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Abstract: The high variability and somatic stability of DNA fingerprints can be used to identify
individuals, which is of great value in plant breeding. DNA fingerprint databases are essential
and important tools for plant molecular research because they provide powerful technical and
information support for crop breeding, variety quality control, variety right protection, and molecular
marker-assisted breeding. Building a DNA fingerprint database involves the production of large
amounts of heterogeneous data for which storage, analysis, and retrieval are time and resource
consuming. To process the large amounts of data generated by laboratories and conduct quality
control, a database management system is urgently needed to track samples and analyze data. We
developed the plant international DNA-fingerprinting system (PIDS) using an open source web server
and free software that has automatic collection, storage, and efficient management functions based on
merging and comparison algorithms to handle massive microsatellite DNA fingerprint data. PIDS also
can perform genetic analyses. This system can match a corresponding capillary electrophoresis image
on each primer locus as fingerprint data to upload to the server. PIDS provides free customization and
extension of back-end functions to meet the requirements of different laboratories. This system can
be a significant tool for plant breeders and can be applied in forensic science for human fingerprint
identification, as well as in virus and microorganism research.
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1. Introduction

DNA fingerprints have multi-loci, high variability, and simple and stable inheritance, and have
attracted much attention because of their great practical value [1,2]. The high variability and somatic
stability of DNA fingerprints can be used to identify individuals, which is of great value in determining
kinship among individuals and in forensics to identify criminals [3–6]. In other applications, DNA
fingerprints can provide accurate identification at the varieties level [7–9], and play important roles in
plant breeding [10–12]. DNA fingerprints are also commonly used in research on animal evolutionary
trends and animal varieties identification [8,13].

Simple sequence repeats (SSRs) are molecular markers that have the advantages of simplicity,
rapidity, high repeatability, and abundant polymorphisms [14–16]. SSRs have been used successfully to
construct DNA fingerprints that are used widely in plant genetic studies and crop breeding [9,11]. The
identification of varieties relies heavily on accurate plant genotype indicators to ensure the genetic and
physiological consistency of improved crop varieties [17]. Compared with traditional field planting
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identification, the analysis of SSR fingerprints avoids environmental interference and can quickly and
accurately identify varieties without the restrictions of growth and development times [18–20].

DNA fingerprints can be managed systematically by a computer, and can be organized in DNA
fingerprint databases [21]. DNA fingerprint databases are essential and important tools for plant
molecular research because they provide powerful technical and information support for crop breeding,
variety quality control, variety right protection, and molecular marker-assisted breeding [22,23].
Building a DNA fingerprint database involves the production of large amounts of heterogeneous data
for which storage, analysis, and retrieval are time and resource consuming [24–27]. Some biological
data management software has been developed. For example, SLIMS can organize, store, and access
sample information [28]; AutoLabDB provides database schema to support automated laboratories [29];
and TheSNPpit can manage large amounts of multi-panel SNP genotype data [30].

However, no automatic management system for plant SSR fingerprints from “experiment to
storage to fingerprint audit to analysis” is available, and no database management system for plant
SSR fingerprint development has been reported so far. The construction of an SSR fingerprint database
for plant varieties is particularly difficult for a number of reasons. First, plant variety is a concept that
can have different meanings. For example, plant DNA fingerprint databases can have two sampling
methods, mixed and individual samples, which is unlike a human DNA fingerprint database, which
will have only individual samples [1,3,4,9]. Therefore, a management system of plant DNA fingerprint
data must be able to merge the fingerprints of multiple individual samples, individual and mixed
samples, and mixed samples [9,10,30]. Second, plant varieties tend to have poor consistency between
individual samples [9,10]. When collecting DNA fingerprints of mixed samples, it is difficult to describe
high and low peaks, and three or multiple peaks quantitatively because of the low consistency of
samples. Therefore, the image of a DNA fingerprint is very important, so after collecting the fingerprint
data, it is necessary to upload and maintain a large database of fingerprint images (gel electrophoresis
or capillary electrophoresis (CE) image on each primer locus). Third, to select primers for the SSR
fingerprint database, high polymorphism was considered as an important selection index, so a large
number of primers of the 2-bp repeat type were selected. Because the difference between alleles is
small, a naming scheme based on the number of repeats cannot be used when collecting the original
data. Therefore, alleles need to be named according to segment size, which can lead to data reading
errors of 1–2 bp. To reduce the influence of data acquisition error, a base offset parameter needs to be
introduced into data merge and comparison algorithms. Finally, large numbers of SSR primers are
commonly used to establish crop variety databases, and a composite amplification system has not yet
been developed. Therefore, it is not possible to build a DNA fingerprint database for plants with only a
group of panels, as has been done for humans. Instead, multiple panels are needed to complete a plant
DNA fingerprint database. This raises the problem of how to combine data in multiple panels into
data similar to a group of panels to facilitate the management and query of test information. Finally,
the current biological data management systems do not solve the fingerprint processing problem of
data from repeated experiments. Therefore, the development of a suitable plant variety SSR fingerprint
database management system is very necessary.

