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Abstract: Cotton is one of the major industrial crops that supply natural fibers and oil for industries.
This study was conducted to understand the mechanism of delayed gland morphogenesis in seeds
of Gossypium bickii. In this study, we compared glandless seeds of G. bickii with glanded seeds of
Gossypium arboreum. High-throughput sequencing technology was used to explore and classify the
expression patterns of gland-related genes in seeds and seedlings of cotton plants. Approximately
131.33 Gigabases of raw data from 12 RNA sequencing samples with three biological replicates were
generated. A total of 7196 differentially-expressed genes (DEGs) were identified in all transcriptome
data. Among them, 3396 genes were found up-regulated and 3480 genes were down-regulated.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were
performed to identify different functions between genes unique to glandless imbibed seeds and
glanded seedlings. Co-expression network analysis revealed four modules that were identified as
highly associated with the development of glandless seeds. Here the hub genes in each module
were identified by weighted gene co-expression network analysis (WGCNA). In total, we have
selected 13 genes involved in transcription factors, protein and MYB-related functions, that were
differentially expressed in transcriptomic data and validated by quantitative reverse-transcription
polymerase chain reaction (qRT-PCR). These selected genes may play an important role for delayed
gland morphogenesis. Our study provides comprehensive insight into the key genes related to
glandless traits of seeds and plants, and can be further exploited by functional and molecular studies.

Keywords: Gossypium bickii; RNA-seq; DEGs; WGCNA

1. Introduction

Cotton is one of the major sources of natural fibers and oil for industries. Despite its industrial
importance, the cotton plant is prone to several biotic and abiotic stresses, i.e., environmental stress,
insect pests, etc. In response to these stresses, the cotton plant has developed a mechanism of genetic
defense, including mechanical protection mediated by the presence of glands on the plant polymers
complex that reduce plant digestibility to animals, and toxins that kill or repel herbivores [1]. Besides,
the cotton plant has distinct features to attract natural enemies to herbivores [2].
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The appearance of pigmented glands on the cotton plant is a distinctive feature of the Malvaceae
family [3]. Pigments present on the epidermal tissues of seeds and roots (aerial and cortex) produce
terpenoid aldehydes. The presence of gossypol glands reduce the utilization of cotton seed as a source
of an edible oil and protein source [4,5]. On the other hand, pigments present on the upper plant
surface, i.e., leaves and stem, provide a first line of defense against various insect pests [6–8]. Therefore,
a cumulative approach to develop cotton cultivars with less glanded seeds (to ensure edibility) and
glanded plants (to ensure resistance to insect pests) is a considerable approach for cotton breeders.

Previous reports have suggested and conferred six genes for gland formation in Gossypium hirsutum
and Gossypium barbadense, like gl1 that controls gland formation in leaf and cotyledon [9]; gl2gl2gl3gl3
expression of these genes produces glandless character on the whole plant [10,11]. Meanwhile, gl4 and
gl5 confer a reduction in the number of glands in the cotton plant, and gl6 controls gland formation
in leaf and cotyledon [12,13]. Furthermore, studies have identified multiple alleles controlling gland
development and pigment formation in cotton species [14,15].

Understanding the genetic mechanism behind gland formation has opened new dimensions
towards producing glandless seeds in cotton, which could provide a revolutionary solution to eliminate
hunger and protein shortages for human consumption. Recent advances in genomics and sequencing
technology have opened new horizons in understanding the mechanisms underlying complex traits.
However, despite all technical breakthroughs, there are few reports suggesting a cotton genome
response in delayed gland morphogenesis. The transcriptomic studies remain effective in cotton for
identification of differentially-expressed genes which control the gossypol contents of cotton [4,16–18]

Rapid advancements in new generation sequencing technologies have shed new light on the
research of genetic issues, including those in plant sciences. However, many studies focused on the
screening of differentially-expressed genes have associated as much attention to the high degree of
interconnection between genes, where genes with similar expression patterns may be functionally
related [19–21]. Gl2e was the first pigment gland-related gene that was identified encoding an MYC
transcription factor controlling pigment gland formation and gossypol content in cotton [1,22].

