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Abstract: The regulation of mRNA (messenger RNA) levels by microRNA-mediated activity is
especially important in plant responses to environmental stresses. In this work, we report six novel
barley microRNAs, including two processed from the same precursor that are severely downregulated
under drought conditions. For all analyzed microRNAs, we found target genes that were upregulated
under drought conditions and that were known to be involved in a plethora of processes from disease
resistance to chromatin–protein complex formation and the regulation of transcription in mitochondria.
Targets for novel barley microRNAs were confirmed through degradome data analysis and RT-qPCR
using primers flanking microRNA-recognition site. Our results show a broad transcriptional response
of barley to water deficiency conditions through microRNA-mediated gene regulation and facilitate
further research on drought tolerance in crops.

Keywords: microRNA; barley; novel barley microRNAs; microRNA expression pattern; mRNA
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1. Introduction

Throughout the course of evolution, plants have developed various mechanisms to alter
the expression of genes governing physiological processes in response to changing environmental
conditions. MicroRNAs (miRNAs) represent the main class of gene expression regulators that are
important in shaping these processes.

MicroRNAs belong to a class of small non-coding RNAs that are usually 21 nt in length.
Plant microRNA genes (MIRs) are transcribed by RNA polymerase II, and primary MIR transcripts
(pri-miRNAs) fold into a hairpin structure containing microRNA and its complementary partner,
passenger strand- microRNA*. Hairpin structure is further processed by the RNase III enzyme DICER
LIKE I (DCL1), which cleaves longer transcripts (pri-miRNA) to shorter pre-miRNAs [1,2]. Subsequent
cleavages lead to the release of a miRNA/miRNA* duplex that is further methylated by Hua Enhancer 1
(HEN1) and exported to the cytoplasm through the activity of the HASTY protein, where, in most cases,
microRNA* is degraded [3–5]. However, other studies have shown that hst mutants exhibit a decreased
accumulation of some, but not all, miRNAs, which suggests the existence of HST-independent plant
microRNA export systems [4]. MicroRNAs are incorporated into the multi-protein RNA-induced
silencing complex (RISC) and guide RISC to a target mRNA based on nucleotide complementarity.
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The core component of the RISC complex is the ARGONAUTE1 (AGO1) protein, which mediates
the cleavage of mRNA. The cleavage site within mRNA is located between the residues paired to
nucleotides 10 and 11 nt counting from the 5′ end of the miRNA sequence [6,7]. Recently, it has been
suggested that microRNAs are loaded onto the AGO protein in the nucleus because AtAGO1 contains
functional and conserved nuclear localization and nuclear export signals (NLS and NES, respectively)
that enable it to shuttle between the cytoplasm and nucleus. Furthermore, nuclear AGO1 with a mutated
NES signal contains the same 2′-O-methylated microRNA cohort as its nucleo-cytosolic counterpart
but interacts relatively more efficiently with the loading chaperone HSP90 [8,9]. Studies have revealed
that microRNA-mediated regulation can also occur via translation inhibition, as shown for the first
time in the case of Arabidopsis microRNA172 [10–12]. However, this mechanism seems to be less
prevalent in plants than in animals [13].

The importance of plant microRNA-mediated regulation in response to various environmental
stresses has been extensively studied [14–16].

For example, microRNA396 is involved in the heat–stress response in plants, and it targets
members of the WRKY transcription factor family. Transgenic Arabidopsis lines overexpressing
the microRNA396-resistant version of WRKY6 displayed hypersensitivity to high temperatures [17].
MicroRNA393 showed induced expression in wheat in response to salinity stress [18]. What is more, in
wheat microRNA1119 was shown to be essential in drought response as its expression was gradually
increased over 48 h of stress, which was coupled with decreased expression of target mRNAs.
Transgenic tobacco lines overexpressing microRNA1119 from wheat display higher drought tolerance
through improved reactive oxygen species (ROS) homeostasis in the cell [19]. Arabidopsis transgenic
plants overexpressing microRNA393 exhibited enhanced salt tolerance [20]. In barley, microRNA156
and microRNA6213 were upregulated, while microRNA168, microRNA444, and microRNA5048
were downregulated in response to salinity stress [21]. Moreover, microRNA171, which targets
the MYB family of transcription factors, was found to be upregulated by salinity stress in barley, wheat
and Arabidopsis [18,21], which suggests that these mechanisms may be evolutionarily conserved between
monocots and dicots. Gao et al. reported the upregulation of microRNA444a in the roots and leaves of
wheat in response to nitrogen deficiency. The overexpression of its orthologue, microRNA444a, in tobacco
improved plant growth and biomass, the N content, photosynthetic parameters, and antioxidant
enzymatic activities under N-deficiency conditions.These results suggested that microRNA444a acts
as a regulator of nitrate transporters [22]. MicroRNA399 is involved in the P-starvation response
and was found to be upregulated in both barley and wheat under these conditions [23,24]. The target of
microRNA399 is mRNA encoding the enzyme phosphate 2 (PHO2), and the downregulation of PHO2
coupled with the upregulation of these miRNAs was observed [23]. Furthermore, the overexpression
of this microRNA in tomato resulted in increased Pi uptake [24].These observations suggest that
microRNA399 is a good candidate for the manipulation of the Pi uptake pathway in wheat and barley.