In this paper, we describe the Plant International DNA-Fingerprinting System (PIDS) that we
developed to solve the problems created by the situations described in the previous paragraph.
PIDS has automatic collection, storage, and efficient management functions based on merging and
comparison algorithms to handle massive amounts of fingerprint data, and the system can also perform
genetic analyses. PIDS is available online at https://ssr.PIDS.online:8445/ssr. This system can match a
corresponding CE image on each primer locus as fingerprint data to upload to the server. For more
than five years, PIDS has been used widely by 20 institutions, including the China National Rice
Research Institute, the Chinese Academy of Agricultural Sciences, and the Development Center for
Science and Technology (China), and has proved to be a stable efficient system for sharing data and the
results of genetic analyses.

https://ssr.PIDS.online:8445/ssr
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2. Materials and Methods

2.1. System and Database Schema

In genotyping experiments of individual and population samples, representative fingerprint
data should be screened out from the fingerprints of multiple parallel experiments performed
by different experimenters and/or from multiple repeated experiments performed by a single
experimenter. Therefore, PIDS constructs a hierarchical weighted tree structure (experiment–DNA–
experimenter–sample) that is used to quantify and reflect the impact of different experiment stages
on the quality of the automated integrated DNA fingerprint data, so as to accurately evaluate and
select the best DNA fingerprint, while avoiding manual data errors. This method uses an automated
optimal typing and selection algorithm based on DNA fingerprint literal data. For any problematic
data, manual verification and genotype reselection is used to generate DNA fingerprint data that meet
experimental requirements. In this way, unreliable genotype data that could interfere with the final
DNA fingerprint are avoided, so as to improve the efficiency of the whole data integration processing
and reduce the occurrence of errors.

The PIDS schema contains hierarchical permission structures that limit the query and operation
rights of fingerprint data as follows. An experimenter can query and operate their own uploaded
fingerprint data, but cannot access data from others; and after an experimenter uploads a Sample
Information Table (SIT) to clarify which samples he/she is responsible for, then the experimenter is able
to query and audit the sample fingerprints (in the SIT) from multiple parallel experiments submitted
by different experimenters.

The fingerprint data are stored in different fingerprint databases according to their different
purposes and functions as follows. Experimental Fingerprint Database (EFD): An experimenter can
upload an Excel file, GeneMapper output file, and project file into the EFD. Original fingerprint
information is recorded and can be queried and traced. Every piece of fingerprint data in the EFD must
be audited through the Fingerprint Merging Algorithm by the experimenter before the fingerprint
data are submit automatically to the Sample Fingerprint Database (SFD). This merging algorithm can
solve the problem of fingerprint duplication in multiple experiments of a single experimenter and
reduce experimental errors. This design also ensures the integrity of data and avoids the absence
of loci data. Sample Fingerprint Database (SFD): An experimenter can audit the sample fingerprint
data (in the SIT) from the EFD. After the data are audited and confirmed by the experimenter, a set
of sample fingerprints are generated and submitted automatically to the Local Fingerprint Database
(LFD) using the Fingerprint Merging Algorithm. By merging the audited data, any artificial errors
caused by different experimenters can be reduced. The two layers of data audit and merge (EFD–SFD
and SFD–LFD) achieve sufficient quality assurance of the experimental results data. Local Fingerprint
Database (LFD): The LFD can be used for fingerprint data comparisons and reports. A locking function
is provided and, once locked, the data cannot be changed.

PIDS can track DNA samples through workflows, which allows users to trace back to GE and CE
files (CE image on each primer locus). Users can also query the sample sources.

