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Abstract: The United Arab Emirates National Diabetes and Lifestyle Study (UAEDIAB) has 

identified obesity, hypertension, obstructive sleep apnea, and dyslipidemia as common phenotypic 

characteristics correlated with diabetes mellitus status. As these phenotypes are usually linked with 

genetic variants, we hypothesized that these phenotypes share single nucleotide polymorphism 

(SNP)-clusters that can be used to identify causal genes for diabetes. Materials and We explored the 

National Human Genome Research Institute-European Bioinformatics Institute Catalog of 

Published Genome-Wide Association Studies (NHGRI-EBI GWAS) to list SNPs with documented 

association with the UAEDIAB-phenotypes as well as diabetes. The shared chromosomal regions 

affected by SNPs were identified, intersected, and searched for Enriched Ontology Clustering. The 

potential SNP-clusters were validated using targeted DNA next-generation sequencing (NGS) in 

two Emirati diabetic patients. RNA sequencing from human pancreatic islets was used to study the 

expression of identified genes in diabetic and non-diabetic donors. Eight chromosomal regions 

containing 46 SNPs were identified in at least four out of the five UAEDIAB-phenotypes. A list of 

34 genes was shown to be affected by those SNPs. Targeted NGS from two Emirati patients 

confirmed that the identified genes have similar SNP-clusters. ASAH1, LRP4, FES, and HSD17B12 

genes showed the highest SNPs rate among the identified genes. RNA-seq analysis revealed high 

expression levels of HSD17B12 in human islets and to be upregulated in type 2 diabetes (T2D) 

donors. Our integrative phenotype-genotype approach is a novel, simple, and powerful tool to 

identify clinically relevant potential biomarkers in diabetes. HSD17B12 is a novel candidate gene for 

pancreatic β-cell function. 
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1. Introduction 

Type 2 diabetes (T2D) is a multifactorial disorder characterized by the insufficiency of insulin 

secretion and/or insulin action [1]. The disease is one of the most critical public health challenges of 

the 21st century [2]. Rapid socio-economic transition is one of the leading causes of the global diabetes 

epidemic and rising prevalence rates in developing economies [3]. The cost associated with the 

disease affects more impoverished world regions as well as high-income countries, thus imposing a 

substantial global economic burden [4]. Recent reports showed a high prevalence of T2D in the 

United Arab Emirates (UAE) [5]. Thus, effective interventions are urgently needed to slow the 

diabetes epidemic and reduce diabetes-related complications. An ultimate goal in diabetes 

management is the identification of novel biomarkers that enable the detection, prevention, treatment 

of the disease, and its complications long before overt disease development [6]. 

Genome-wide association studies (GWAS) have identified more than 143 common genetic 

variants associated with T2D [7]. However, these variants explain only a small proportion of the 

heritability of the disease [8]. Thus, more extensive studies are needed to identify T2D loci in different 

populations, as well as novel approaches to make sense of these generated databases [9]. 

The United Arab Emirates National Diabetes and Lifestyle Study (UAEDIAB) study is a cross-

sectional survey designed to investigate the prevalence of diabetes and associated risk factors in 827 

Emiratis and 2724 expatriates living in Dubai, Sharjah, and the Northern Emirates [10–12]. UAEDIAB 

study has identified a list of patient’s related measurements including obesity/BMI, hypertension, 

obstructive sleep apnea, and dyslipidemia that correlated with diabetes. Interestingly, most of these 

identified phenotypes have previously been associated with genetic variants [13–16]. 

Random genetic variants are unlikely to occur in the same genomic position unless there is a 

positive selection for that mutation, which might represent a fitness advantage [17]. However, genetic 

variants in terms of single nucleotide polymorphism (SNP) can cluster in particular chromosomal 

regions [18]. Those regions might represent an increased vulnerability to mutation as a result of their 

unique sequence, structural, and functional features [19]. Such SNPs clusters are thought to occur 

preferentially around some functional genes. Therefore, the identification of clustered SNPs might 

provide insights into the molecular mechanisms of mutagenesis. This may include vulnerable 

regions, possible positive selection for disease development, and regulatory actions associated with 

T2D. 

In this study, we describe an integrative phenotype-genotype approach to identify novel 

potential biomarkers for T2D by utilizing the phenotypic characteristics of the UAEDIAB study. This 

was addressed by a systems genetics approach integrating SNP-clusters in chromosomal regions 

between the identified UAEDIAB-phenotypes and published SNPs using the National Human 

Genome Research Institute-European Bioinformatics Institute Catalog of Published Genome-Wide 

Association Studies (NHGRI-EBI GWAS) Catalog. We believe that our study might lead to novel 

testable hypotheses for genes involved in β-cell function and will add new insight into the molecular 

pathogenesis and biomarkers for T2D. 

2. Materials and Methods 

2.1. Study Design, Population, and Settings 

The details of the study design and sampling of the UAEDIAB study are described elsewhere 

[10,20]. In brief, the UAEDIAB is a cross-sectional study conducted to estimate both prevalence and 

risk factors of diabetes among UAE nationals and expatriates who have been living in Sharjah, Dubai, 

and the Northern Emirates for at least four years. The study was approved by the Ethics Committee 

of Sharjah University and the Ministry of Health Research Ethics Committee (REC number 

MOHAP/DXB/SUBC/No.14/2017). All participants had consented to the usage of their collected data 

and samples. 