Wild progenitors are an excellent source to identify useful variation in crops. Here we
used Gossypium bickii (Australian wild species) as a source plant for the identification of
differentially-expressed genes in cotton imbibed seeds and seedlings. There are two wild Australian
species, G. bickii as well as Gossypium australe, possessing unique characteristics of having glandless
seeds and glanded plants. Recently, a gene related to gland in G. australe was published, but the
mechanism for delayed gland morphogenesis is still unclear [23]. Here, we used transcriptomic data
for imbibed seeds and seedling stages of G. bickii to understand and evaluate the genetic mechanism
behind gland formation at the seedling stage. In this study, we have identified putative genes for
gland formation in G. bickii. Furthermore, we have investigated the genetic network involved in gland
formation of cotton plants.

High-throughput RNA sequencing data and weighted gene co-expression network analysis
(WGCNA) polymerization modules data have been used in this study to sort out the key genes
related to the glandless trait in cotton through transcriptomic analysis. Furthermore, quantitative
reverse-transcription polymorphic chain reaction (qRT-PCR) technology has been used to validate the
expression of selected genes from RNA sequencing (RNA-seq) data.

2. Materials and Methods

2.1. RNA Extraction, Library Construction and RNA-Seq Analysis

Total RNA was isolated from glandless imbibed seeds of G. bickii, glanded imbibed seeds of
Gossypium arboreum, and glanded seedlings of G. bickii and G. arboreum. The seeds were treated with
water and grown on filter paper in the incubator at a temperature of 30 to 32 ◦C. After 24 and 48 h, we
collected the samples and labeled them as seeds and seedling stages. Total RNA was isolated using
the EASY-spin plant RNA kit (Aidlab, Beijing, China), according to the manufacturer’s instructions.
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cDNA was synthesized using a Prime ScriptTM II 1st strand cDNA synthesis kit (Takara, Dalian,
China) according to manufacturer’s instructions. We used a total of four different samples with three
biological repeat methods, 12 RNA-seq libraries and sequenced. A total of 3 µg of RNA from each
sample was used to construct the transcriptomic libraries. RNA degradation and contamination were
checked using 1% agarose electrophoresis gel, and RNA purity was checked with the NanoPhotometer®

spectrophotometer (Implen, Health Care Facilities & Svcs, La Baya Drive West Lake, CA, USA). The RNA
sequencing process was accomplished by Novogene Technologies Corporation, Ltd. (Beijing, China)
using Illumina HiSeq™ 2000.

2.2. Analysis of Differentially-Expressed Genes

To identify differentially-expressed genes (DEGs) in glandless imbibed seeds and glanded
seedlings, we used the edgeR package (v1.18.0) in 12 RNA-seq libraries. The data generated through
edgeR were used in the express program to generate raw read counts. The DEGs were identified with
a fragment per kb per million of the mapped reads (FPKM) value of >0.5, and a false discovery rate
(FDR) of <0.01. The FDR was used to determine the p-value of 0.005, and a log2-fold change (FC) of
1 was determined as the significant value of differential expression. Sequencing data of 12 RNA-seq
have been uploaded to the NCBI database with accession number PRJNA625620.

2.3. Quantification, Gene Ontology and KEGG Pathway in Differential Gene Expression

We estimated the gene expression levels by counting reads of mapped genes, FPKM, with HTSeq
v 0.6.1 software to count the number of mapped genes [24]. Demonstrating the number of genes with
different expression levels; this was the most common method used for estimating gene expression
level [25]. Therefore, we used 4 biological replications, for each sequenced library, and the read
counts were adjusted by the edgeR package by one scaling normalized factor. Differential expression
analysis of two conditions was performed using the DEG-seq R package v 1.18.0 and DEG-seq. The
p-value was adjusted using the Benjamini and Hochberg method, followed by the genes being adjusted
with a p-value of <0.05. Furthermore, gene ontology enrichment analysis of differentially-expressed
genes (Kyoto Encyclopedia of Genes and Genomes, KEGG) is a database resource, used to simplify
the high-level functions and uses of the biological system (http://www.genome.jp/kegg/). To test the
statistical enrichment of KEGG pathways, KOBAS software [26,27] was used.