2.2. Fingerprint Merging and Comparison Algorithms

2.2.1. Fingerprint Merging Algorithm

The procedure used in the Fingerprint Merging Algorithm is shown in Figure 1. The data merging
direction is “experiment→ DNA→ experimenter→ sample→ variety”, with the aim of achieving
optimal selection and generating the final fingerprint data step by step. Four layers and four parameters
are defined (Figure 1). The four layers are experiment, DNA, experimenter, and sample. The four
parameters are defined as: i, which indicates the number of experiments performed for the current
DNA sample by the same experimenter; j, which indicates the number of copies of DNA extracted by
the current experimenter from one sample; k, which indicates the number of experimenters assigned
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to current samples; and m, which indicates the number of samples for the current variety. To treat each
sample as an independent variety, m is set as 1.
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Figure 1. Schematic representation of the Fingerprint Merging Algorithm.

The algorithm distinguishes the weight of each group of fingerprint data by merging fingerprints
step by step, reflects the stage of each fingerprint, and traces the source of fingerprint data errors
through each layer by setting weights as follows. The sample layer reflects the differences among
different batches of samples and the weight is set as 1. The experimenter layer reflects the data
analysis of several experimenters and the weight is set as 1/n. The DNA layer reflects the experimental
operation of an experimenter and the weight is set as 1/m. The experiment layer reflects the state of
the instrument and the sampling and the weight is set as 1/k. Therefore, the weight accumulation
of hierarchical merging preliminarily reflects the qualities of the experiment, instrument, and data
analysis of the sample fingerprint. The default base offset during merging is:

|x| < 2bp (1)

The Fingerprint Merging Algorithm has two categories: peer fingerprint merging and cross-layer
fingerprint merging. Peer fingerprint merging refers to the locus-by-locus comparison of multiple sets
of data in the same layer. The genotype is retained into the merged result if it is the same among the
different datasets, otherwise only the genotype that occurs most frequently is retained.

Cross-layer fingerprint merging is performed as follows:
1. Assign the fingerprint data of the i round of the same DNA solution Ai with the same weight of

1/(i × j × k × m), then perform peer layer fingerprint merging at the experiment layer to obtain the
merged fingerprint B of the experiment layer.

2. Assign the merged fingerprint Bj from different DNA solutions of the same sample performed
by the same experimenter the same weight of 1/(j × k ×m), then perform peer fingerprint merging at
the DNA layer to obtain the merged fingerprint C of the DNA layer.

3. Assign the merged fingerprint at the DNA layer Ck of the same sample conducted by different
experimenters with the same weight of 1/(k ×m), then perform peer layer fingerprint merging at the
experimenter layer to obtain the merged fingerprint D of the experimenter layer.

4. Assign the merged fingerprint at the experimenter layer Dm of different samples of the same
variety with the same weight of 1/m, then perform peer layer fingerprint merging at the sample layer
to obtain the final merged fingerprint of the sample layer, which represents the standard fingerprint of
a variety.

5. The cross-layer fingerprint merging is finished.
A variety can be represented by multiple samples, and generally a standard DNA fingerprint

database can be constructed using only one of the most authoritative samples to represent one variety.
For example, in the DNA fingerprint database of maize, the sample layer reflects the differences among
different batches of samples, the experimenter layer reflects the differences of the data analysis layers
of several experimenters, the DNA layer reflects the experimental operation layer of the experimenter,
and the experiment layer reflects the state of the instruments and sampling methods used. Therefore,
through the weight accumulation of hierarchical merging, the quality of the sample fingerprint
experiments, instruments, and data analysis can be preliminarily reflected. To reflect the weight
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of each layer objectively and truthfully, at the laboratory management layer it should be stipulated
that different experimenters should not cross-use the same DNA sample and different DNA samples
extracted by the same experimenter must be labeled differently, otherwise the system will process them
as different repeats of the same DNA. Multiple DNA samples extracted by the same experimenter from
a single plant are considered as one repeat regardless of the different DNA numbers.