  



Genes 2020, 11, 461 3 of 16 

 

2.2. Identification of SNP-Clusters Associated with the UAEDIAB-Phenotypes 

We utilized the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/, v. 1.0) of published 

genome-wide association studies [21]. The file downloaded was (gwas_catalog_v1.0-

associations_e96_r2019-07-12). The entire catalog was downloaded and prioritized for SNPs 

associated with the 5 given phenotypes; (1) diabetes (type 1 diabetes (T1D) and T2D), (2) obesity 

(obesity and body mass index), (3) dyslipidemia (triglyceride levels, triglycerides, lipid traits, high-

density lipoprotein (HDL) cholesterol-triglycerides (HDLC-TG), low-density lipoprotein (LDL) 

cholesterol levels, HDL cholesterol levels, and total cholesterol levels), (4) obstructive sleep apnea 

(snoring, obstructive sleep apnea, obstructive sleep apnea trait (apnea–hypopnea index), (average 

oxygen saturation during sleep), or (average respiratory event duration), and (5) hypertension 

(systolic blood pressure 140/diastolic blood pressure 90. SNPs with a significant association with 

each of the given phenotypes associated with diabetes (adjusted p-value < 0.05) were identified along 

with their corresponding chromosomal regions. 

2.3. SNP to SNP Functional and Pathway Enrichment 

To investigate whether the identified genes share common pathways that may link the given 

phenotypes, we used eXploring Genomic Relations (XGR) for enhanced interpretation web tools 

(http://galahad.well.ox.ac.uk:3040/). XGR provides enhanced interpretation of GWAS via 

comprehensively utilizing ontology and network information [22]. The tool uses the Experimental 

Factor Ontology (EFO) option to provide a systematic description of many experimental variables 

available in EBI databases and the NHGRI-EBI Catalog [23]. Enrichment analysis is based on the 

hypergeometric/binomial distribution or Fisher′s exact test which tests the statistical significance of 

the observed number of SNPs overlapped between an input group of SNPs and SNPs annotated by 

EFO. As validation of the results, Enriched Ontology Clustering for the identified genes and SNPs 

associated with the 5 identified UAEDIAB-phenotypes study were generated using the Metascape (a 

web-based tool used for comprehensive gene list annotation and analysis resource) and Reactome 

option in SNPnexus [24]. Socialiser for SNPs in XGR was used to assess the degree of relatedness 

between any two SNPs in terms of annotation profiles and network were performed by the tool. 

Similarity functions serve to conduct similarity analysis calculating semantic similarity—a type 

of comparison to assess the degree of relatedness between two entities (e.g. genes or SNPs) based on 

their annotation profiles (by ontology terms) [25]. To do so, information content (IC) of a term is first 

defined to measure how informative a term is to being used for annotating genes: −log10 (frequency 

of genes annotated to this term). The similarity between the two terms is then measured based on IC, 

usually at the most informative common ancestor (MICA). Finally, the similarity between two entities 

(e.g., genes) was derived from pairwise term similarity using best-matching based methods: average, 

maximum, and complete. To identify phenotypically important SNPs, we used SNPnexus 

(http://www.snp-nexus.org) to assess the potential significance of identified SNPs on the major 

transcriptome, proteome, regulatory, and structural variation models [26]. 

2.4. Targeted Next-Generation Sequencing 

As proof of concept to validate the identified SNP-clusters and genes related to diabetes in our 

cohort, two Emirati diabetic patients (1 male and 1 female; age 60 ± 1) were selected as they have an 

exceptionally high level of glycated hemoglobin (HbA1c >10.5%), fasting blood glucose values >13 

mmol/L, BMI >40, weight 120 ± 3 kgs, with dyslipidemia profile, hypertension, and obstructive sleep 

apnea/snoring. Extracted blood DNA was subjected to targeted DNA next-generation sequencing 

using the S5 semi-conductor based DNA sequencer as described previously [26]. Briefly, we used the 

targeted coding-exome sequencing approach by designing multiplex primers that map across key 

genes along the coding region of the genome. We multiplexed the two patients on one Ion Chip. A 

pooled barcoded amplicon-tagged library generated using Fluidigm Access Array (Fluidigm Europe 

B.V, Amsterdam, The Netherlands) was diluted and subjected to emulsion polymerase chain reaction 

(PCR) with Ion SphereTM particles with Ion Template OT2 200 Kit (Ion OneTouchTM system) 
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following the manufacturer’s instructions (Thermo Fisher, MA, USA). The pooled samples were 

sequenced using 540 Ion Chip with Ion 200 Sequencing kit on the S5 sequencer following 

manufacturer instructions (Thermo Fisher). The total mapped reads obtained were around 40 million 

per patient, with 109 mean depth and 94% uniformity coverage. 92.4% of the amplicons were aligned 

to the reference genome (HG19 build). The AQ20 quality mean length was 138bp and the mean raw 

accuracy was 98.6%. The mean coverage across the amplicon was around x130. The bioinformatics 

analysis was carried out by first aligning the data using the BWA alignment algorithm, followed by 

sequence filtering using SAMtools. Mutations file (VCF) was generated using vcftools. The mutations 

were visualized using Integrated Genome Viewer. 