2.4. Construction of Gene Network

The WGCNA analysis was performed to construct a gene co-expression network using R
package [28,29]. Co-expression network analyses were conducted to determine the relationship among
genes responsible for the delayed gland morphogenesis trait. We took four samples (two samples for
G. bickii and two for G. arboreum) from two different stages (imbibed seeds and seedlings); each sample
with three technical and biological repeats as an individual dataset (12 samples) was used for network
analysis. To complete the co-expression analysis, the edges file was sorted by weight value, and then
200 pairs of network connections were used to establish an interaction network among genes. The
hub genes were screened out on module basis membership (KME) values. The interaction networks
between genes were constructed by Cytoscape software 3.7.2 version [30].

2.5. qRT-PCR Analysis to Validate RNA-Seq Data

Total RNA was isolated from imbibed seed and seedlings, using the Tiangen RNAprep Pure Plant
kit (Tiangen biotech, Beijing, China), according to the manufacturer’s protocol. qRT-PCR was used to
confirm the RNA-seq data. Genes related to delayed gland morphogenesis of the transcriptome data
were selected and specific primers for RT-PCR were designed using Oligo 7 software. The primers of
13 selected genes were synthesized by Sangon Biotech (Shanghai, China). cDNA was synthesized from
RNA and used as a template to make the reaction for qRT-PCR by using Takara qPCR kit SYBR Premix
Ex TaqTM II (Tli RNaseH Plus). We have performed each reaction with three biological and three

http://www.genome.jp/kegg/
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technical replicates on a ThermoFisher Scientific QuantStudio® 5 instrument (Applied Biosynthesis,
Foster City, CA, USA). The qPCR circulation conditions included denaturation at 95 ◦C for 30 s,
45 cycles at 94 ◦C for 5 s, and annealing and extension at 60 ◦C for 30 s. The relative expression was
calculated for each sample by using the 2−44Ct method [31].

3. Results

3.1. Summary of Transcriptome Data

Gosssypium bickii possesses special characteristics, such as having a glandless seed which transforms
to glanded at germination stages (Figure 1). Similarly, in lateral plant growth stages including stem,
leaves and flowers, glands can be observed. Thus, G. bickii could be an excellent source to understand
the molecular mechanism of genes related to delayed gland morphogenesis, which controls/regulates
gland formation in cotton. This experiment consisted of 12 RNA-seq libraries from imbibed seeds
and germination stages of G. bickii and G. arboreum with three biological replications. A total of
975.52 million raw reads were obtained, and filtered for low quality reads, resulting in 746.22 million
clean reads (approximately 131.33 Gb raw data) with an average of 10.94 Gb for each sample. Over
92.17% of the (Q30) values and not less than 43.04% GC contents were observed from the RNA-seq
results. The average (Q30) value was 92.93% and GC contents were 43.47%. The clean reads were
mapped to the reference genome of G. arboreum using TopHat2 software. A total of 96.42% of the
clean data was successfully matched to the reference genome, of which 93.11% and 3.31% constituted
unique and multiple reads, respectively (Table 1). The above stated results implied the reliability of
our transcriptomic data.
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image of G. bickii showing no glands; (b) seed germination stage of G. bickii showing glands on 

Figure 1. Pictorial description of delayed gland morphogenesis in Gossypium bickii and regular gland
formation in Gossypium arboreum showing glands on seeds and germination stages. (a) Imbibed
seed image of G. bickii showing no glands; (b) seed germination stage of G. bickii showing glands on
cotyledons and hypocotyl; (c,d) image of G. arboreum imbibed seed and germination showing glands;
(e,f) gland formation in cotyledon and hypocotyl of G. bickii; and (g,h) gland formation in cotyledon
and hypocotyl of G. arboreum.
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Table 1. Summary of 12 separately pooled RNA sequencing read counts, using Gossypium arboreum
genome as a reference genome.