As the human population grows, the requirements for crop yields increase. There is an emphasis on
drought-related research in cereals because drought stress impacts grain yield by reducing the number
of tillers, spikes, grains per plant and individual grain weight [25]. Combating the loss of production due
to drought stress is especially important for barley because it is grown worldwide and is an economically
important cereal, ranking 4th in global production, that is used in the food industry, in beer production
and as a fodder in agriculture [26]. Also, barley is a winter cereal cultivated in extreme drought stress
conditions for instance in North Africa [26]. Additionally, due to its diploid genome, barley also
serves as an important model in genetic studies. Knowledge of the molecular basis of barley cultivar
stress tolerance and adaptation is essential to develop plants with improved stress tolerance. To date,
many drought-responsive microRNAs have been reported in barley (Hordeum vulgare) [27].

MicroRNA156a, microRNA166, microRNA171, and microRNAR408 were found to be upregulated
in barley leaves under dehydration-stress conditions [28]. Recently, 31 barley microRNAs were detected
in the Golden Promise cultivar treated with drought, 13 of which were significantly downregulated,
while one microRNA (hvu-microRNA5049b) was significantly upregulated [29]. Hvu-microRNA399
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was not expressed under drought, indicating that the expression of this microRNA may be drought
dependent [30].

The natural stress responsiveness of plants varies across different cultivars of the same species.
Ferdous et al. used four different barley cultivars (Commander, Fleet, Hindmarsh and WI4304)
in drought stress studies. The results showed differences in the natural leaf relative water content
under drought conditions and differences in microRNA accumulation [31].

With increasing data confirming the importance of microRNA-mediated regulation, we decided
to search for novel barley microRNAs and further characterize them.

2. Materials and Methods

2.1. Plant Material

Spring barley plants (Rolap variety) were grown in a Conviron chamber (Winnipeg,
Manitoba, Canada) at 22 ◦C during the day and 15 ◦C at night with 16-h d/8-h night photoperiods under
800 µmol light. Plants were grown in autoclaved soil mixed with sand at a 7:2 ratio supplemented
with medium with micro- and macronutrients and watered up to 70% SWC (Soil Water Content) for
optimum growing conditions. SWC was measured as a mass of water in soil presented as percent [%],
where the mass of soaked soil sample was treated as 100% and the mass of oven-dried soil was treated
as 0%. SWC of 70% was maintained by weighing the pots daily.

2.2. Drought Stress Protocol

After plants reached the flag-leaf stage (39–41 developmental stage according to Zadoks cereal
development code), the water supply was stopped to level of stress 30% of SWC as a mild drought,
and 20% SWC as a severe drought. After reaching the level of 10% SWC, the plants were rewatered to
70% SWC, and the material was collected after 6 h. Plants were collected in 3 biological replicates,
and samples were collected for each stress control.

2.3. Small RNA Libraries

Small RNA libraries were prepared for five developmental stages of barley plants (1, 2, 3, and 6
weeks and 68 d of development) and drought stress. Libraries were constructed for all developmental
stages and drought experiments in three biological replicates.

Small RNA libraries were prepared as stated in [32]. RNA was enriched in small RNAs using
a protocol published in [14]. In brief, RNA was extracted twice with 38% phenol solution saturated
with 0.1 M sodium acetate (Roti Aqua Phenol, Roth, Karlsruhe, Germany), supplemented with
0.8 M guanidine thiocyanate, 0.4 M ammonium thiocyanate, 0.1 M sodium acetate, 5% glycerol, 0.5%
sodium lauroylsarcosine, and 5 mM EDTA. To remove polysaccharides, the Ambion Plant RNA
Isolation Aid (Life Technologies, Carlsbad, CA, USA) was used during phenol extraction. Next, three
phenol/chloroform and two chloroform extractions were performed. RNA was precipitated in
the presence of glycogen (Thermo Fisher Scientific, Waltham, MA, USA) using 1.25 vol. of ethanol
and 0.5 vol. of 0.8 M sodium citrate in a 1.2 M sodium chloride solution.