2.2.2. Fingerprint Comparison Algorithm

Suppose, for a particular crop, two sets of DNA fingerprint data are ready to be compared. They
are the pending fingerprint data in queue f(n) and the comparison fingerprint data in queue f(m),
where n(n > 0) and m(m > 0) indicate how many DNA fingerprints are in each queue, and each
fingerprint is set to contain p(p > 0) loci data. If the number of different loci between the fingerprints
in the two queues is D, the number of non-different loci is S, and the number of missing loci is M, then
the relationship among them is:

p = D + S + M (2)

This equation represents the basic information obtained after a fingerprint comparison. The
difference between a fingerprint pair (pending and comparison) can be obtained by defining the
proportions of the different loci as:

x =
D
p

, x ∈ (0, 1) (3)

This equation indicates that the larger the x value is, the greater is the genotyping difference
between a fingerprint pair. This value plays an extremely important role in determining the report and
other conclusions.

The basic definitions of different loci, non-different loci, and missing loci points are as follows:
1. Number of different loci (D): The total number of differences between the data of two valid loci

at the same locus of a fingerprint pair. A threshold value is usually set for the number of different loci
to limit the number of comparisons within the expected difference range.

2. Number of missing loci (M): The number of effective loci at the same locus of a fingerprint pair
is less than the total number of 2.

3. Number of non-different loci (S): The total number of non-different loci between two valid loci
at the same locus of a fingerprint pair. This number can be derived from Equation (2).

Different comparison methods are needed to adapt to different needs. In the Fingerprint
Comparison Algorithm, different conditions are used to adjust the comparison methods and the default
limit range of the fingerprint data (the fingerprint data that can be used when the fingerprint data
range is not specified) needs to be set. If the range of fingerprint data is not specified, the following
equation is applied: homonymy + non-homonymy = the entire database. The conditions that need to
be specified are listed in Table 1.

Table 1. Conditions to be specified for the Fingerprint Comparison Algorithm.

Comparison Method Default Fingerprint Data Range

Database Comparison Entire Local Fingerprint Database

Homonymy Comparison Fingerprints of the same name or synonyms within the entire Local
Fingerprint Database

Non-homonymy Comparison Fingerprints with different names and synonyms within the entire Local
Fingerprint Database

Sub-Database Comparison Assigned through Excel

Paired Comparison Assigned through Excel

The functions of the parameters required in the Fingerprint Comparison Algorithm are described
in Table 2.
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Table 2. Parameters required in the Fingerprint Comparison Algorithm.

Condition Description

Number of
comparison loci

To control the matching of locus between different fingerprints, value: X ≥ 0. This
parameter is used in the Fingerprint Comparison Algorithm, proper control of a
value can reduce invalid comparison to improve fingerprint comparison speed,

the default value of min(X) is 20.

Number of
differential loci

To control the locus difference between samples, which used in the Fingerprint
Comparison Algorithm to filter the comparison results. Proper control of a value

can reduce the display of useless results, the range of X is ≥0, and the default
value of max(X) is 20.

Percentage of
differential loci

To control the degree of difference between samples, the range of X is 0 ≤ X ≤ 1,
detail descriptions can be found in the mixed strain comparison algorithm. The

default value of max(X) is 0.05.

Base offset To control the difference between the two loci, the range of X is 0 bp ≤ X ≤ 2 bp.
The default MaxX is 2 bp. This parameter is used in the comparison algorithm.

The pseudocodes for the algorithms are:

Algorithm 1: GCA

Input: [a1,b1] as loci 1, [a2,b2] as loci 2, a1/a2 is the first data of diploid, b1/b2 is the last
data of diploid, the different offset allowed is named n
result = 1 # initialized as not same
conditionR1 = abs(a1 - a2) ≤ n
conditionR2 = abs(b1 - b2) ≤ n
conditionR3 = abs(a1 - b2) ≤ n
conditionR4 = abs(a2 - b1) ≤ n
if (conditionR1 and conditionR2) or (conditionR3 and conditionR4)
result = 0
end if
return result
Output: 0-> two loci are same; 1-> two loci are different

Algorithm 2: FCPP

Input: queue f1 of length n, queue f2 of length m, f1 and f2 should have same number of
loci, named as p
Initialize compareResult array as size m*n
for i = 1 to m

for j = 1 to n
diffCount = 0

for k = 1 to p
diffCount=diffCount+GCA(f1[j][p]+f2[i][p])

end for
compareResult.append([f1[j], f2[i], diffCount])

end for
end for
return compareResult
Output: compareResult

2.3. System and Database Implementation

PIDS was developed over two years of continuous use and has evolved in parallel with the
automation of biological experiments. PIDS is implemented on a Tomcat server (The Apache Software
Foundation, Wakefield, MA, USA). The system uses browser/server (B/S) architecture combined with
Java and J2EE technologies. The MySQL web server (Oracle Corporation, Redwood Shores, CA, USA)