Sample
Name

Raw
Reads

Clean
Reads

Clean
Bases

Error Rate
(%) Q20 (%) Q30 (%) GC Content

(%)

Gbdd_1 76,722,280 75,666,498 11.35G 0.03 97.53 93.05 43.94

Gbdd_2 68,409,156 67,453,570 10.12G 0.03 97.63 93.31 43.63

Gbdd_3 75,015,858 74,123,028 11.12G 0.03 97.65 93.34 43.57

Ga48h_1 70,605,862 69,735,728 10.46G 0.03 97.45 92.81 43.91

Ga48h_2 77,498,638 76,604,382 11.49G 0.03 97.57 93.13 43.95

Ga48h_3 76,083,930 75,133,632 11.27G 0.03 97.37 92.64 43.77

Gbgl_1 77,882,552 77,011,776 11.55G 0.03 97.32 92.62 43.24

Gbgl_2 66,734,644 65,760,564 9.86G 0.03 97.2 92.36 43.25

Gbgl_3 70,721,200 69,789,014 10.47G 0.03 97.61 93.24 43.67

Ga24h_1 70,796,734 69,833,972 10.48G 0.03 97.62 93.21 43.04

Ga24h_2 82,478,328 80,547,802 12.08G 0.03 97.65 93.32 43.67

Ga24h_3 74,698,432 73,859,056 11.08G 0.03 97.17 92.17 43.25

Gbdd, Ga24h, Gbgl and Ga48h represent Gossypium bickii glanded seedlings, Gossypium arboreum glanded imbibed
seeds, G. bickii glandless imbibed seeds and G. arboreum glanded seedlings, respectively.

To further exploit RNA-seq results, we employed principal component analysis (PCA). PCA
was performed using RNA-seq data of four samples with three biological replications. This analysis
differentiated the glanded and glandless types into different groups. Gbgl samples showed a high
degree of differentiation from other samples, while Gbdd and Ga48h were clustered together. Our
results for PCA analysis confirmed the differential behavior of glandless G. bickii (Figure 2).

3.2. Transcriptome Changes during Imbibed Seed (Glandless) and Seedling (Glanded Stages)

To explore the DEGs related to delayed gland morphogenesis in different stages viz. imbibed
seed and germination, FPKM of the mapped reads values were employed to measure gene expression
quantity, followed by the generalized fold change (GFOLD) algorithm to identify DEGs among
Gbgl, Ga24h, Gbdd and Ga48h. The total number of genes exhibiting either up-regulation or
down-regulation in the respective samples were compared to each other. We identified 35,827 genes
between multiple samples. The samples Gbdd vs. Ga48h showed highest number of 14,903 DEGs;
among them, 7116 were up-regulated and 7787 were down-regulated. In the samples of Ga24h vs.
Ga48h, there was a total of 4857 genes; there were 3138 down-regulated and 1719 up-regulated genes.
In samples Gbdd vs. Ga24h, there were 10,909 genes identified, including 5184 down-regulated
and 5725 up-regulated-genes. Among Gbgl vs. Ga24h, a total of 1549 DEGs were identified, 1070
down-regulated and 479 up-regulated genes. In Gbgl vs. Gbdd, there was a total of 2740 DEGs
identified, 1807 down-regulated and 933 up-regulated genes. The minimum number of DEGs, 869,
were identified in Gbgl vs. Ga48h; 237 genes were up-regulated and 632 genes down-regulated
(Figure 3a).