RNA quality was tested using an Agilent 2100 Bioanalyzer and RNA 6000 Nano Assay
(Agilent Technologies, Santa Clara, CA, USA). The RNA integrity number (RIN) value was consistently
higher than 7.5. Ten micrograms of total RNA were subjected to 15% PAGE 8 M urea electrophoresis.
The small RNA fraction was excised and eluted. RNA was ligated with 3′ and 5′ adapters in a two-step
procedure. cDNA was synthesized using Superscript II Reverse Transcriptase (Invitrogen, Carlsbad,
CA, USA) followed by PCR amplification: 98 ◦C for 30 s; 15 cycles of 98 ◦C for 10 s, 60 ◦C for 30 s,
72 ◦C for 15 s and terminated by 72 ◦C for 10 min. PCR products were separated electrophoretically
(6% PAGE), and the cDNA representing small RNAs was excised, eluted, and quantified using
a Tecan Infinite M200Pro Plate reader spectrophotometer, NanoQuant Plate (Tecan) and Quant-iTTM

PicoGreenTM dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).
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Deep-sequencing data analysis was carried out using a previously described procedure [33].

2.4. Degradome Libraries

Degradome library preparation was performed according to previously published protocols [33,34].
The final libraries of 26-27-mer 5′ ends of the 5′-end phosphorylated mRNAs were sequenced by
Fasteris (Plan-les-Ouates, Switzerland) on Illumina HiSeq 2500 using the Parallel Analysis of RNA ends
(PARE) approach. The adapters were trimmed with the cutadapt program (minimum overlap = 19),
and only reads longer than 13 nt with identified adapters were selected for subsequent analyses.

2.5. Isolation of Barley Flower Organs

Unfertilized spikes were harvested, and the flower organs were dissected under the highest
magnification of a Leica M60 binocular (Figure 1). First, thin forceps were used to detach the lateral
spikelets located on the sites of the floret. Then, the lemma and palea were carefully separated, revealing
other organs: ligule, caryopsis, and stamen. Along with these organs, the rachis (on which florets are
attached) and the whole inflorescence were collected. Each organ was immediately transferred to
a 15-mL falcon tube submerged in liquid nitrogen. After collecting the appropriate amount of material,
the tissue was transferred to Eppendorf tubes, homogenized with a handheld microhomogenizer,
and RNA was isolated according to the procedure described below.
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Figure 1. Isolated barley flower and its organs. (A) Barley flower. (B) Lateral spikelets. (C) Caryopsis.
(D) Stamens. (E) Lemma. (F) Palea. Scale—1 mm.

2.6. RNA Isolation

RNA was isolated as described previously. The concentrations and quality of all samples were
measured using a Nanodrop DeNovix DS-11+ spectrophotometer and assessed on a 1.2% agarose gel.
Generally, the obtained amount of RNA ranged from 30 to 40 µg per 100 mg of ground plant tissue.

2.7. Northern Hybridization

Two types of Northern hybridization were performed in these studies. The choice of the technique
was dictated by differences in hybridization sensitivity. Our preliminary studies prompted us to
perform the hybridization with TBE buffer and UV crosslinking as a quantitative method and perform
a relatively more sensitive hybridization with MOPS buffer and chemical crosslinking as a qualitative
method [35]. To analyze the expression of miRNAs in drought stress, total RNA was run on a 15%
urea PAGE gel with 7 M urea and 10% TBE in 1× TBE buffer under 300 V. RNA was transferred to
an Amersham HybondTM-N+ membrane and crosslinked with UV exposure at 1200 KJ.
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For the detection of less abundant microRNAs, total RNA was run on a 15% PAA
gel with 7 M urea and 20 × MOPS in 1 × MOPS buffer under 300 V. Then, RNA was
transferred to an Amersham HybondTM-NX membrane and chemically crosslinked during 2 h
of incubation at 55 ◦C with 1-methylimidazole, 1 M HCl and EDC N-(3-dimethylaminopropyl)-N’
-ethylcarbodiimide hydrochloride.

