis 3’ Library Prep Kit (Illumina,
San Diego, CA, USA) following the manufacturers’ protocols. The sequencing-ready libraries were
then sequenced on the NextSeq 500 System (Illumina) using the NextSeq 500/550 High Output Kit v2.5
150 Cycles (Illumina) according to the manufacturer’s instructions.

2.4. Alignment and Gene Expression

FASTQ files with the raw sequencing data were downloaded from Illumina’s BaseSpace Sequence
Hub. Then the ddSeeker [19] and Drop-seq [20] protocols for processing scRNA-seq data were followed.
Briefly, ddSeeker version 0.9.0 was used to combine the R1 and R2 raw sequencing read files into
unmapped binary alignment map (uUBAM) files tagged with cell barcodes and unique molecular
identifiers (UMI). The data was sequenced in four lanes, and uBAMs from separate lanes for the same
sample were merged with cat in SAMtools version 1.9. The uBAM files were subsequently queryname
sorted with SortSam in Picard Tools version 2.20.3 before reads with barcode sequencing errors were
filtered out using FilterBAM in Drop-seq version 2.3.0. The uBAM files were then converted back to
FASTQ files with SamToFastq in Picard Tools before they were aligned to the human reference genome
GRCh38.77 using STAR version 2.7.1a [21]. The alignment BAM files were sorted with SortSam in
Picard Tools and then merged with the cell and UMI-tagged uBAMs using MergeBamAlignment
in Picard Tools. The alignments were then tagged with genes using TagRead WithGeneFunction in
Drop-seq. BamTagHistogram in Drop-seq was then used to extract the number of reads per cell barcode
and from this, the number of cells to extract from each of the four samples could be determined.
The gene expression for these cells was lastly determined with DigitalExpression in Drop-seq.
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2.5. Data Analyses with the Seurat R Package

R version 3.6.1 [22] was used along with the R toolkit Seurat version 3.0.2 [23,24] for single-cell
genomics to further analyze the gene expression of the four samples.

2.5.1. Filtering, Normalization, Highly Variable Genes, and Cell Cycles

Only the expression of genes with reads in at least 3 cells were kept for each sample and used as
input for Seurat. Then, based on the Seurat guidelines, the overall filtering criteria to keep high-quality
cells were determined to percent mitochondrial reads/cell < 10%, reads/cell < 13,500, and 200 < genes/cell
< 4750. The gene expression of high-quality cells was thereafter normalized according to Equation 1,
as implemented in the default Seurat function NormalizeData. From the normalized data, the 2000
most variable gene features for each sample were determined with the function FindVariableFeatures
in Seurat. Focusing on the highly variable gene features in downstream single-cell analyses helps
to highlight biological signals [23-25]. To determine in which phase of the cell cycle all high-quality
cells were, we used the Seurat function CellCycleScoring with the default settings which utilizes the
cell cycle markers suggested by Kowalczyk et al. [26] and Tirosh et al. [27], 43 and 54 genes for S and
G2M phase, respectively (all of which are listed in Table S5 of Tirosh et al. [27]). The CellCycleScoring
function basically assigns a score for each cell based on the expression of these genes and in principal
the S and G2M genes should have anticorrelated expression and cells without expression are deemed

to be in G1.
gene expression x 10*

)

Normalized expression = In{1 + -
total cell expression

2.5.2. Dimensionality Reduction, Clustering, and Differentially Expressed Genes

The dimensional reduction technique, principal component analysis (PCA), was performed on
linearly transformed (scaled) data for the 2000 most variable genes using RunPCA in Seurat.

Thereafter, clustering was done using the 20 first principal components (PCs) and the Seurat
functions FindNeighbors and FindClusters. To visualize the clustering, we implemented the nonlinear
dimensionality reduction techniques t-distributed stochastic neighbor embedding (t-SNE) [28] and
uniform manifold approximation and projection (UMAP) [29] in the Seurat functions RunTSNE
and RunUMAP.

Differential gene expression between cells within clusters and between clusters was determined
using the function FindMarkers, in Seurat with the criteria that genes had to be present in at least 30%
of the cells.