Genes 2020, 11, 373 7 of 15

is used for database storage. PIDS is flexible and can be expanded to accommodate multiple detection
techniques (e.g., SNPs, indels) and for storage and analysis of multiple fingerprint data. This system is
compatible with fingerprint data for DNA testing of all plant varieties. It can switch crop modules to
build a DNA fingerprint database for a crop of interest. PIDS covers both individual detection and
group detection, so it can be extended to DNA detection and genotyping applications in animals and
microorganisms. This system has great universal adaptability and stable application effects.

3. Results

3.1. System Modules and Functionality

The core functions of PIDS include data generation, data storage, data audit, and data analysis. By
providing automatic data generation, storage, audit, and rapid comparison functions, it can replace the
previous methods of manually entering data into the database and manually comparing and merging
data. Only a small amount of data needs to be corrected manually, namely data that the algorithm
cannot automatically determine, to achieve the target of rapid processing of DNA fingerprint data.
The data generation function in PIDS is divided into two parts, experimental information processing
and fingerprint data analysis processing. These two parts correspond to the phases before and after
a complete experiment, namely the experimental phase and the data analysis phase. Thus, PIDS
provides comprehensive data analysis auxiliary functions for the experimenter, simplifies the often
difficult data analysis phase, improves the quality of data analysis, and provides the basis for the
analysis of mass fingerprint data. The modular structure of PIDS is shown in Figure 2.Genes 2020, 11, x FOR PEER REVIEW 8 of 16 
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workflows between the modules and functions. PIDS covers three core fingerprint databases and the
data transfer relationship between them. Modules 5 and 6 perform the core functions of identification
and data analysis. The workflows ensure that the entire experiment and data analysis is a closed loop
process. When problems occur, they can be solved by supplementary experiments or reanalysis, which
can improve the efficiency of the data transfer process.
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PIDS can guide and assist users in completing genotyping experiments. Users can enter a project
name to begin. The plate table holds information about specific plates (each with a unique barcode), so
they can be individually tracked and the results recorded. The information in the plate table includes
monitoring and allocating DNA sample locations in plates, loci/loci groups, panel, alleles, genotypes,
upper template, PCR plate, electrophoresis plate, and primer information. Users can also upload
capillary electrophoresis (CE) output files. Three types of data files can be uploaded: project file, Excel
file, and GeneMapper output file. Project files need to be generated using the SSR Analyser software
(downloadable free from https://ssr.PIDS.online:8445/ssr). This software can match a corresponding CE
image on each primer locus as fingerprint data to upload to the server, and PIDS will automatically bind
and store the image and primer locus. SSR Analyser runs on a Windows system that is automatically
connected to the web services when opened from PIDS. For Excel files, PIDS provides an export format
template file that can be used to generate data in the specified format.

PIDS uses Spring Web Services to handle incoming data files. The standard WSDL file is used
to describe the related information Service interfaces and parameters. It contains the invocation
specifications for the interfaces of three services (storage of fingerprint data, storage of image and
panel file download). The WSDL file can be accessed at http://ssr.pids.online:6060/SsrDatasService/

geneUpload.wsdl. For users who have technical problems trying to call this interface, we have provided
an e-mail address where we can be contacted for help. We will consider providing an example to help
users make smooth calls to the interface.

The Fingerprint Comparison Algorithm is applied to complete the comparison between the
source and target fingerprints, which can reveal differences, missing, or no differences between
fingerprints. PIDS focuses on the core identification function, including authenticity identification,
purity identification, and paternity testing. It also has a genetic analysis function that allows users to
perform genetic clustering and heterosis group analyses of their uploaded data.

PIDS has an identity authentication function when uploading, which prevents illegal data
storage. Uploaded data can be viewed, downloaded, and printed. PIDS also generates reports
for varieties identification and genetic analysis results. Users can perform genetic cluster analysis
on the uploaded data with 12 genetic algorithms. PIDS also can produce common cluster tree
images. The PIDS website provides users with detailed and comprehensive user guides. The detailed
description of the examples is described in the PIDS User Manual and can be downloaded from
https://ssr.pids.online:8445/ssr/sys/cms/files/download/6ec27a20252811ea2a6c538bc13df1b6 and the
SSR Analyser User Manual can be downloaded from https://ssr.pids.online:8445/ssr/sys/cms/files/
download/1a1b5ed011bd11e4b2a205874e1ede97).