To further explore the DEGs between different groups, we compared glanded imbibed seeds and
seedlings with glandless imbibed seeds of G. bickii. We sorted the common genes using a Venn diagram
online tool (https://bioinfogp.cnb.csic.es/tools/venny/) as either up-regulated or down-regulated with
significant expression level. A total of 7196 DEGs were obtained from whole transcriptomic data,
including 3480 down-regulated genes and 3395 up-regulated genes (Figure 3b). The total mapped
reads of all differentially-expressed genes were done using DEG-seq (p-value <0.01) with expression of
gene and the level calculated as FPKM. Further analysis of the log2 ratio found that the percentage of
DEGs was mainly distributed as FC >3 and from −2 to 2, -<3 to -<4 and -<5; the percentage of DEGs

https://bioinfogp.cnb.csic.es/tools/venny/
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was distributed widely (Figure 3c). In DEGs among different transcriptomic libraries of Ga24h vs.
Ga48h, Gbdd vs. Ga24h and Gbdd vs. Ga48h, the maximum number of genes were identified in FC >3,
while the minimum number of genes were identified in FC -<5. In Gbgl vs. Ga24h, Gbgl vs. Gbdd and
Gbgl vs. Ga48h, the maximum number of genes were sorted in FC -<2 to <2, and we did not find a
single gene in samples Gbgl vs. Ga24h and Gbgl vs. Ga48h under FC >3. In the clustering analysis of
FPKM values of DEGs, four samples with three biological repeats were carried out, after integrating
the sequencing data from the libraries; the expression of DEGs is shown in the heat map (Figure 4).Genes 2020, 11, x FOR PEER REVIEW 6 of 18 
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Figure 2. Principal component analysis (PCA) of genes identified from 12 samples with three biological
replicates. Gbdd, Ga24h, Gbgl and Ga48h represent glanded seedlings of G. bickii, glanded imbibed seeds
of G. arboreum, glandless imbibed seeds of G. bickii and glanded seedlings of G. arboretum, respectively.