We also combined the treated cells and control cells in integrated analyses which promotes
comparative analyses of scRNA-seq data from different samples. This enables us to compare,
identify, and visualize both similarities and uniqueness in the HSPCs response to the chemotherapy
exposure when compared to their untreated control. The Seurat functions FindIntegrationAnchors
and IntegrateData were used for integrating and combining the treated and control datasets before
scaling, PCA, clustering, and differential expression analyses were performed as explained above.

2.6. Gene Set Enrichment Analyses

The R package clusterProfiler version 3.12.0 [30] was used for gene set enrichment analyses of
KEGG pathways and Gene Ontologies (GOs).

2.7. Data Availability

The sequencing data that support the findings in the study have been deposited at the European
Genome-phenome Archive (EGA), which is hosted by the EBI and the CRG, under accession
number EGAS00001004381.
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3. Results

3.1. Patient Characteristics and the MTT Assay

The HSPCs used in this study were donated by a female CML patient above 50 years of age
with a high-risk (>1481) Hasford score [31] at the time of harvest. From the initial MTT assay of the
HSPCs, visualized in Figure 1, the IC5p-values were determined: for carboplatin, 123.4 ng/mL (95%
CI = 109.8-138.7 pug/mL); and for gemcitabine, 51.1 ng/mL (95% CI = 21.8-138.9 ng/mL). The final
treatment conditions were chosen from these results: Carboplatin High 150 pg/ml, just above the range
of ICsy; for Carboplatin Low 18.75 pg/mL, a mild treatment; and for Gemcitabine 25 ng/mL, in the
lower range of the ICs.

Carboplatin [ug/ml]
= 100-: - Gemcitabine [ng/ml]
PR
E -

o b L]
2 504 » i
0 .
] ]
> b
0 T T T 1
-2 0 2 4 6

logo(drug concentration)

Figure 1. The dose-response curves determined using the MTT assay of the hematopoietic stem
and progenitor cells (HSPCs) treated for 24 h with gemcitabine in log;p(ng/mL) and carboplatin in
log1o(ng/mL). The error bars denote the standard deviation.

3.2. scRNA-seq Alignment and Gene Expression

The sequencing outputted a total of 120 million reads of which 74% mapped uniquely to the
reference genome. Initial filtering of cells was done based on the data from BamTagHistogram in
Drop-seq, visualized in Figure S1. This yielded a total of 1475 cells for which gene expression was
determined, see Table S1.

3.3. High-Quality Cells, Most Variable Genes, and Cell Cycle Analysis

The overall filtering of cells to keep high-quality cells is visualized in Figure S2 and in the end,
this yielded a total of 1172 high-quality cells with reads mapping to 15,832 unique genes. Table 2 lists
the number of cells, genes/cells, and the number of cells with reads detected for the genes CD34, ABL1,
and BCR to get an understanding of the expression of HSPC and CML markers in high-quality cells.
From these cells, the most variable genes were determined for Carboplatin High, Carboplatin Low,
Gemcitabine, and Control cells, as visualized in Figure 2. The top 25 most variable genes for each
sample are listed in Table 3. The overlaps of variable genes are visualized using Venn diagrams of the
top 100 and 2000 most variable genes for each sample in Figure 3a,b, respectively. In total the top 100
and 2000 genes for each sample represent 238 and 5600 unique genes, respectively. Further, the Venn
diagrams make it clear that of the top 100 genes, 27%-55% are within just one of the samples and 24%
shared by all, whereas for the top 2000 about half are unique to each sample and the other half are
shared among at least two samples and 10% are shared by all. This tells us that a lot of the variability
in gene expression changes with the treatments which indicate that different effects are induced by the
treatments, but we also see that a lot of the gene expression is shared which is also expected as it all
stems from the same patient samples HSPCs.
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Table 2. High-quality cells and their gene expression.

Number of Average Number
. . BCR ABL1 BCR and ABL1
High-Quality Cells of Genes/Cell an CD34
Carboplatin High 290 1550 32 31 2 93
Carboplatin Low 335 2178 45 51 7 141
Gemcitabine 390 1313 37 34 8 76
Control 157 903 10 16 10 30
a  Carboplatin High b Carboplatin Low
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Figure 2. Depicts the most variable genes for (a) Carboplatin High, (b) Carboplatin Low, (c) Gemcitabine,

and (d) Control. The ten genes with the highest standardized variance are written out for each sample.

Table 3. The 25 most variable genes for Carboplatin High, Carboplatin Low, Gemcitabine, and Control.