3.2. System Model

PIDS was constructed using a relational database. The database is implemented based on the
current mainstream open source software MySQL. Figure 3 shows the entity relationship model (ERD)
and the class table model in PIDS. Using Chen’s ERD notation to represent the ERD [31], we first
identified 10 entities and four relationships (Figure 3A). A table-like model is constructed based on
the ERD (Figure 3B). The “PCR plate” and “CE plate” entities shown in Figure 3A are each split into
two tables, “PCR” and “PCR_well”, and “CE” and “CE_well” as shown in Figure 3B. These tables are
used to include additional information to describe the wells in the plate and to accurately locate them.
All the entities are related by the source of the sample and associated with basic information such as
primers, panels, and detection equipment to build a complete fingerprint data information system.

https://ssr.PIDS.online:8445/ssr
http://ssr.pids.online:6060/SsrDatasService/geneUpload.wsdl
http://ssr.pids.online:6060/SsrDatasService/geneUpload.wsdl
https://ssr.pids.online:8445/ssr/sys/cms/files/download/6ec27a20252811ea2a6c538bc13df1b6
https://ssr.pids.online:8445/ssr/sys/cms/files/download/1a1b5ed011bd11e4b2a205874e1ede97
https://ssr.pids.online:8445/ssr/sys/cms/files/download/1a1b5ed011bd11e4b2a205874e1ede97
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primary key. Foreign key (FK) indicates a foreign key to another table and is indicated by an arrow.

The whole DNA fingerprint database contains basic information, experimental information, and
fingerprint data information. These data are referenced to each other by IDs or bar code numbers.
To solve the problem that fingerprint data are compatible with different crop primers, PIDS stores
fingerprint data and fingerprint image information in independent files. The fingerprint data file is
associated with the storage path information of the fingerprint image, and then the fingerprint data
file path information is stored in the basic information table of fingerprint data. When loading and
updating fingerprint data and fingerprint images, only new information needs to be written into the
fingerprint data file. This approach avoids the problem of slow operations such as queries that use a
database to store a large amount of binary data. Further, the fingerprint data and fingerprint image
information are stored with greater freedom, and the DNA fingerprint database can be backed up and
restored more quickly.
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3.3. System Access

The PIDS interface focuses on simplicity as the basic design element. Front-end Web pages
are built based on the open source UI framework Bootstrap3 (https://www.bootcss.com/) and some
excellent open source JavaScript plug-ins have been incorporated to display page data to achieve the
best user experience. In the basic process of PIDS, each operation step generally corresponds to a data
batch import function to facilitate the completion of various key data warehousing operations. Excel
and CSV are two common data formats in the whole system, which ensures fast data processing speeds.

As shown in Figure 4A, users can first click on the “Template” button to download a data sample
template, and then write their self-organized data into this file according to the template requirements.
When complete, the file can be imported into the system using the “Upload” or “Save” button. By
following the basic steps shown in Figure 4A and the sequence of importing experimental data
described in the PIDS user manual, users can complete the design process, including experiment
design, data analysis, fingerprint and fingerprint image storage, fingerprint data viewing, and various
identification and data analysis functions.

Genes 2020, 11, x FOR PEER REVIEW 11 of 16 

 

The PIDS interface focuses on simplicity as the basic design element. Front-end Web pages are 
built based on the open source UI framework Bootstrap3 (https://www.bootcss.com/) and some 
excellent open source JavaScript plug-ins have been incorporated to display page data to achieve the 
best user experience. In the basic process of PIDS, each operation step generally corresponds to a data 
batch import function to facilitate the completion of various key data warehousing operations. Excel 
and CSV are two common data formats in the whole system, which ensures fast data processing 
speeds. 

As shown in Figure 4A, users can first click on the “Template” button to download a data sample 
template, and then write their self-organized data into this file according to the template 
requirements. When complete, the file can be imported into the system using the "Upload" or "Save" 
button. By following the basic steps shown in Figure 4A and the sequence of importing experimental 
data described in the PIDS user manual, users can complete the design process, including experiment 
design, data analysis, fingerprint and fingerprint image storage, fingerprint data viewing, and 
various identification and data analysis functions. 