2.5. RNA-Seq from Human Islets 

RNA-seq data were extracted from human pancreatic islets obtained from 75 cadaver donors 

(nondiabetic HbA1c < 6%, n = 63 and T2D/hyperglycemic HbA1c ≥ 6.3%, n = 12) as previously 

described [27,28]. RNA-seq was performed using Illumina’s TruSeq RNA Sample Preparation Kit as 

described previously [27,28]. Data normalization was processed using a trimmed mean of M-values 

and presented as Fragments/Kilobase of Exon Per Million Fragments Mapped (FPKM) or 

transformed into log2 counts per million using the voom-function (edgeR/limma R-packages). RNA-

seq are deposited in a MIAME database (GSE50398). 

2.6. In Silico Validation 

To link the genomic SNPs to the functional and dynamic mRNA transcriptomics of the identified 

genes, we searched publicly available transcriptomics database “GEO Omnibus” of pancreatic islets 

isolated from nondiabetic and compared to diabetic samples. Then, we extracted blood 

transcriptomic datasets from T2D, pre-diabetic, and healthy controls. Details of the used datasets are 

listed in Supplementary Table S2. 

2.7. Statistical Methods 

GraphPad Prism version 7.00 for Windows (GraphPad Software, La Jolla, CA, USA) was used 

for statistical analysis. First, the D′Agostino–Pearson normality test was used to determine whether 

to perform parametric or nonparametric tests. One-way ANOVA test was performed to determine 

whether there are any statistically significant differences between the mean values of the controls and 

different groups for the gene expression and protein levels. For nonparametric tests, the Kruskal–

Wallis test and Dunn’s correction for multiple testing were used. The same software was used to 

examine the correlations between the different parameters using linear regression. A Student’s t-test 

was used to look for the difference between two groups under a given experiment or treatment. p < 

0.05 was considered significant. 

3. Results 

3.1. NHGRI-EBI GWAS Catalog Analysis Identifies Eight SNP-Clusters in Chromosome Regions with 

Frequent SNPs Associated with Most of the UAEDIAB-Phenotypes  

SNPs related to the different UAEDIAB-phenotypes and diabetes were explored using the 

NHGRI-EBI GWAS Catalog. Our analysis showed a total of 708 chromosomal regions associated with 

most SNPs that have been associated with UAEDIAB-phenotypes. Of them, 211 chromosomal 

regions were associated with diabetes, 270 SNPs with BMI and obesity, 155 regions with lipid profile, 

and 48 regions with hypertension, while 24 regions were associated with obstructive sleep apnea 

(Figure 1). 
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Figure 1. Flowchart to identify hot spots of chromosomal regions associated with single nucleotide 

polymorphisms (SNPs) related to the phenotypes identified using the National Human Genome 

Research Institute-European Bioinformatics Institute Catalog of Published Genome-Wide Association 

Studies (NHGRI-EBI GWAS) Catalog. T1D: type 1 diabetes; T2D: type 2 diabetes; BMI: body mass 

index; GWAS: Genome-Wide Association Studies; HDL: high-density lipoprotein; HDLC-TG: 

cholesterol-triglycerides; LDL: low-density lipoprotein; DM: diabetes mellitus. 

Interestingly, the intersection of chromosomal regions associated with UAEDIAB-phenotypes 

with diabetes identified eight common chromosomal regions between the phenotypes. Of them, four 

chromosomal regions (8p22, 1q32.3, 12q24.13, and 7p15.2) were overlapped between BMI/obesity, 

dyslipidemia, hypertension, and T1D/T2D, three regions (11p11.2, 6q21, and 17q12) between 

BMI/obesity, dyslipidemia, sleep apnea, and T1D/T2D and only, one common region (15q26.1) was 

found between BMI/obesity, hypertension, sleep apnea, and T1D/T2D (Figure 2 and Table 1). 

Analysis of those eight shared chromosomal regions revealed 46 potential SNPs (Table 2). Data from 

the NHGRI-EBI GWAS Catalog revealed that 34 genes were reported to be affected by those SNPs 

(Table 2). 
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Figure 2. Numbers of chromosomal regions sharing SNPs correlated with the five UAEDIAB-

phenotypes (BMI/obesity, dyslipidemia, hypertension, sleep apnea, and T1D/T2D). The regions were 

extracted from the NHGRI-EBI GWAS Catalog. The figure was generated using the InteractiVenn: a 

web-based tool for the analysis of sets through Venn diagrams. 

Table 1. List of overlapped chromosomal regions that correlated with UAEDIAB-phenotypes and 

diabetes. 