Carboplatin High Carboplatin Low Gemcitabine Control
PF4 HBB Pr4 HBB
THBS1 PF4 PPBP PF4
HBB THBS1 CXCL8 PLEK
MEST CLC MPO CD36
IGKC HBA2 BTG2 THBS1
F13A1 CXCL8 HBB TMSB4X
CXCLS8 PLEK HBA2 HBA2
PLEK CA1 THBS1 MMRN1
PPBP GP9 ATF3 F13A1
HBD PPBP GDF15 TOP2A
TMSB4X HBD JUN SH3BP5
ISCA1 AHSP F13A1 VWEF
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Table 3. Cont.

Carboplatin High Carboplatin Low Gemcitabine Control
CXCL2 MPO SAT1 F2R
CDKN1A GPX1 TUBB1 PECAM1
GP9 CXCL3 CD69 FYB
MYLK F13A1 GP9 LTB
MMRN1 CXCL2 CXCL1 HGD
LGALSL MS4A1 CA1 HBG2
HBBP1 RNASE? EGR1 CPA3
MDM?2 VWF CDKN1A PPBP
CXCL3 CDKN1A HBG2 HEXIM1
HGD UBE2C CXCL5 UBE2C
HPSE HBBP1 LGALSL CENPF
TUBB1 HPSE IGKC GPX1
GAS1 HGD HPSE DAB?2
Overlap of the 100 most variable genes b Overlap of the 2000 most variable genes
Carboplatin Low Gemcitabine Carboplatin Low Gemcitabine

Figure 3. Venn diagrams showing the overlap between the treatment conditions Carboplatin High,
Carboplatin Low, Gemcitabine, and Control. (a) The top 100 and (b) the top 2000 most variable genes.

Carboplatin High

7 of 14

Cell cycle phase analysis was subsequently carried out using computational inference,
see Figure 4. The figure shows a clear decrease in the proportion of cells in the G2M phase for
the chemotherapy-treated samples, on average, 14.3%, compared to 35% for the control cells.
This sanity-check shows that the chemotherapeutic treatments lead to decreased proliferation,

as they should.

3.4. Separate Analysis of Samples

No clusters formed on the first two PCs of the four samples, see Figure S3. By utilizing the
first 20 PCs, we were able to identify 3, 3, 4, and 2 clusters for Carboplatin High, Carboplatin Low,
Gemcitabine, and Control, respectively, as visualized with t-SNE in Figure 5 and UMAP in Figure 54.
The number of cells in each cluster is listed in Table 4. Differential gene expression that compared the
different clusters with their respective cluster 0 showed, on average, 630 differentially expressed genes

after adjusting for multiple testing using the Benjamini Hochberg method, all listed in Table S2.
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Figure 4. Shows the proportion of cells in G1 (Gap 1), S (Synthesis), and G2M (Gap 2 and Mitosis)
phases of the cell cycle for each sample. A clear decrease in the proportion of cells in G2M for the

chemotherapy-treated samples compared to the control was seen.
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Figure 5. Visualization using t-SNE colored by the identified clusters in the four samples (a) Carboplatin
High, (b) Carboplatin Low, (c) Gemcitabine, and (d) Control.
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Table 4. The number of cells in the identified clusters.

Carboplatin Carboplatin o Carboplatin Carboplatin Low  Gemcitabine
Cluster Higrl’1 Lo‘fr Gemcitabine Control High vs.pControl vs. I()Zontrol vs. Control
0 130 183 198 93 167 (74, 93) 222 (170, 52) 178 (128, 50)
1 92 85 148 59 156 (106, 50) 175 (80, 95) 161 (70, 91)
2 68 67 30 - 96 (88, 8) 95 (85, 10) 154 (144, 10)
3 - - 14 - 28 (22, 6) - 40 (34, 6)
4 - - - - - - 14 (14, 0)

The KEGG and GO enrichment analysis of the differentially expressed genes shows that the
genes that are differentially expressed between clusters are related to specific pathways and ontologies.
Meaning that the clusters within the samples have differences in which pathways and GOs that are
active and regulated because of effects induced by the treatments. This showcases that a single-cell
approach on treated and control HSPCs can be used to find cellular changes and responses affected by
the treatments. All KEGG pathways and GOs with adjusted (Benjamini Hochberg) p-value < 0.05 are
listed in Table S3. The difference between cluster 1 and 0 in the control sample seems to be attributable
to differences in mRNA, endoplasmic reticulum, and translation with significant GOs, including
“protein localization to endoplasmic reticulum”, “translational initiation”, “mRNA catabolic process”,
“protein targeting to ER”, “translation”, and “RNA catabolic process”.