3.3. Functional Annotations of Differentially-Expressed Genes

With the aim to understand the molecular mechanism of delayed gland morphogenesis and their
related genes, the identified 7196 DEGs were classified into 148 Gene Ontology (GO) annotations,
including biological processes, cellular components and molecular functions. In molecular function,
there were 56 different groups identified; 314 (4.36%) DEGs were involved in protein binding, followed
by 233 (3.23%) DEGs in ATP binding and 181 (2.51%) DEGs found in protein activity. In the cellular
component category, there were 17 different groups identified with the maximum numbers; 120 (1.66%)
DEGs were involved in membrane, 87 (1.20%) DEGs in the nucleus and 70 (0.97%) DEGs in the integral
component of the membrane. Then, in the biological processes category, there were 56 subcategories;
250 DEG (3.47%) genes were found in the oxidation–reduction process, followed by 182 (2.52%)
DEGs in protein phosphorylation, 157 (2.18%) DEGs in the metabolic process, and 114 (1.58%) DEGs
were identified in regulation of transcription, DNA-templated functions (Figure 5 and Table S1).
Furthermore, we explored the DEGs in up-regulated and down-regulated genes; GO enrichment
and KEGG pathway analysis were performed using Blast2GO software. Here we describe GO of
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up-regulated and down-regulated genes separately. In total, 3396 up-regulated genes were annotated
and categorized into seven GO terms based on molecular function and biological processes except for
the cellular component. Under the molecular functions, most up-regulated genes were involved in
protein binding, (196 genes, 5.77% of the total up-regulated 3396 genes) and only eight (0.83%) genes
were identified in ubiquitinyl hydrolase activity. In biological processes, the maximum number of
21 (0.61%) genes were found in transcription, followed by 19 (0.55%) genes in protein folding, nine
(0.26%) genes in protein deubiquitination, and five (0.14%) genes in response to heat. These were the
principal subcategories of GO analysis in which up-regulated genes were identified. Down-regulated
genes were categorized and annotated into five GO terms based on biological processes, cellular
components and molecular functions. The catalytic activity of molecular functions was the most
enriched category with 73 (2.09%) genes, structural constituent of cytoskeleton with nine (0.25%) genes,
and palmitoyl hydrolase activity with three (0.08%) genes. In biological processes, the metabolic
process was enriched with 59 (1.69%) genes, and the microtubule category of the cellular process was
enriched with nine (0.25%) genes, these were the most abundant down-regulated genes.
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Figure 3. Expression dynamics changes and comparative analysis of differentially-expressed genes
(DEGs) between Gbgl, Ga24h, Gbdd and Ga48h following delayed gland morphogenesis at imbibed
seed and seedling stages. (a) Number of DEGs showing the up-regulated and down-regulated genes;
(b) Venn diagram showing common genes, all differentially-expressed genes in different stages; (c) the
number of transcripts demonstrating changes in expression in Gbgl, Ga24h, Gbdd and Ga24h following
pattern fold change (FC) in expression, calculated as the log2 ratio of gene expression in glandless
imbibed seed with glanded imbibed seed and seedling. Gbdd, Ga24h, Gbgl and Ga48h represent
G. bickii glanded seedlings, G. arboreum glanded imbibed seeds, G. bickii glandless imbibed seeds and
G. arboreum glanded seedlings, respectively.
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DEGs in the metabolic process, and 114 (1.58%) DEGs were identified in regulation of transcription, 
DNA-templated functions (Figure 5 and Table S1). Furthermore, we explored the DEGs in 
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performed using Blast2GO software. Here we describe GO of up-regulated and down-regulated 
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Figure 4. The expression pattern of DEGs from different biological replicates. A heat map represents
the relative expression levels of genes based on fragment per kb per million of the mapped reads
(FPKM) values using RNA sequencing (RNA-seq) data. Gbdd, Ga24h, Gbgl and Ga48h represent
G. bickii glanded seedlings, G. arboreum glanded imbibed seeds, G. bickii glandless imbibed seeds and
G. arboreum glanded seedlings, respectively.

A threshold of top 30 was set for KEGG pathways analysis (Figure 6). A total of 416 genes were
enriched in metabolic pathways, followed by 256 genes in biosynthesis of secondary metabolites, and
131 genes involved in biosynthesis of antibiotics. These were the most abundant genes involved in
KEGG pathways.

3.4. Gene Co-Expression Correlation Network Analysis

The weighted co-expression correlation network analysis (WGCNA) is a bioinformatics tool that
discovers the target genes network level of distinct genes [28,32,33]. The analysis of the co-expression
network includes 12 RNA sequencing samples (Figure S1). The power of β = 8 (scale-free R2 = 0.64)
was selected as a soft threshold to ensure a scale-free network (Figure 7a–d). To explore further
understanding of the relationship of gene expression with progressive delayed gland morphogenesis
and to identify the genes associated with gland formation, we performed co-expression analysis for
total genes expressed in all samples of RNA-seq data.
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In the heat map plot for the gene expression network analysis, dark red color represents overlapped
highly expressed module gene pairs from respective datasets, and yellow color indicates partially
overlapped genes (Figure 8a). Furthermore, when analyzing the glandless imbibed seeds with glanded
imbibed seeds and seedlings samples using the module trait relationship, 27 distinct modules were
observed. From these 27 modules, only four modules were highly associated with glandless imbibed
seed sample. Furthermore, in the description of 27 distinct modules, there were three modules that
were highly correlated with glandless imbibed seed. The three modules, including MEbrown (r = 0.92,
p = 2 × 10−0), MEmistyrose (r = 0.81, p = 0.001 × 10−0) and MEmagneta (r = 0.74, p = 0.006 × 10−0) were
positively correlated with gland formation (Figure S2 and Table S2).