Number of 

Shared 

Phenotypes 

Shared Phenotypes 

Number of 

Shared 

Regions 

Shared Regions/Bands 

4 Phenotypes 

(BMI/obesity) and 

(dyslipidemia) and 

(hypertension) and 

(T1D/T2D) 

4 8p22,1q32.3,12q24.13,7p15.2 

(BMI/obesity) and 

(dyslipidemia) and [sleep 

apnea] and (T1D/T2D) 

3 11p11.2,6q21,17q12 

(BMI/obesity) and 

(hypertension) and (sleep 

apnea) and (T1D/T2D) 

1 15q26.1 

3 Phenotypes 

(BMI/obesity) and 

(dyslipidemia) and 

(T1D/T2D) 

34 

16q12.2,19q13.32,16p11.2,5q13.3,11p15.4,

10p13,16q23.2,18q21.32,18q11.2,6p22.3,2

p23.3,19q13.11,10p15.1,22q12.3,15q15.1,1

p31.3,19p13.2,2q36.3,11p15.1,12q24.12,12

q24.11,11q13.1,2q24.3,1p32.3,1q21.3,10q2

5.2,6p21.32,6p21.1,6q23.3,17p13.2,10q21.

3,12q24.31,3p25.2,3q21.1 

(dyslipidemia) and 

(hypertension) and (T1D and 

T2D) 

5 10q23.33,1q41,1q43,6p21.33,8q24.12 

(BMI/obesity) and 

(hypertension) and 

(T1D/T2D) 

2 16p12.3,1p13.2 

(BMI/obesity) and (sleep 

apnea) and (T1D/T2D) 
3 1q32.1,1q42.2,11q13.4 
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2 Phenotypes 

(dyslipidemia) and 

(T1D/T2D) 
17 

6q13,6q27,20q13.12,1q42.13,5q11.2,4p16.3

,6q24.1,12p13.31,9q34.2,8q24.3,17p13.1,9

p24.2,22q12.2,1p34.3,7q32.2,1p22.1,2q33.

2 

(BMI/obesity) and (T1D/T2D) 47 

6q23.1,10q22.3,8q21.13,2p25.3,4p12,12q1

3.12,14q31.1,3q27.2,2p16.1,9p21.1,4q28.2,

17q21.32,18q12.3,1p21.3,9q22.31,15q14,9q

22.2,5q33.2,14q11.2,3p14.1,12q12,8q22.3,2

1q22.3,2p23.2,17p11.2,2q21.3,9q31.3,10q2

6.13,17p13.3,11p15.5,11q13.3,8q24.21,7q3

6.3,1p12,3q23,6p21.2,7p12.1,9p24.1,14q24

.1,18p11.21,13q31.1,5q21.1,2p21,12p12.1,

7p14.3,8q22.1,9p21.3 

(hypertension) and 

(T1D/T2D) 
6 

5q31.1,18p11.31,7q22.1,21q22.11,8p11.21,

9q21.32 

(sleep apnea) and (T1D/T2D) 1 2p24.3 

1 Phenotype (T1D/T2D) 89 

8q24.11,11q14.3,4q35.1,6q12,17q21.33,3q2

6.2,17q11.2,4q22.2,22q13.33,7p21.2,5q22.2

,3q13.31,11p12,15q22.2,2q23.3,11q24.3,3q

26.33,1q32.2,10q26.3,19q13.2,4q32.3,14q3

2.2,2q24.2,7q32.1,9q34.3,3p24.3,Xq28,2q3

3.1,3q27.3,13q21.31,6q25.1,13q14.13,13q2

1.33,13q22.1,16p13.12,20q11.21,1q21.2,5q

14.2,20p12.2,2q14.3,14q23.1,15q24.3,12q1

3.2,1p22.3,6q15,16p13.13,18q22.2,2q11.2,5

p13.2,15q25.1,4q27,4p15.2,6q22.32,10q23.

31,17q21.1,17q21.2,20p13,13q22.2,7p15.1,

10q24.2,10q26.11,13q12.12,8q24.22,11p15.

4,11p15.5,3p23,12q21.2,1p22.2,12q21.1,2q

12.1,10q22.1,3q12.3,9p23,9q21.31,12q14.3,

4p16.1,4q31.3,6p24.3,13q12.13,12p11.22,2

p23.1,7p14.1,8q13.2,12p11.21,2p16.2,10q2

6.12,16q24.1,3p14.3,20q13.31 

Table 2. List of the 46 SNPs located in the identified eight shared chromosomal regions and their 

reported affected genes. Data extracted from the NHGRI-EBI GWAS Catalog. 

SNP ID Mapped Gene Chro. Region Location Reported Gene 

rs3817334 MTCH2 11p11.2 11:47629441 MTCH2 

rs7124681 CELF1 11p11.2 11:47508395 CUGBP1 

rs11066280 HECTD4 12q24.13 12:112379979 HECTD4 

rs4430796 HNF1B 17q12 17:37738049 HNF1B 

rs2176598 HSD17B12 11p11.2 11:43842728  HSD17B12 

rs17696736 NAA25 12q24.13 12:112049014 Not Reported 

rs2028299 AP3S2 15q26.1 15:89831025 AP3S2 

rs9400239 FOXO3 6q21 6:108656460 FOXO3 

rs17126232 AC124242.3 8p22 8:18120141 ASAH1 

rs6990042 SGCZ 8p22 8:14316465  SGCZ 

rs10742752 AC103855.3 11p11.2 11:45416824 SYT13 

rs17630235 TRAFD1,HECTD4 12q24.13 12:112153882 Not reported 

rs1439620 AC013394.1,LINC01578 15q26.1 15:92886416 LOC100507217 

rs12150665 GGNBP2 17q12 17:36558947 GGNBP2 

rs3800229 FOXO3 6q21  6:108675760 FOXO3 

rs35424364 CCDC162P 6q21 6:109322403 
C6ORF183,  

CCDC162P 

rs1495741 PSD3,NAT2 8p22 8:18415371  NAT2 

rs10838738 MTCH2 11p11.2 11:47641497 MTCH2 

rs326214 MADD 11p11.2 11:47276809 LRP4 
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rs74472562 TSPAN18 11p11.2 11:44741205 
RP11- 45A12.2,  