3.5. Integrated Analysis of Treated and Control Samples

We then wanted to see if we could distinguish differences between treated and control cells.
For this purpose, we integrated and merged the cells into Carboplatin High vs. Control, using the cells
from Carboplatin High and Control; Carboplatin Low vs. Control, using the cells from Carboplatin
Low and Control; and Gemcitabine vs. Control, using the cells from Gemcitabine and Control.

PCA showed no clear clustering of the cells in the three merged datasets based on the first two
PCs, Figure S5. The clustering then identified 4 clusters for Carboplatin High vs. Control, 3 clusters for
Carboplatin Low vs. Control, and 5 clusters for Gemcitabine vs. Control. This was visualized using
t-SNE in Figure 6 and UMAP in Figure S6. From this finding, it was evident that most of the control
cells were found in clusters 0, 1, and 1, respectively, for Carboplatin High vs. Control, Carboplatin
Low vs. Control, and Gemcitabine vs. Control. The number of cells in each cluster is listed in Table 4.

Differential gene expression was then compared between the treated and control cells within
clusters 0 and 1 of the three merged datasets (the other clusters were not investigated since they
included too few control cells, Table 4). This was done to see if we could find genes affected by the
treatments in cells that are similar. Doing this, we found, on average, 193 differentially expressed
genes after correction for multiple tests when comparing treated and control cells in clusters 0 and 1 of
Carboplatin High vs. Control, Carboplatin Low vs. Control, and Gemcitabine vs. Control, all listed in
Table S4. We then analyzed the enrichment of differentially expressed genes in KEGG pathways and
GOs. All enrichments significant after correction for multiple testing are listed in Table S5. Some of
the interesting findings were that the differences between Carboplatin High treated cells and Control
cells within cluster 0 (Figure 6a,b) seems to be attributable to cancer-related KEGG pathways with the
“p53 signaling pathway”, “longevity regulating pathway”, and “viral carcinogenesis”. The differences
for cluster 1 lay mainly within the regulation of leukocytes through the GOs found among the top

ZA7i

enrichments (adjusted p < 0.01) “regulation of leukocyte chemotaxis”, “myeloid leukocyte migration”,
“leukocyte chemotaxis”, “regulation of leukocyte migration”, and “leukocyte migration”. We did
not find as many enrichments for Carboplatin Low vs. Control. This may be because we did not
have enough cells from both samples in each cluster or because the treatment is not harsh enough
to induce effects that are distinguishable after only 24 h of treatment. Gemcitabine vs. Control
showed no enrichment in cluster 1, however, cluster 0 had enriched GOs and KEGG pathways,

response to molecule

of bacterial origin”, “response to bacterium”, “regulation of symbiosis, encompassing mutualism

7

which indicates differences in immune cell response/activation through the GOs
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through parasitism”, and “regulation of myeloid cell differentiation”, and the KEGG pathways
“kaposi sarcoma-associated herpesvirus infection”, “salmonella infection”, “IL-17 signaling pathway”,

“TNF signaling pathway”, and “apoptosis”.
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Figure 6. Visualization of the merged datasets using t-SNE. Carboplatin High vs. Control is shown

colored (a) by the treatment and (b) by the identified clusters. Carboplatin Low vs. Control is shown

colored (c) by the treatment and (d) by the identified clusters. Gemcitabine vs. Control is shown colored

(e) by the treatment and (f) by the identified clusters.

4. Discussion

Advances in gene-expression analysis have recently come to the single-cell domain through
bulk RNA sequencing with the rapid implementation of various scRNA-seq methodologies and
protocols [11]. These methods have been applied to a variety of cells, but analyses comparing treated

and control cells are few. As these methods are new, there is to date no gold-standard protocol for
analyzing and interpreting the data in a standardized manner. This study shows how treated HSPCs
and scRNA-seq can detect transcriptional differences induced by chemotherapeutic treatment through a
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comparison with control cells. We also provide general advice while proving the potential of the method
for detecting transcriptional effects, which can be exploited in future studies of chemotherapy-induced
toxicity in relevant cells types.