The MEbrown module contained 4552 genes that were related to genetic information of metabolic
pathways. The module MEmistyrose consisted of 4910 genes, mainly involved in spliceosome and
biosynthesis of secondary metabolites. The module MEmagneta contained 1543 genes, involved in
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biosynthesis of antibiotics (Table S3). For further study of the molecular mechanism of delayed gland
morphogenesis, the unigenes of three modules were analyzed by gene ontology and KEGG pathways.
In gene ontology analysis, unigenes were mostly related to protein binding (GO:005515), ATP binding
(GO:0005524), the oxidation–reduction process (GO:0055114), protein phosphorylation (GO:0006468)
and the membrane (GO:0016020).Genes 2020, 11, x FOR PEER REVIEW 12 of 18 
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Figure 8. (a) Weighted gene co-expression network analysis (WGCNA), all expressed genes in Gbgl,
Gbdd, Ga24h and Ga48h RNA-seq samples, showing hierarchical dendrogram co-expression of
identified modules by WGCNA; each leaf represents a single gene. (b) The heat map plot of the gene
network analysis. Dark red color shows overlap of highly expressed genes which pair from respective
datasets, and the lighter color represents the low overlap genes. Different modules are indicated by
the diagonals.

3.5. Quantitative Real-Time PCR Validation of RNA-Seq Data

To confirm and validate the reliability of RNA-seq data, qRT-PCR analysis was performed to
quantify the transcript level of selected genes. We selected 13 genes from DEGs (Table S4). Genes
were involved in transcription factors (including ERF061, BHLH87, OFP6, TCP5, SCRM2, BZIP61 and
OFP13), protein synthesis (SGR5, SCL13 and LBD36), axial regulatory (YAB5 and LRP1) and MYB
(MYB308). The transcript data from RNA-seq and qRT-PCR analysis were compared with the log2-fold
change and relative expression level. qRT-PCR was performed by using three independent biological
replicates. The primers are listed in Table S2. Housekeeping β-actin gene was used as a reference
gene. The expression patterns of the 13 DEGs in the qRT-PCR results were highly consistent with
transcriptome sequencing data, which further supported the reliability of our RNA-seq data. The genes
ERF061, SCL 13 and LBD36 were up-regulated in RNA-seq data, while in qRT-PCR results, the relative
expression pattern was higher than glandless imbibed seeds. The remaining genes BHLH87, SGR5,
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OFP6, YAB5, LRP, SCRM2, MYB308, OFP13, TCP5 and BZIP were down-regulated in transcriptomic
data and expressed lower than glandless imbibed seeds in qRT-PCR (Figure 9a,b). The results showed
that RNA-seq data were reliable and conducive to the identification of DEGs in gland development on
imbibed seeds and seedlings.
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4. Discussion

Several genome sequencing projects of diploid cotton plants have been completed on the cotton
genome [34–36]. In this experiment, we identified the genes which play a key role of pigments/glands
underlying delayed gland morphogenesis. The cotton seed is a source of high quality protein (23%) and
oil (21%) [22], although the utilization of nutrients resources is hampered due to presence of pigmented
glands with gossypol toxicity [23]. Ever-increasing demand for food for human consumption has led
scientists to explore the potential of cotton seed as a source of food and oil. RNA-seq was employed
to discover the expression profile and sort out the candidate genes from DEGs related to delayed
gland morphogenesis. RNA-seq is a useful tool to discover whole genome expression and screen
out the candidate genes from DEGs [21]. In previous studies, RNA-seq studies were applied in
different traits of fibers [20,37–39], with biotic and abiotic stresses to identify the related genes [40,41].
In this experiment, we compared DEGs of glandless imbibed seeds of G. bickii with glanded imbibed
seeds of G. arboreum, and seedlings of both species. There is a delayed gland morphogenesis trait in
Australian Gossypium species where pigment gland is formed after seed germination, and then the
gossypol appears [42,43]. To gain accurate and repeatable RNA-seq data, we have used three biological
replications from each sample, and the average number of clean reads (92.17%) of the Q30 and GC
content percentage was about 43.47% and the average of each sample 92.93%. High correlation value
was observed between the replicates of G. bickii seedling (0.97), which indicates the reliability and
quality of RNA-seq data and sampling. In this study, we compared the wild Australian species G. bickii
glandless imbibed seeds with glanded seedling and G. arboreum glanded imbibed seeds with seedling.