TSPAN18 

rs1061810 HSD17B12,AC087521.2,AC087521.4 11p11.2 11:43856384 HSD17B12 

rs936674 AC091078.1 15q26.1 15:93360368 RP11-266O8.1 

rs148024591 AC091078.1 15q26.1 15:93371222 RP11-266O8.1 

rs2521501 FES 15q26.1 15:90894158 FURIN, FES 

rs8042680 PRC1,PRC1-AS1 15q26.1 15:90978107 PRC1 

rs12899811 VPS33B 15q26.1 15:91000846 PRC1 

rs79548680 RCCD1 15q26.1 15:90962549 PRC1 

rs1877031 STARD3 17q12 17:39657827 STARD3 

rs4796285 AC243830.1,LHX1-DT 17q12 17:36824731 Not reported 

rs10908278 HNF1B 17q12 17:37739961 HNF1B, TCF2 

rs1704198 AC096639.1 1q32.3 1:213737151 PROX1 

rs340839 PROX1 1q32.3 1:213988477 PROX1 

rs7526425 AC105275.1,SLC30A1,RD3 1q32.3 1:211527316 SLC30A1 

rs2075423 PROX1-AS1 1q32.3 1:213981376 PROX1 

rs884366 CCDC162P 6q21 6:109252892 LOC100996634 

rs149358103 RPS27AP11,LINC02541 6q21 6:11358684 SOCS5P5, MARCKS 

rs10261878 AC010719.1,AC018706.1 7p15.2 7:25910925 NFE2L3, MIR148A 

rs4719841 NFE2L3,MIR148A 7p15.2 7:25957916 MIR148A 

rs4722551 NFE2L3,MIR148A 7p15.2 7:25952206 MIR148A 

rs6969780 HOXA3,HOXA-AS2 7p15.2 7:27119517 HOXA3 

rs10279895 HNRNPA1P73,RPL35P4 7p15.2 7:27288591 EVX1, HOXA 

rs7804356 SKAP2 7p15.2 7:26852046 Not reported 

rs4921914 PSD3,NAT2 8p22 8:18414928 NAT2 

rs1961456 NAT2 8p22 8:18398199 NAT2 

rs115706913 SGCZ 8p22 8:14224308 Not Reported 

rs2946504 TRMT9B 8p22 8:12954071 KIAA1456 

3.2. SNPs Enrichment Analysis Showed Significant Ontology Similarity and Metabolic Pathways 

Enrichment 

XGR web tool was used to explore the correlation of the 46 identified SNPs as a group to each 

other or to UAEDIAB-phenotypes. This analysis further confirms the association between the 

identified 46 SNPs and the given phenotypes (FDR < 0.05). Additionally, our analysis showed a 

significant association between the 46 identified SNPs and other phenotypes (Table 3). Of them, 15 

SNPs were associated with metabolic disease, 12 SNPs with diabetes mellitus, 13 SNPs with body 

mass index, and 10 SNPs with T2D. 

Table 3. Enrichment analysis of the 46 SNPs found in eight shared chromosomal regions in at least 

four of the UAEDIAB-phenotypes. 

 Term Name 

Number of 

SNPs 

Overlapped 

SNP IDs Z-Score p-Value FDR 

1 Metabolic Disease 15 

rs1061810, rs10908278, rs11066280, 

rs12899811, rs149358103, rs1704198, 

rs17126232, rs17696736, rs2028299, 

rs2075423, rs2946504, rs4430796, rs7804356, 

rs79548680, rs8042680 

13.2 8.20 × 10−15 2.60 × 10−13 

2 Diabetes Mellitus 12 

rs1061810, rs10908278, 

rs12899811,rs149358103, rs17696736, 

rs2028299, rs2075423, rs2946504, rs4430796, 

rs7804356, rs79548680, rs8042680 

12.2 1.50 × 10−12 2.30 × 10−11 

3 Body Mass Index 13 

rs10261878, rs10742752, rs10838738, 

rs12150665, rs1439620, rs17630235, 

rs2176598, rs3800229, rs3817334, rs6990042, 

rs7124681, rs936674, rs9400239 

10.9 6.40 × 10−12 4.80 × 10−11 
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4 Sleep Apnea 4 
rs148024591, rs35424364, rs4796285, 