 

Figure 4. The PIDS interface and representative workflows. (A) Users can import the sample 
information table and DNA information table of the experiment, and automatically create PCR and 
electrophoresis plates according to the given condition parameters. (B) Users can print the 
automatically generated electrophoresis plate hole position information table for actual DNA 
detection experiments. (C) Users can view the fingerprint data and map information submitted for 

Figure 4. The PIDS interface and representative workflows. (A) Users can import the sample
information table and DNA information table of the experiment, and automatically create PCR and
electrophoresis plates according to the given condition parameters. (B) Users can print the automatically
generated electrophoresis plate hole position information table for actual DNA detection experiments.
(C) Users can view the fingerprint data and map information submitted for storage. (D) Users can
enter comparison condition parameters and view detailed information of the comparison results. (E)
Users can enter genetic analysis parameters and generate a chart of genetic analysis related results.

PIDS uses a standardized experimental design process (Figure 4A), so that experimenters have a
unified experimental design language to communicate and understand each other. Further, the basic
idea of “design before experiment”, ensures that all the experiments are adequately prepared and
fully designed, and experimenters only need to carry out the experiment according to the printed

https://www.bootcss.com/
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electroplating layout table (Figure 4B) that is printed after the design process is complete. Thus, the
experimental design and experimental operation are separated from the personnel to achieve a smooth
pipeline operation. In the design process, the automatic electrophoresis plate design algorithm in PIDS
is used to avoid the error and low efficiency of the sample hole position during manual typesetting.

After the data are stored in the database by the automatic binding of the fingerprint data and
image process, users can view the most comprehensive overview of the fingerprint data at any time.
For example, users can view the fingerprint data and CE image contained in all experiments of
sample-associated DNA (Figure 4C). This helps users to determine the true cause of the fingerprint
difference between different experiments, and ensures that the final integrated fingerprint data are
sufficiently reliable and representative.

After the fingerprint data are entered into the local fingerprint database, DNA fingerprint
comparisons can be performed to complete the identification of the variety. After entering the relevant
parameters, such as the fingerprint range and the number of different loci of the fingerprint comparison,
fingerprint data comparisons can be performed, and users can view statistical information and detailed
comparison data information, such as difference, no difference, and missing among the fingerprints
(Figure 4D).

PIDS also can provide a genetic analysis function based on the LFD fingerprint or user-defined
fingerprint data through the genetic analysis function (Figure 4E). This function supports a variety
of genetic distance calculation algorithms and genetic analysis graphic types, which can complete
common graphical displays of multiple types of genetic analysis results, and provide functions that
include genetic path, gene frequency table, and download of genetic analysis maps to allow users to
obtain and save their own analysis results.

3.4. Data Quality Control

Data quality control is an important application of PIDS and the following methods are provided
to complete this function.

Standardized experimental design method: The PIDS experimental design function is used to
pre-plan the details of the sample testing process. This function provides a unified experimental design
scheme for users to improve the standardization of their experimental design and to provide important
reference information for quality control.

Add standard sample as reference: Experimenters can set one or more standard samples of the
crops as reference samples during the experiment. By comparing the fingerprints of the reference
samples with the fingerprint of the existing standard sample in PIDS, the system can determine whether
there is an overall error in the current detection experiment.

Three repeated experiments: Three repeated experiments are carried out on the experiment to
obtain multiple sets of fingerprint data. The automated fingerprint data audit function of PIDS is
used to audit the results of the repeated experiments. The results of the differential loci determination
are obtained after the audit. The difference and number of missing loci obtained from the results
are used to analyze the consistency of the fingerprint data. The results indicate the basic quality of
the experiment.

Basis for accuracy determination: Differences among loci can be comprehensively determined by
the peak shape of all pending sample fingerprints. Because the fingerprints contain all the effective
original information, they can be used as the most effective and accurate basis for data analysis by
providing effective support for the quality of the final determination.