4.1. Comparison of Expression Profiles, RNA Sequences between Glandless G. bickii and Glanded G. arboreum

At imbibed seed and seedling stages, a comparison of differentially-expressed genes showed
that a large number of genes were significantly expressed in Gbdd vs. Ga48h at the seedling stage,
while very few DEGs were differentially expressed in Gbgl vs. Ga24h at the imbibed seed stage, which
suggested a highly diverged gene expression pattern. The transcription factors gene was reported
to regulate many pathways during plant development and gland formation in the cotton plant [22].
Some MYC gene was reported as an important regulator of trichrome and pigmentation on the leaf of
Arabidopsis thaliana [44,45]. In our study, we also found some transcription factors, protein synthesis,
axial regulatory and MYB genes related to delayed gland morphogenesis. These genes were selected
based on expression and pathway analysis. Previous studies identified that several WRKY transcription
factor gene families were reported with 74 subfamilies identified in A. thaliana, which participates
in regulation of various developmental processes of pigmentation [46]. The differentially-expressed
genes (ERF61, BHLH87, OFP6, TCP5, SCRM2, BZIP61 and OFP13) were found to be involved in
transcription factor activities. While remaining DEGs were related to protein synthesis, axial regulatory
and MYB-related function of these genes on leaf trichrome and pigmentation on A. thaliana, and we
confirmed their expression through qRT-PCR. Validation and functional annotation of these genes can
provide better insights into the mechanism underlying the genes by CRISPR-cas9, virus-induced genes
silencing and overexpression molecular techniques.

4.2. Hub Genes Identified Using WGCNA

In the present study, we used WGCNA to identify the modules associated with delayed gland
morphogenesis. Here we used weighted gene co-expression network analysis to identify the significant
modules of specific genes associated with delayed gland morphogenesis, and identified several
modules highly associated with glandless imbibed seed. There were four modules highly associated
with glandless imbibed seed samples. These module genes involved in transcription factors play a key
role in growth, development and gland formation in cotton [47]. Therefore, these hub genes are also
worthy of further research.
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5. Conclusions

To understand the differences in gene expression pattern between two species, G. arboreum and G.
bickii, the genes related to glandless trait on seeds were identified. Here we performed RNA-seq and
constructed 12 libraries from four different samples, including two from G. arboreum imbibed seed and
germination stage and two from G. bickii (glandless imbibed seed and glanded seedling). DEGs were
identified using Blast2GO software and we identified genes related to gland formation in cotton. Gene
ontology analysis identified and categorized different genes based on their function and up-regulation
and down-regulation expression profiles. KEGG pathways analysis revealed that the genes showed a
contrasting expression trend in different pathways, i.e., metabolic pathway, biosynthesis of secondary
metabolites and biosynthesis of antibiotics, and the genes controlling these pathways were involved in
different transcription factors.

Co-expression network analysis has identified four modules that were highly associated with
delayed gland morphogenesis. These findings have revealed promising candidate genes for
improvement of glandless imbibed seed and plant in further molecular studies of upland cotton.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/5/472/s1:
Figure S1. 12 RNA sequencing samples were included in co-expression network analysis, clustering dendrogram
of 12 RNA sequence samples. Figure S2. Number of modules correlated with glandless trait. Table S1. List
of differentially-expressed genes. Table S2. List of module size consisting of number of genes in each module.
Table S3. Number of genes identified in modules. Table S4. List of primers used for qRT-PCR validation.
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