rs74472562  
29.7 7.80 × 10−12 4.80 × 10−11 

5 Sleep Apnea 4 
rs148024591, rs35424364, rs4796285, 

rs74472562 
29.7 7.80 × 10−12 4.80 × 10−11 

6 
Type II Diabetes 

Mellitus 
10 

rs1061810, rs10908278, rs12899811, 

rs2946504, rs149358103, rs8042680, 

rs2028299, rs2075423, rs4430796, rs79548680 

11.9 2.30 × 10−11 1.20 × 10−10 

7 
Sleep Apnea 

Measurement 
4 

rs148024591, rs35424364, rs4796285, 

rs74472562 
20.5 3.90 × 10−10 1.70 × 10−9 

8 Sleep Disorder 4 
rs148024591, rs35424364, rs4796285, 

rs74472562 
15.5 6.50 × 10−9 2.50 × 10−8 

9 Hypertension 5 
rs10279895, rs11066280, rs115706913, 

rs2521501, rs6969780 
12.1 1.40 × 10−8 4.80 × 10−8 

10 
Triglyceride 

Measurement 
6 

rs11066280, rs1495741, rs340839, rs4719841, 

rs4722551, rs4921914 
7.9 5.70 × 10−7 1.8 × 10−6 

11 Lipid Measurement 9 

rs11066280, rs1495741, rs1877031, rs326214, 

rs340839, rs4719841, rs4722551, rs4921914, 

rs884366 

6.21 1.9 × 10−6 5.4 × 10−6 

12 
Lipoprotein 

Measurement 
7 

rs11066280, rs1495741, rs1877031, rs1961456, 

rs326214, rs4722551, rs884366 
5.45 1.9 × 10−5 0.00005  

13 
Diastolic Blood 

Pressure 
5 

rs10279895,rs11066280, rs17696736, 

rs2521501, rs6969780 
5.5 4.1 × 10−5 9.7 × 10−5 

14 
Mean Arterial 

Pressure 
3 rs17696736, rs2521501, rs6969780 6.2 5.3 × 10−5 0.00012 

15 
Physical Activity 

Measurement 
3 rs3800229, rs3817334, rs7124681 5.31 0.00015 0.00028 

16 

High-Density 

Lipoprotein 

Cholesterol 

Measurement 

4 rs11066280, rs1877031, rs326214, rs884366 4.92 0.00015 0.00028 

17 Drinking Behavior 3 rs11066280, rs17696736, rs2521501 5.27 0.00016 0.00028 

18 Obesity 2 rs1704198, rs17126232 5.4 0.00025 0.00043 

19 
Systolic Blood 

Pressure 
4 rs11066280, rs17696736, rs2521501, rs6969780 4.21 0.00046 0.00074 

20 Parental Longevity 2 rs17630235, rs17696736 4.37 0.00073 0.0011 

21 
Total Cholesterol 

Measurement 
3 rs1495741, rs1961456, rs4722551 4.01 0.00081 0.0012 

22 
Type I Diabetes 

Mellitus 
2 rs17696736, rs7804356 4.26 0.00083 0.0012 

23 Blood Pressure 5 
rs10279895, rs11066280, rs17696736, 

rs2521501, rs6969780 
3.68 0.00089 0.0012 

24 Behavior 5 
rs11066280, rs17696736, rs2521501, 

rs3817334, rs9400239 
3.61 0.001 0.0013 

25 Alcohol Drinking 2 rs17696736, rs2521501 3.54 0.0019 0.0023 

26 Longevity 2 rs17630235, rs17696736 3.53 0.002 0.0023 

27 
Blood Metabolite 

Measurement 
2 rs1495741, rs4921914 3.53 0.002 0.0023 

28 Vital Signs 5 
rs10279895, rs11066280, rs17696736, 

rs2521501, rs6969780 
3.1 0.0026 0.0029 

29 Smoking Behavior 2 rs3817334, rs9400239 1.71 0.026 0.028 
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Next, we harnessed the Socialiser tool to assess the degree of relatedness or network between 

any two SNPs in the meaning of annotation profiles. Our results showed that 25 out of the 46 SNPs 

had a similarity score of more than 0.5 in scale range from 0 to 1 with at least five other SNPs (Figure 

3 and Table 4). These results indicate a possible co-occurrence or functional relationship of related 

SNPs. Moreover, clustering of the reported 34 genes in the shared chromosomal regions according to 

pathway enrichment revealed a significant enrichment of four major pathways, namely 

developmental biology, signal transduction, and metabolism of lipids and steroids (Supplementary 

Table S1). 

 

Figure 3. SNP-based Similarity Analysis of the identified SNPs using the “Socialiser for SNPs” option 

in the eXploring Genomic Relations (XGR) web tool. Seven SNPs showed similarity to at least 10 other 

SNPs with a similarity score of more than 0.5 in scale range from 0 to 1. 

Table 4. List of identified SNPs with related genes that showed similarity to each other using the 

Socialiser tool. 