Hybridization was carried out overnight at 42 ◦C in hybridization buffer containing 10% SDS,
1 M Na2HPO4 and 1 M NaH2PO4 with 32P labelled probes specific for the analyzed miRNA and for
U6 snRNA as a control. After overnight incubation, the membranes were washed and exposed for
two days, and screens were scanned with a FUJIFILM FLA-5100 image analyzer. The intensity of
the obtained bands was calculated using Multi Gauge V2.2 software (Tokyo, Japan). All signals
corresponding to microRNAs were normalized to the U6 snRNA levels.

2.8. TaqMan Analysis of MicroRNA Levels

Templates for all reactions were prepared according to the manufacturer’s protocol (TaqMan™
MicroRNA Reverse Transcription Kit, Applied Biosystems, cat. no. 4366596) with a use of 5× specific
reverse transcription microRNA primer and 10 ng of template (TaqMan™ MicroRNA Assay cat.
no. 4440886). Amplification was carried out with TaqMan™ Universal Master Mix II with UNG
(Applied Biosystems, cat. no. 4440038) using the Applied Biosystems 7900HT Fast Real-Time PCR
System. The results from all samples were normalized to the level of U6 snRNA.

2.9. RT-qPCR

Three µg of DNA-free RNA was reverse-transcribed with SuperScript III Reverse Transcriptase
(Invitrogen, Carlsbad, CA, USA) and oligo(dT)15 (Novazym, Poland) primer. cDNA samples were
diluted 4-times and 1µL was used as a template. qPCR was performed with Power SYBR® Green
PCR Master MIX (Applied Biosystems, Warrington, UK) on 7900HT Fast Real-Time PCR System
(Applied Biosystems) in 10 µL reaction volumes in 384-well plates.

The barley ADP-ribosylation factor 1-like [GenBank: AJ508228.2] gene fragment of 61 nt was
simultaneously amplified and detected as an internal reference.

2.10. RACE PCR

The template for 5′- and 3′-RACE experiments was prepared after combining equal amounts of RNA
from 5 stages of barley development. All procedures were carried out according to the manufacturer’s
protocol from the SMARTer PCR cDNA Synthesis Kit (cat. 634923). PCRs were performed with
the Advantage 2 PCR Enzyme System (Clontech, Mountain View, CA, USA). Products were cloned into
the pGEM T-Easy vector (Promega, Madison, WI, USA) and sequenced. The obtained sequences were
aligned to the barley Barke cultivar genome in the IPK database (http://webblast.ipk-gatersleben.de/

barley_ibsc/).

2.11. Bioinformatics and Statistical Analyses

Bioinformatical analyses included BLASTN and BLASTP comparisons against National Center for
Biotechnology Information (NCBI) databases (http://ncbi.nlm.nih.gov). Secondary structures of miRNA
precursors were predicted using the Folder Version 1.1 program (http://www.ncrnalab.dk/rnafolder/
with RNAfold). Alignments of all cDNAs obtained from the RACE experiments were performed
using MAFFT alignment and NJ/UPGMA phylogeny software (https://mafft.cbrc.jp/alignment/server/).
The sRNA sequencing data are available in the NCBI Sequence Read Archive database under accession
number PRJNA526135. Bioinformatic analysis of the degradome data was performed as described
in [33]. PARE RNA sequencing data are deposited in the NCBI Sequence Read Archive database under
accession number PRJNA526135. The identification of the target mRNAs was performed using specific
parameters: degradome score consisting of raw and normalized reads and the position in the ranked
cleavage sites of a given cDNA due to cutting power and compliance score with values in the range

http://webblast.ipk-gatersleben.de/barley_ibsc/
http://webblast.ipk-gatersleben.de/barley_ibsc/
http://ncbi.nlm.nih.gov
http://www.ncrnalab.dk/rnafolder/
https://mafft.cbrc.jp/alignment/server/
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from 0 to 18, where negative points were assigned for any sequence mismatches. The ranking of
the cleavage sites was created based on cutting force and lowest compliance score.

2.12. Accession Numbers

All data are available in the National Center for Biotechnology Information (NCBI) Sequence
Read Archive database under accession number PRJNA526135.