Thus, this platform provides functional support for data quality control from many aspects and
dimensions. Data noise information generated during an experiment can be solved by the automated
fingerprint audit of three repeated experiments, and the repeatability and stability of each locus in an
experiment also can be determined. After the data noise has been processed, the number of different
loci will increase, thereby providing a simple and effective basis for accuracy determination.
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We prepared three sets of repeated experimental data for a maize hybrid sample; two of the sets
are consistent and the other set is noise data. We uploaded the three sets of data to the PIDS system
and carried out an automated fingerprint data audit through the menu functions “Experiment” and
“Experiment Audit”. We found that when the number of experiments was an odd number, using < 40%
of the noise data did not cause adverse effects and the number of effective data loci did not reduce,
whereas using ≥40% of the noise data caused differences in loci and missing data. The proportion of
noise data can be adjusted, but because PIDS uses statistical methods to obtain the most consistent
genotype of each locus, to ensure the noise data does not adversely affect the results, 40% noise data is
set as the maximum threshold boundary for determining effective data.

4. Discussion

PIDS can process large amounts of DNA fingerprint data and perform quality control, which
is urgently needed to track samples and analyze data. The extension of back-end functions was
developed to meet the requirements of different laboratories. Currently, PIDS can support a variety
of crops, including maize, rice, soybean, cotton, and other major food crops. PIDS also can support
human and microbial DNA fingerprint data management and analysis. The functions of PIDS can be
expanded according to the target samples studied. PIDS is potentially an efficient DNA fingerprint
management platform that can be used for crop breeding research, variety protection, and research in
the fields of medicine, crime, and microbiology. Although the primers used for different species will be
different, the requirements for a DNA fingerprint database are similar [21,22]. Species type fields can
be added to the sample information table to distinguish samples. Because all the markers are species
specific, to ensure that the naming of the marker sites of different species do not conflict, a species
type field is added to the marker information table to distinguish the markers. The same fingerprint
database management system can be used for cotton and other polyploid species [9]. If the adopted
markers have homologs on different chromosomes, the filtering algorithm of the SSR Analyzer and the
structure of the fingerprint database management system will need to be adjusted.

In future updates, PIDS will be modified to support a variety of markers, including SSRs, SNPs,
and indels. A marker type field will need to be added to the marker information table to distinguish
the different markers, and the similarities and differences of different marker structures will need to be
considered when designing the database structure. For example, for diploid species, only 1–2 alleles
can be collected during data collection, but the alleles can be named according to the characteristics of
the different markers. SSR markers can be named according to the size of the allele fragment, indel
markers can be named according to the deletions/insertions as A and B, and SNP markers can be named
according to the single base at the mutation position. For indel and SNP markers, a polyacrylamide
gel electrophoresis (PAGE) detection platform can be used to manually collect data, which can be
imported into the database as an Excel file. Fluorescent scanning solutions, such as chip detection
platforms, also can be used. SNP markers need special tail sequences when used on electrophoresis
detection platforms, whereas indel markers are relatively easy to use. When indel and SNP markers
are created, there are still requirements for parallel experiments and layer upon layer merging.

Compatible platforms for PIDS are mainly PAGE and fluorescent capillary electrophoresis
platforms. The compatibility of data collection methods, such as PAGE, which uses Excel tables,
and capillary electrophoresis, which involves online fingerprint analysis and uploading of data
and fingerprint image, needs to be considered. Different capillary electrophoresis platforms can be
customized for sample plate design, electrophoresis plate design, and FSA file (ABI fragment analysis
data file) configuration. The next generation of molecular identity cards can be linked to the PIDS
website to establish a quick response (QR) code for each variety on the website. By scanning the QR
code, users can retrieve molecular data information and fingerprint information of the varieties.
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5. Conclusions

PIDS is an indispensable tool in our laboratory. It assists in automating DNA fingerprint
experiments and reduces human error. It can complete sample tracking and perform common genetic
analysis, thereby improving work efficiency and quality. PIDS can support all diploid plants and can be
extended to support polyploid species. We can provide users with free customization and extension of
back-end functions to meet the requirements of their laboratories, such as those involved in human and
microorganism research. PIDS can monitor the experimental process and ensure the standardization of
DNA fingerprint data. It can be used to conduct inter-database conversations, and exchange fingerprint
data between fingerprint databases, with complete fingerprint data processing services. PIDS includes
location statistics, fingerprint merging, fingerprint comparison, and genetic analysis functions, and
is compatible with single and mixed DNA sample processing methods. PIDS has a complete loci
statistics function that can meet the needs of a laboratory’s internal fingerprint database construction.
PIDS can also meet the requirements for standard fingerprint database construction and sharing, and
supports the expansion of multiple detection technologies and multiple fingerprint data services.
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