While there are many programs for the analysis of scRNA-seq data, our choice fell on the
Seurat [23,24] R toolkit for single-cell genomics mainly due to its superior documentation and many
implementations. We used both t-SNE [28] and UMAP [29] implemented in Seurat [23,24] for cluster
visualization. We focus on the graphical representation of t-SNE in the present manuscript, while UMAP
can be viewed in the supplement. T-SNE is the most widely used technique for scRNA-seq visualization,
even though the newer UMAP is faster. UMAP is equally as good as t-SNE at local structures and even
better for global structures [29]. For our reasonably small datasets, t-SNE’s longer computing times
was not a major concern for us as the computing times were still just a couple of minutes long.

While interpreting the data, we found clear clusters both within the samples in Carboplatin
High, Carboplatin Low, Gemcitabine, and Control, and when comparing the treated samples with the
control in Carboplatin High vs. Control, Carboplatin Low vs. Control, and Gemcitabine vs. Control.
The analysis of treated samples yielded more clusters, which indicates that the treatments induced
considerable effects. However, one should note that the lower number of high-quality cells in the control
sample, 157 compared to, on average, 338 in the treated samples, could prevent the algorithm from
clustering rarer populations in the control sample. We recommend obtaining >300 high-quality cells.
Using the Bio-Rad/Illumina ddSEQ™ setup, one could use two wells/sample to likely get >500 cells
instead of just one well, which in the present study yielded, on average, 293 (157-390) high-quality
cells. Another alternative would be to use another instrument, for example, the Chromium setup from
10X Genomics, which extracts many more cells/sample. However, as we can show that differences can
be elucidated using only 300 cells/sample which also does not need as much sequencing as higher
cell numbers would, the Bio-Rad/Illumina ddSEQ™ setup is, at least in our case, a more cost-effective
setup at the moment.

From the differential expression analysis, we identified differentially expressed genes and enriched
KEGG pathways, and GOs analysis exemplified key differences between clusters. Taking this a step
further, we compared the control and treated cells that clustered together to find differences induced
by the treatments. We could show induced changes attributable to the treatment at least in the clusters
in which we had many cells from both treated and control samples. The fact that the treated cells also
yielded more clusters indicates differences induced by the treatments. Consequently, we could also
see that, when comparing Carboplatin Low vs. Control, there were fewer KEGG pathways and GOs
than for the other samples. This milder treatment option also yielded fewer clusters in the integrated
analysis compared to the other treatments. This finding indicates that the treatment must be sufficiently
harsh (at least for these 24 h treatments) to be able to find treatment-induced effects. Consequently,
we recommend using treatments at or around ICsj or longer exposure times for weaker treatments.

We are aware that our study only used cells from one sample and that the number of cells was
quite low, at least for the Control sample. Therefore, we do not highlight the findings of specific genes
and pathways (albeit significant after multiple testing) that differ between clusters and treatment
conditions in the present study other than to show that our findings are within relevant cellular
systems that could be important for HSPCs and chemotherapeutic treatments. Further, this also
means that we have not in-depth analyzed specific cell type or lineage markers, for example, the ones
presented by Laurenti et al. [32] and Novershtern et al. [33], among the cells and cluster, which is an
important step to take in future studies. However, this methods-oriented study proves that scRNA-seq
of HSPC is a feasible high-resolution approach for investigating the myelosuppressive effects of
chemotherapeutic agents.

5. Conclusions

To conclude, the presented study shows that combining scRNA-seq and chemotherapy-treated
HSPCs is a feasible approach for finding genes, pathways and biological processes that are affected by
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chemotherapeutic treatment, both within treated samples and when comparing treated and control cells.
Further, we recommend obtaining >300 high-quality cells/sample and using a treatment close to ICs to
ensure that treatment effects can be captured. This study indicates the potential gains of using single-cell
toxicity studies to find new personalized medicine tools for preventing and understanding toxicity.
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gene expression from Drop-seq, Table S2: Differentially expressed genes comparing sample clusters, Table S53:
Enriched KEGG and GOs comparing sample clusters, Table S4: Differentially expressed genes comparing treatment
vs. control, Table S5: Enriched KEGG and GOs comparing treatment vs. control.
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