3. Results

3.1. Identification of Novel Barley MicroRNAs

To identify novel barley microRNAs, we prepared small RNA libraries from five stages of
barley development (1-, 2-, 3-, and 6-week-old and 68-day-old plants) and performed Illumina
sequencing. After the sequencing reaction, we were able to obtain more than 15 million unique,
quality-filtered and adapter-trimmed reads. The BLASTn program [36] was used to align reads
from our libraries to known microRNAs, and the data were further processed as described in [33].
We confirmed the presence of putative microRNAs and found that generally during the barley
development, miR168-3p and miR1432-5p levels increase while the 5′U-miR156-5p level decreases (with
exception for the 2-week-old barley) [32]. In our data, 21-nt long reads were the dominant fraction
of the newly identified microRNA sequences (Figure 2, left panel). Presence of novel microRNAs
was confirmed with Northern hybridization (Figure 2, right panel). In the case of one predicted
microRNA (hvu-x13) that is expressed at very low level, it was necessary to apply a modified
Northern approach—higher amount of RNA and a chemical crosslinking of RNA to the membrane [35].
Ultimately, we identified 6 novel microRNAs that we termed microRNAhvu-x9a, microRNAhvu-x9b,
microRNAhvu-x11, microRNAhvu-13, microRNAhvu-x8 and microRNAhvu-x10. Analysis revealed
that microRNAhvu-x9a and -x9b represent a family due to sequence similarities and have a common
target gene. Moreover, microRNAhvu-x11 is a homologue of the microRNA tae-miR9662b-3p previously
reported in Triticum aestivum [37].

3.2. Pri-miRNA and MIR Gene and Structure Analysis

The identified novel microRNA sequences were BLAST searched against barley cDNA sequences
available at www.blast.ncbi.nlm.nih.gov/Blast.cgi, www.webblast.ipk-gatersleben.de/barley_ibsc,
www.plants.ensembl.org/Hordeum_vulgare. Hairpin structures were obtained using Folder Version
1.11 BETA software, and structures with the lowest scores of Gibbs (∆G) free energy were taken under
consideration (Figure 3). All identified pri-miRNAs form a hairpin structure in which microRNA
and its microRNA* are located. Sequences of all microRNA* were present in the sRNA next-generation
sequencing (NGS) data (Supplementary Table S1).These analyses showed that microRNAhvu-x8
and -x10 were processed from the same precursor but formed separate clusters in the sRNA NGS data
(see Figures 2 and 3).

To elucidate the structures of novel pri-miRNAs, we performed 5′- and 3′-rapid amplification
of cDNA ends (RACE) experiments. The length of the pri-miRNA was calculated on the basis of
the longest pri-miRNA 3′- and 5′-RACE products. To demonstrate that the longest pri-miRNA 5′ and 3′

ends belonged to the same precursor molecule, we carried out RT-PCR for all 6 pri-miRNAs using
primers designed for the 5′ and 3′ ends of the longest pri-miRNA RACE products (Supplementary
Table S2, Supplementary data 3 and data 4).

The length of the identified pri-miRNAs varied between 500 and 1111 nucleotides. To evaluate
a given MIR gene structure, pri-miRNA sequences were aligned to the barley genome (https://webblast.
ipk-gatersleben.de/barley_ibsc/), and the number and size of introns in the case of three MIR genes
(MIRHVU-X9A, MIRHVU-9B, AND MIRHVU-X13) were identified. The novel miRNAs derived from
intron-containing genes were encoded in exons. All introns within these MIR genes were of the U2 type.

www.blast.ncbi.nlm.nih.gov/Blast.cgi
www.webblast.ipk-gatersleben.de/barley_ibsc
www.plants.ensembl.org/Hordeum_vulgare
https://webblast.ipk-gatersleben.de/barley_ibsc/
https://webblast.ipk-gatersleben.de/barley_ibsc/
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Pre-miR stem-and-loop structures were found in the second exon of MIRHVU-X9A and MIRHVU-X13
genes (Figure 3).
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Figure 2. Distribution of counts for particular microRNAs in the cluster where y-axis represents
normalized counts from sRNA libraries and x-axis presents length of particular small RNA in
nucleotides (left panel) and validation of miRNA presence by Northern hybridization (right panel).
In the case of microRNA microRNAhvu-x13 more sensitive hybridization method was used as described
in Material and methods. U6 hybridization was used as loading control. Decade (Thermo Fisher
Scientific) marker was used to estimate RNA fragment length. In right panels above the blots the name
of each novel barley microRNA is provided. In the case of each microRNA left panel shows size
distribution of small RNAs in a given cluster with the dominating cDNA fragment and mean counts
from sRNA sequencing results from the 68-day-old plants.