SNP Gene Related to the SNP Number of SNPs with Similarity Score >0.5 in a Scale of 0–1 

rs11066280 ALDH2 23 

rs17696736 C12orf30 15 

rs17126232 ASAH1 13 

rs1704198 PROX1 13 

rs9400239 FOXO3 10 

rs3800229 FOXO3 9 

rs1961456 NAT2 9 

rs1495741 NAT2 9 

rs4722551 MIR148A 8 
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rs884366 LOC100996634 7 

rs326214 LRP4 7 

rs1877031 STARD3 7 

rs4719841 MIR148A 6 

rs340839 PROX1 6 

rs2028299 AP3S  5 

rs10908278 HNF1B, TCF2 5 

rs1061810 HSD17B12 5 

rs2946504 KIAA1456 5 

rs4921914 NAT2 5 

rs12899811 PRC1 5 

rs79548680 PRC1 5 

rs8042680 PRC1 5 

rs2075423 PROX1 5 

rs2075423 PROX1 5 

rs149358103 SOCS5P5, MARCKS 5 

3.3. Targeted Next-Generation Sequencing (NGS) Confirms the Presence of Similar SNP-Clusters in Emirati 

Diabetic Patients 

To confirm that our pipeline was able to identify similar SNP-clusters in the Emirati population, 

we performed NGS on two diabetic patients (as described in the methods section). As shown in Table 

5 and Supplementary Figure 1, NGS analysis confirmed the presence of a high rate of SNPs (defined 

as more than one SNP) in the same genes identified earlier. 

Out of the 34 identified genes by our pipeline, four genes (ASAH1, LRP4, FES, and HSD17B12) 

showed to have at least four SNPs from each patient (four was the median of the SNPs number per 

patients after excluding those who have one SNP only). 

Table 5. List of SNPs identified by next-generation sequencing (NGS) from two diabetic patients in 

genes located in the shared chromosomal region. 

Identified Genes 

Number of SNPs 

per Sample 

Patient 1 Patient 2 

ASAH1 20 16 

LRP4 8 7 

FES 9 6 

HSD17B12 7 4 

HNF1B 4 4 

HECTD4 2 6 

SH2B3 4 4 

NAT2 4 2 

SGCZ 3 1 

FURIN 3 1 

GGNBP2 5 1 

TSPAN18 2 2 

ALDH2 1 1 

STARD3 1 1 

MTCH2 1 2 

NDUFS3 1 1 

PRC1 0 0 

PTPN11 1 0 

CELF1 3 0 

NAA25 2 0 
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3.4. RNA-Seq Analysis in Human Pancreatic Islets Showed that HSD17B12 is Novel Candidate Gene for 

Pancreatic β Cell Function 

To gain more insights about the role of the four genes (ASAH1, LRP4, FES, and HSD17B12) in 

pancreatic islets, we used our published RNA-seq data to investigate their expression in human islets 

[27,28]. RNA-seq mean expression analysis from nondiabetic islets showed that ASAH1 and 

HSD17B12 are highly expressed at a high level in human islets as compared FES, LRP4, or to the ion 

channel gene KCNJ11, a functional marker for pancreatic β-cell function. (Figure 4A). Differential 

expression analysis exhibited that expression of HSD17B12 is significantly reduced (p = 0.03) in 

diabetic islets (n = 12) when compared with nondiabetic islets (n = 63, Figure 4E). Expression of 

ASAH1, FES, and LRP4 was not affected by diabetes status (Figure 4B–D). Collectively, based on the 

expression level and differential expression in human islets, our results suggest that HSD17B12 is a 

candidate gene for pancreatic β-cell function.  

 

Figure 4. Gene expression in human pancreatic islets. (A) RNA-seq mean expression of FES, LRP4, 

ASAH1, and HSD17B12 in non-diabetic human pancreatic islets (n = 63). KCNJ11 gene was used as 

functional marker for pancreatic islets; (B–E) Whisker boxes of differential expression analysis of 

ASAH1, (B) LRP4, (C) FEX, and (D) HSD17B12; (E) in pancreatic islets of diabetics (n = 12) and non-

diabetics (n = 63). HSD17B12 was significantly downregulated in T2D islets (p = 0.03). 

3.5. Annotations of SNPs in HSD17B12 

Targeted NGS performed in two local Emirati diabetic patients identified a total of four intronic 

SNPs in the HSD17B12 gene (Supplementary Table S2). Interestingly, the two patients showed one 

common genotype of rs4573668 (homozygote C/C instead of the reference G). To identify if this SNP 

is phenotypically important, we used the SNPnexus tool to explore the location and functional 

consequences of rs4573668. Interestingly, we found that rs4573668 to be located in the 5’ untranslated 

region of the HSD17B12 transcript which could affect its expression, while it does not alter the amino 

acid sequence of the mature protein (Supplementary Figure 2). This might indicate that rs4573668 
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plays a role in controlling the activity and function of the HSD17B12 in terms of transcription or 

epigenetic modifications. 

4. Discussion 

In this study, we employed an integrative phenotype-genotype systems approach to investigate 

whether UAEDIAB-phenotypes shared chromosomal regions containing SNP-clusters, which can be 

exploited as candidate biomarkers for pancreatic β-cell function and risk of diabetes. Our analysis 

identified eight shared chromosomal regions in four UAE-DIAB-phenotypes (Figure 2 and Table 1). 

The identified regions contain 46 SNPs with reported effect on 34 genes (Table 2), hence, putatively 

involved in the pathogenesis processes leading to the disease. In vivo validation on Emirati diabetic 

patients, showed that ASAH1, LRP4, FES, and HSD17B12 have the highest number of SNPs among 

the 34 genes. 