3.3. Expression Pattern of Mature MicroRNAs

NGS data analysis on the microRNA level revealed that among all tested developmental stages
in all cases, the highest abundance of mature microRNAs occurred on the 68th day of barley
development (Figure 4 and Supplementary datasheet 5 when spikes and flowers were formed.
Therefore, with TaqMan probes, we analyzed the accumulation of novel microRNAs in seven flower
organs (rachises, lateral spikelets, lodicules, caryopses, lemmas, paleas, and stamens) and in whole
spikes, roots, stalks, and leaves. Each novel microRNA displayed a unique expression pattern (Figure 5
and Supplementary datasheet 6).
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Figure 3. Schematic representation of identified novel miRNA precursors and their MIR genes.
Left panel presents pre-miRNA hairpin structures of novel miRNAs. Red color indicates sequence of
microRNA, the blue color indicates its corresponding microRNA*. In the case of microRNAhvu-x8
and microRNAhvu-x10 that are processed from the same precursor (microRNAhvu-x10 from 5′ arm
and microRNA, hvu-x8 from 3′ arm) mature miRNAs are depicted in yellow color and miRNAs* in blue,
green color indicates common nucleotides for those microRNAs and their microRNA*. Right panel
shows novel MIR gene structures. White boxes represent exons while connecting thin lines indicate
intronic sequences (1 cm corresponds to 100 bp). The red bar represents position of microRNA while
blue bar represents position of microRNA*. Pre-miRNAs for miRNAhvu-x9a, -9b and miRNAhvu-x10
and -8 are very long. Dots in brackets represent sequence in the middle of hairpin structure that due to
the length cannot be presented on the graph (full sequences are shown in Supplementary data).

Figure 4. Cont.
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Figure 4. Normalized counts for novel miRNAs from sRNA libraries prepared from five barley
developmental stages. Y-axis represents normalized counts from sRNA libraries and x-axis presents
level of particular miRNA in barley developmental stages. Name for each novel miRNA is provided
above each graph. All novel miRNAs are most abundant in the 68 d of development. Statistical
significance is provided on each graph (** p-value ≤ 0.01).
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Figure 5. Expression pattern of novel microRNAs in barley organs. Heatmap represents expression
level of novel microRNAs in particular barley organs. Red color indicates the highest expression while
green represents the lowest. Top panel presents heatmaps for each novel microRNA in barley flower
organs (lemma, palea, stamen, carpel, rachilla and lateral spikelets) and heatmap for microRNA hvu-x9a
contains description of specific organs. Bottom panel represents expression of novel microRNAs in
barley roots, leaf, stalk, and whole spike and heatmap for microRNAhvu-x9a contains description for
particular organs. Above bottom panel names of each microRNA are provided.

MicroRNAhvu-x11, hvu-x8, hvu-x10 and hvu-x13 were expressed at low levels throughout
the plant but were highly accumulated in particular flower organs. MicroRNAhvu-x11 accumulated
in the caryopses, while microRNAhvu-x10 and hvu-x8 exhibited high levels in the lodicules.
MicroRNAhvu-x13 was characterized by high expression in the lodicules, rachises and roots.
Another microRNA, hvu-x9b, was characterized by moderate expression throughout the plant
and accumulated in the lemmas, while miRNAhvu-x9a was expressed at high levels in organs
such as the leaves or spikes but was poorly expressed in flower organs (Figure 5). Taken together,
these results suggest the involvement of these microRNAs in the development and function of flower
organs and indicate a further direction of study.
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3.4. Target Analysis for Novel MicroRNAs

For all novel microRNAs, target mRNAs were identified. When analyzing the degradome
data and identifying target genes, we considered the presence of the mRNA cleavage site exactly
between the residues paired to nucleotides 10 and 11, counting from the 5′ end of a given hybridizing
microRNA sequence. For further analysis, we chose targets with cleavage sites in a proper position,
with the highest number of normalized reads in the first position or with one of the first positions in
the ranked cleavage sites in a given cDNA cluster. Figure 6 shows T-plots for the identification of
slicing sites for a given target mRNA.Genes 2020, 11, 488 11 of 17 
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Figure 6. Target plots (T plots) for target mRNAs of novel barley microRNAs. The x-axis on the graphs
represents the length of the targeted mRNA, y-axis shows normalized number of reads. Names of
novel barley miRNAs and information about their targets are provided above the graphs. Red arrows
indicate the position of the predicted cleavage site in particular mRNA.