An important part of our study is providing more knowledge for the association of the five 

identified candidate genes with diabetes in human pancreatic islets from donors with and without 

diabetes (Figure 4). ASAH1 gene is a member of the ceramidases family which degrade ceramide to 

free fatty acids and sphingosine (SPH) [29]. It has been shown that the inhibitory effects of 

accumulated saturated fatty acids on insulin signaling were prevented by ASAH1 overexpression 

[30]. Other studies have revealed that endurance exercise was associated with a reduction in ceramide 

levels in the skeletal muscles of obese individuals, hence leading to the improvement of insulin 

sensitivity [31]. Although the expression of ASAH1 in human islets was high, we were not able to 

observe any differential expression of the gene in diabetic islets (Figure 4). This suggests that ASAH1 

is probably not involved in β-cell function but rather insulin signaling as evident by other reports 

[30,31]. 

LRP4 is a single-pass transmembrane protein belonging to the LDL receptor-related protein 

(LRP) family. Members of this family were found to be involved in various processes, including 

development and physiology [32]. LRP4 loss of function has been associated with developmental 

anomalies associated with Cenani–Lenz syndrome (CLS) disease, which includes limb malformation 

and renal agenesis [33]. Furthermore, adipocytes in LRP4 deficient mice were characterized by an 

improvement of glucose and insulin tolerance, lipid homeostasis, less adipocyte hypertrophy as well 

as reduction of serum fatty acids, thus confirming the role of LRP4 in regulating glucose metabolism 

[34]. FES gene encodes for a non-receptor protein with tyrosine-specific activity. A recent 

investigation of the genetic determinants of cardiovascular diseases has found FES to be associated 

with hypertension and BMI [35]. The findings that expression of LPR4 and FES is not affected by 

diabetes status and low expressed in human islets indicate that those genes might not be potential 

important players in β-cell function (Figure 4). 

HSD17B12 (Hydroxysteroid 17-β dehydrogenase) is an essential molecule in the elongation of 

very-long-chain fatty acids (VLCFAs) and the production of arachidonic acid through the conversion 

of 17-keto and 17-hydroxysteroids [36]. The gene has been recently linked to BMI and obesity 

susceptibility [37]. We showed that HSD17B12 expression was very high in human islets and 

significantly decreased in diabetic islets compared to nondiabetic (Figure 4). The findings may 

suggest a role of HSD17B12 gene in pancreatic β-cell function. In support of our RNA-seq data, it was 

reported that tissues involved in lipid metabolisms such as liver, kidney, muscle, and adipose tissues 

have a high expression level of HSD17B12 in humans and mice [36]. Interestingly, pathway 

enrichment analyses of the 34 genes pointed out that HSD17B12 is involved in signal transduction 

and metabolism of lipids and steroids, which fits well with studies of phenotypes. 

A previous study showed that individuals carrying the T2D risk allele T for the intronic SNP 

rs11037579 had lower expression of HSD17B12 in adipose tissue of insulin-resistant subjects [38]. 

Additionally, rs1061810 was documented to be associated with T2D indicating a role for HSD17B12 

in diabetes [39]. Our results indicated that genotyping of rs4573668 (C/C) is common in the local 

Emirati patients. Since the rs4573668 variant might lead to a change in the protein amino acid 

sequence, therefore, it could play a significant role in controlling the activity and function of the 

HSD17B12 in terms of transcription, translation, and epigenetic modifications. Moreover, the findings 
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that HSD17B12 expression is reduced in diabetic islets, highlights the potential of utilization of this 

gene as an early biomarker in blood samples for pre-diabetic patients. 

In summary, our study proposes HSD17B12 as a causal gene for T2D and pancreatic β-cell 

function. More future functional studies still needed to validate the finding. 

5. Conclusions 

In conclusion, our combined approach supports the existence of common chromosomal regions 

and SNP-clusters among obesity/BMI, hypertension, obstructive sleep apnea, dyslipidemia, and 

diabetes which might be involved in the pathogenesis of these clinically related phenotypes. 

We were able to replicate these SNP-clusters on the local Emirati population different from the 

ethnic groups available in GWAS. HSD17B12 was identified as a candidate gene for β-cell function. 

Our data are the implementation of genomics-based approaches to chronic disease detection using 

bioinformatics in silico approach, and, therefore, further functional validation is still needed to 

elucidate the role of HSD17B12 and rs4573668 in the pathogenesis of T2D. In the end, we believe that 

such knowledge could increase our understanding of diabetes and facilitate the development of 

drugs. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/11/4/461/s1, Figure 

S1: Screenshots of examples SNPs in the genes identified generated by targeted DNA next-generation 

sequencing in Emirati diabetic patients, Figure S2: List of the location and functional consequences of rs4573668 

as predicted by SNPnexus tool, Table S1: Enriched Ontology Clusters of the identified 34 genes associated with 

the UAEDIA-phenotypes, Table S2: List of the 4 identified SNPs in HSD17B12 gene in two Emirati diabetic 

patients, with their location and significance in gene expression. 
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