The microRNAhvu-x9a and -x9b target genes are MLOC_57686.2 = HORVU7Hr1G121200.5,
characterized by the presence of NB-ARC, P-loop NTPase and winged helix-like DNA-binding domains.
NB-ARC is a signaling motif shared by plant disease-resistance proteins. MicroRNAhvu-x11 targets
the mitochondrial transcription terminator factor (MLOC_56533.1 = HORVU6Hr1G005650.12), which is
consistent with previous findings in Triticum aestivum [37]. The target gene for microRNAhvu-x13 is
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a transcript encoding a protein belonging to the serine protease class containing the tetratricopeptide
(TRP) domain (MLOC_80127.2 = HORVU6Hr1G059720.1). MicroRNAhvu-x8 targets mRNA for
cleavage: MLOC_60197.2 = HORVU4Hr1G008820.1, encoding a protein with a homeobox-like and zinc
finger domain and containing SWIRM domain. For microRNAhvu-x10, we identified one mRNA
target, MLOC_26843.2 = HORVU0Hr1G022020.1, that is annotated as a protein containing a CS domain
involved in protein-protein interactions.

3.5. Novel MicroRNAs and their Targets Respond to Drought

After characterizing microRNAs and their targets, we analyzed their response to various stresses.
All of the identified novel microRNAs responded strongly to drought, especially to severe drought
(20% soil water content (SWC). All microRNAs were downregulated in the sRNA NGS results.
The results of the response of microRNA hvu-x9a, hvu-x9b and hvu-x11 to drought were confirmed
with Northern hybridization, while for the other microRNAs, we either could not distinguish
between microRNAs (as in the case of microRNAhvu-x10 and microRNAhvu-x8) or we were not
able to detect microRNAs using the classical Northern approach (hvu-x13) (Supplementary data 7,
Supplementary datasheet 8). We then analyzed the expression of their targets by performing RT-qPCR
with primers flanking cleavage sites and observed their high upregulation, especially in severe drought
conditions, which suggests the involvement of microRNAs and their targets in response to this stress
(Supplementary datasheet 9). Figure 7 summarizes the levels of microRNAs and their targets under
the control and drought conditions. Taken together, these data show a clear regulation of target mRNA
levels by microRNAs in response to drought.

Figure 7. Cont.
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Figure 7. Expression analysis of novel barley microRNAs and their target genes in drought conditions
(30% SWC, 20% SWC and rehydratation). Grey graphs show the level of particular microRNA based on
normalized counts from sRNA libraries (OY axes points to normalized counts from sRNA libraries while
OX axes point to control and different stress conditions). Names of particular microRNAs are provided
above the graphs. Panels below depict blue graphs that show expression of target genes for particular
microRNAs using RT-qPCR with primers flanking microRNA-recognition site (OY axes represent fold
change and OX point to control and different stress conditions) ** p-value ≤ 0.01, *** p-value ≤ 0.001.

4. Discussion

In this work, we report the identification of six novel barley microRNAs, their expression through
barley organs and developmental stages (1, 2, 3, 6 week and 68th day) and evidence of their involvement
in the response of barley to drought stress. We observed that from all, analyzed by us stages of barley
development, the 68th day is the one in which novel microRNAs display highest levels of expression.
This observation does not exclude the possibility that the expression level of novel barley microRNAs is
higher any time between 6 weeks of barley development and 68th day. We found that microRNAhvu-x11
was previously reported as specific to Triticum aestivum. Here, we identified the presence of this
microRNA in barley as well [37]. Moreover, microRNAhvu-x13 was also recently reported as a barley
drought tolerance-associated microRNA. Additionally, bioinformatics analysis indicated several
potential targets [38]. Zhou et al. showed that this microRNA was upregulated under drought
conditions. However, in our experimental results, we found a different target mRNA (as mentioned
in previous chapter, this is MLOC_80127.2 = HORVU6Hr1G059720.1) for this microRNA, and we
observed the downregulation of this microRNA under 20% SWC (48 h) conditions.These differences
may result from the fact that we tested plants subjected to drought stress after 48 h of withholding
water in the case of all novel microRNAs studied, while Zhou et al. studied plants with prolonged
responses to drought (5 d).

For all novel microRNAs, we have experimentally identified their target mRNAs based on
degradome data analysis. The target genes for microRNAhvu-x9a and -x9b encode resistance
proteins containing NB-ARC, P-loop NTPase and winged helix-like DNA-binding domains. Multiple
proteins are containing the NB-ARC domain; however, they perform various functions [39]. Based on
the amino acid sequence similarity of the target protein, we found that it is a homologue of the RPP8
(disease-resistance protein) protein from Triticum aestivum that is known to respond to pathogen infection,
but thus far, its involvement in the response to drought stress has not been reported and its function
regarding this condition is not known [39]. However, involvement of proteins containing NB-ARC
domain and their regulatory microRNAs in drought stress have been widely explored on an example
of microRNA482 from radish, microRNA815b from rice or microRNA211 from sorghum indicating
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important role of such proteins and microRNAs that control them and providing further direction for
studies [31,40–42].

The target gene for microRNAhvu-x11 is a mitochondrial transcription terminator factor encoded
within the nucleus and is a homologue of mTERF15 from Triticum aestivum. The function of this gene in
barley is not known, however studies in Arabidopsis confirmed that mTERF15 is responsible for proper
function of mitochondrial complex I because it is required for splicing of NAD2 pre-mRNA (NADH
dehydrogenase 2) [43,44]. Further analysis by another group revealed that the perturbed function
of mitochondrial complex I is associated with increased expression of ATCYS12 gene and plants
overexpressing ATCYS12 display tolerance to drought stress by reducing reactive oxygen species.
(ROS) accumulation [45]. Therefore, it is possible that mTERF15 (as it is upregulated in barley in
drought stress) promotes the splicing of the NAD2 transcript and the accumulation of ROS as a natural
response to stress treatment. Further studies are required, however, the regulation of microRNAhvu-x11
and its target MTERF15 gene expression may be a promising approach for the regulation of plant
response to drought.

The novel drought-responsive target identified for microRNA hvu-x8 encodes a protein containing
the SWIRM domain and is a homologue of the SWI-SNF complex subunit SWI3B from Aegilops tauschii.
This protein contains a helix-turn-helix motif, binds to DNA, and is predicted to mediate protein-protein
interactions in the assembly of chromatin–protein complexes [46]. Increasing evidence shows that
the overall stress responses and acclimation to environmental conditions in plants are at least in part
attributable to changes in chromatin organization and the activity of proteins with the SWIRM domain,
as reviewed by Mirouze and Paszkowski 2011 [47]. There are no reports regarding the role of SWI3B
in drought stress in barley and there are no data, thus far, providing evidence that SWI3B mRNA
levels are targeted by microRNAs in plants. Our results are the first evidence for the regulation
of the chromatin remodeling complex component SWI3B via microRNA and its involvement in
the drought-stress response in plants. However, the Arabidopsis swi3b mutant displays reduced
sensitivity to ABA treatment and shows reduced expression of ABA-responsive genes. A strong
connection between the ABA-stress response and drought response has been reported numerous
times [48–51]. Nevertheless, further studies are required to learn more about the positive or negative
effects of the SWI3B level on the plant response to dehydration.

Another novel target gene of microRNAhvu-x13 is a transcript encoding a protein containing a TRP
domain that has no homologues in other plant species. However, proteins containing TRP motifs have
been identified in all kingdoms [52]. The involvement of such proteins in the drought-stress response
has been studied in Arabidopsis. AtCHIP is an E3 ligase consisting of three TRP repeats and a U-box
domain. Variable temperature conditions induce the expression of AtCHIP. Mutants overexpressing
AtCHIP have reduced sensitivity towards temperature fluctuations and dehydration [53]. We also
observed the upregulation of TRP-encoding transcripts upon early drought. Rosado et al. showed
that the TRP-containing protein TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 1 (TTL1)
functions in the regulation of ABA and the dehydration signaling pathway [54]. In the ttl T-DNA
mutant, the activation of the ERD1, ERD3, and DREB2A genes that are upregulated in wild-type plants
upon ABA treatment was not detected, which indicates that TTL1 is a node in a dehydration-ABA
signaling pathway [54]. The mechanisms of the function of TRP-containing proteins are not known
in the drought-stress response. However, there have been numerous reports regarding microRNAs
targeting proteins with the TRP domain. Yakovlev et al., 2017 showed that over 50 microRNAs
in Norway Spruce target transcripts encoding proteins containing the TRP domain [55]. All of
the above examples were based on bioinformatical predictions of targets. Nevertheless, this is the first
experimental report showing post-transcriptional regulation of TRP domain-containing proteins
by microRNAs.
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